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Abstract 

Although some ensemble clustering approaches have been developed in recent years to 

improve the quality of the clustering, but lack of a median fuzzy partition-based consensus 

function that considers more participate reliable fuzzy clustering, remains unsolved problem. 

In this paper, we convert the median fuzzy partition problem into an optimization problem 

based on the reliability-based co-association matrix that minimizes distances between co-

association matrix of final clustering and co-association matrix of base-clustering in the 

ensemble. The optimization problem is a constrained nonlinear objective function and we 

solve it by sparse sequential quadratic programming (SSQP). Experimental results reveal the 

effectiveness of the proposed approach rather than the state-of-the-art methods in the quality-

terms on various standard datasets. 
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1. Introduction 

Clustering is a process of categorization the unlabeled data-objects into different groups, 

called clusters, such that data-objects within a cluster are more similar to each other than they 

are to those belonging to different clusters. Clustering has been applied for exploration, 

analysis and pattern discovery in an unsupervised manner in such domains as machine 

learning, image segmentation, document retrieval, marketing research, bioinformatics, data 

mining, etc. 

Based on the relationship of each data-object to the clusters, the clustering algorithms can also 

be categorized into fuzzy and hard (crisp) clustering algorithms. In fuzzy clustering, the data-

objects can belong to more than one cluster, and a membership degree associated with each 

of the data-objects which indicate the degree to which the data-objects belong to the different 

clusters. But some data-objects are inherently fuzzy, (i.e. the ones that will not be definitively 

assigned to a cluster), and are doubtful. For example, in satellite image segmentation 

application, a pixel corresponds to an area of the land space, may belongs to different types 

of land cover. In hard clustering a data-object certainly belongs to one cluster.  Crisp clustering 

is a special case of fuzzy clustering, in which the membership degree of a data-object 

belonging to a cluster equals one and its membership degree belonging to the other clusters is 

zero. The foundation of the fuzzy clustering analysis is the basic FCM clustering algorithm 

which proposed by Don and completed by Bezdek [1] . In due time, the famous fuzzy 

clustering algorithms have been derived from FCM in order to adapt it to different datasets 

that contain clusters of various shapes, sizes or densities. We can mention Gustafson-Kessel 

algorithm (GK) [2], Gath-Geva algorithm (GG) [3], Kernel-based fuzzy clustering (KFCM) 

[4] algorithms as some examples.   

In the data clustering context, various clustering algorithms have emerged, each uses a 

different similarity criterion. Therefore, they have different objective functions. Different 

algorithms or the same algorithm with different parameters or initialization, will produce 

different clustering results for the same dataset. In specific conditions, some of these 

algorithms might outperform others. For example, some algorithms have high computational 

complexity, some others have good accuracy rate, and the others fit the datasets with special 

characteristics (e.g., k-means fits the datasets with circular-shape clusters). That is, all these 

methods are heavily dependent on dataset. Hence, an alternative solution for managing all the 

objectives regarding the clustering that might be contradictory, is to combine some of these 

algorithms. This idea is named clustering aggregation and is called cluster ensemble in many 

scientific context [5], which recently has become popular in scientific community [6], [7], [8], 

[9], [10], [11], [11], [12], [13]. Clustering ensembles generally outperform the single 

clustering in several aspects, such as robustness, novelty, quality enhancement, knowledge 

reusability, multi view clustering, stability, parallel/distributed data processing [14] and 

mining heterogeneous data.  

Clustering ensemble approach consists of two phases: In the first phase a set of base 

clusterings is generated (Phase 1 in Fig. 1), which are as diverse as possible, and then a suitable 

consensus function will be applied to combine different base clusterings into a single final 

clustering in the second phase (Phase 2 in Fig. 1; (This research does not address to phase 1, 

only focuses on phase 2). The goal of the second phase of the ensemble clustering is to reach 

the final clustering. This achieved through a consensus function. Since the clustering problem 

is unsupervised, producing the "final clustering"  with maximum similarity to all base 

clusterings is very difficult and an NP problem [13]. For this purpose, various consensus 

functions are proposed, each with a specific approach and different information from the base 
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clustering obtained from phase one, and sometimes by considering the initial characteristics 

of the data. The existing cluster ensemble approaches can be classified into following 

categories: a) intermediate space clustering ensemble methods [9], [15], b) co-association 

matrix based clustering ensemble methods [16]–[19], c) hyper-graph based clustering 

ensemble methods [5], [7], [19] d) expectation maximization clustering ensemble methods 

[13] and e) mathematical modeling clustering ensemble methods (median partition) [20], [21], 

f) voting- based approach [22]–[24], g) Quadratic Mutual Information approach [25]. Median 

partition based clustering ensembles, which selects a single candidate clustering solution from 

a set of candidate clustering solutions is so far considered as the best approach [26].  

Despite the more generality of fuzzy clustering compared to crisp clustering, researches in the 

fuzzy clustering ensemble are still in their initial stages and there exist relatively few 

approaches for this field. The quality of the base clustering highly affects the consensus 

process in ensemble clustering. The consensus results may be badly affected by low-quality 

or even noised base clusterings. To deal with low-quality base clusterings, some researchers 

investigated the quality-evaluation and weighting of the base clusterings to improve the 

consensus functions quality [27]–[29]. However, these approaches are developed based on an 

implicit assumption that all of the clusterings in the ensemble have the same reliability. Due 

to the noise and inherent complexity of real-world datasets, the different clusterings in the 

ensemble may have different reliability. It is worth mentioning that among the available 

studies no researcher has considered the role of reliability of fuzzy clusterings in the ensemble. 

Therefore, without the need to access the data features or relying on specific assumptions 

made on data distribution, the key questions here are 1) how to measure the reliability of fuzzy 

clusterings and 2) how to weight the clusterings based on their measured reliabilities to 

enhance the accuracy and robustness of the consensus clustering.  In summary, measuring 

clustering reliability in the fuzzy clustering ensemble poses a challenging task (problem1).  

In the median partition-based consensus function approach, the final clustering is obtained by 

finding a clustering which has maximizes (minimize) the similarity (dissimilarity) from (with) 

all clusterings in the clustering ensemble. Although a great number of clustering ensemble 

methods have been proposed over the past years, there are relatively few researches in 

handling fuzzy clustering ensemble based on median partition (It is worth noting that partition 

and clustering are same) approach and none of them investigated ensemble method based on 

data-objects co-occurrence and median partition simultaneously (problem2). 

This study devoted towards the development of a new fuzzy clustering ensemble framework 

based on ensemble-driven clustering reliability calculation and local weighting strategy to 

address the aforementioned challenges. The overall flowchart of this approach is illustrated in 

Fig. 1. The advantage of the fuzzy clustering quality is posed into a locally weighted scheme 

to enhance the consensus quality. Here, the reliability of each fuzzy clustering is computed 

according to information theory [5] based on the pair-wise fuzzy cluster similarity. In 

particular, for a given fuzzy clustering, its reliability is computed by defining a new metric. 

This measure named reliability driven fuzzy clustering indicator (RDFCI). Here, the point is 

that the crowd of diverse clusterings in the ensemble can provide an effective indication for 

evaluating every single clustering. By assessing and weighting the clusterings in the ensemble 

through the RDFCI measure, the concept of weighted co-association matrix whose weights 

are calculated based on reliability, which incorporates local similarity between fuzzy clusters 

into the conventional co-association (Co) matrix and is treated as a summary for the ensemble 

of diverse fuzzy clusterings (dealing with problem 1). Finally, finding the final consensus 
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clustering was modeled as an optimization problem, and this problem is solved by sequential 

quadratic Programming (dealing with problem 2). 

As a summary, in previous work [30], we proposed a framework for selecting fuzzy base-

clusterings based on diversity and quality of fuzzy base-clusterings which applied hierarchical 

agglomerative clustering as consensus function over the co-association matrix to obtain final 

clustering. Then we decide to propose an approach that 1) consider the reliability of each 

fuzzy clustering in constructing fuzzy co-association matrix, in addition 2) a novel median 

based consensus function that is applied over the co-association matrix.   

The contributions of this paper are as follows: 

• A fuzzy reliability-driven clustering indicator is proposed to measure the reliability 

and to weight the fuzzy clusterings in the ensemble, which provides an indication of 

reliability at the clustering-level with a contribution to the local weighting plan. 

• A consensus function based on the object's co-occurrence and median partition is 

proposed to obtain final fuzzy clustering from base clusterings concerning clustering 

reliability.  

• A median fuzzy partition problem is defined formally, which seeks to estimate an 

optimum consensus fuzzy clustering. 

• The proposed median fuzzy partition problem is solved by SSQP solver to obtain the 

final fuzzy clustering.  

• experimental evaluation is performed on a set of datasets indicate that this proposed 

fuzzy clustering ensemble approach outperforms the state-of-the-art approaches in 

terms of clustering quality and robustness. 

The rest of the paper is organized as follows: related work is presented in Sec. (2). The 

background knowledge about entropy and ensemble clustering is introduced in Sec. (3). The 

proposed fuzzy clustering ensemble approach is described in Sec. (4). The experimental 

results are reported in Sec. (5) and the conclusion and future work is presented in Sec. (6). 

 

2. Related work 

A lot of work has been performed in the field of crisp cluster ensemble. Here we can consider 

the studies related to fuzzy cluster ensemble, among which the following are briefed: 

Berikov presented the probabilistic model for the fuzzy Clustering ensemble based on the 

weighted co-association matrix [31]. in this model, each of the base clustering is created by 

different clustering algorithms. Each algorithm performs a certain number of times on each 

data set (i.e., r times). The variance of the Hellinger distance [32] between each data-object 

pair in r times is considered as the weight of each base clustering in the calculation of the 

reverse co-association (the matrix is based on the distance of the data-object pair rather than 

the similarity of the data-object pair); in this algorithm, the variance of the distance between 

the data-object pair is considered as a consistency criterion. Then, the final clustering is 

obtained by applying the traditional hierarchy method al on the resulting matrix. 

CSPA, MCLA proposed by Strel and Ghosh [5] and HBGF proposed by Fred and Brodly [7] 

approaches were later extended by Punera and Ghosh, to allow fuzzy base clusterings on the 

clustering ensemble, showing that the addition of information of fuzzy clusters on the 
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ensemble is useful; the proposed models were the soft version of CSPA, of MCLA, and HBGF 

and named sCSPA, of sMCLA, and sHBGF, respectively. [7]. 

Another related research introduced by Saha et al. is SVMeFC [33]. In this method some fuzzy 

clustering methods like MoDEFC, GAFPSC, FCIDE, GAFC, FCM are applied to the data set. 

Some of the derived clustering are chosen to train SVM and the remaining objects of each 

clustering are re-labeled by SVM. At the end of this procedure, by applying CSPA to obtained 

clusters from SVM, final clusters are produced. Support vector machines are very powerful 

algorithms for data sorting and separating, especially when combined with other methods of 

machine learning. This procedure best fits the cases where excessive precision is required, as 

long as we choose mapping functions properly. But it is time-consuming because of high 

computational complexity and also consumes a lot of memory. 

In [34] Alizadeh et al. converted the fuzzy ensemble clustering problem to a 0-1 bit string 

problem. Their proposed model consists of a constrained nonlinear objective function, named 

fuzzy string objective function (FSOF). FSOF simultaneously maximizes the agreement and 

minimizes the disagreement between the ensemble members. They solved this nonlinear 

model using genetic algorithm by applying two modified crossovers and a modified mutation 

operator. Based on these operators two consensus function that named FSCEOGA1 and 

FSCEOGA2 were proposed. It is worthy to be mentioned that in this method base clustering 

must be crisp. 

A voting based method proposed by Sevillano et al. [23]  to obtain consensus clustering from 

base fuzzy clustering in the ensemble. This method includes two procedures, 1) 

Disambiguation and 2) Voting. In disambiguation phase of clusters, the re-labeling problem 

is performed using the Hungarian algorithm [35] with 𝑂(𝐾3)  time complexity, k represents 

the number of clusters in each clustering. The final consensus clustering is obtained through 

the voting procedure. Two confidence-based voting methods named sum voting rule and 

product voting rule [36] and also two positional-based voting methods named Borda voting 

rule [37] and Copeland voting rule [38] are presented which time complexity of these four 

algorithms is 𝑂(𝑀𝐾β log(𝐾)) such that K represents the number of cluster in each clustering, 

M shows the number of data-objects and 𝛽 indicates the number of base clusterings. Based on 

the combination of re-labeling and voting being direct or repetitive, there exist eight different 

consensus functions. 

A heterogeneous clustering ensemble is proposed by Arlyd and Anna in [39] to increase the 

stability of fuzzy cluster analysis. First, they applied basic fuzzy clustering algorithms like 

FCM, GG, GK and KFCM and then applied the FCM algorithm to the co-association matrix 

and the final clustering is yield.  In this ensemble the weights of participation of all clusters 

in the co-association matrix are equal. 

Szabo and Nunes de Castro (2017) offer  method for fuzzy clustering ensemble based on 

Particle Swarm optimization which can be applied to fuzzy and crisp clusters [40]. Initial 

clusters in this method are created using Particle Swarm Clustering (PSC) algorithm and 

through parameter change. Then β′ among β initial clusterings (β
′ < β) are selected through 

the pruning process. In order to perform the pruning process, first the fitness of base 

clusterings are measured using one of internal cluster validity indices like Ball-Hall [41], 

Calinski-Harabasz [42], Dunn index [43], Silhouette index [44] or Xie-Beni [45] and then the 

elite clustering are chosen using one of the genetic selection mechanism like tournament or 

roulette wheel. Finally, the PSC algorithm is applied as consensus function in order to perform 
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the final clustering. In this method, each particle represents a cluster, despite the other PSO-

based methods which each particle represents a clustering. 

In [17] Parvin et al. in for handling imbalanced clustering propose a weighted locally adaptive 

clustering algorithm (FWLAC). Because the performance of FWLAC algorithm is dependent 

to tune two parameters, they propose an elite clustering ensemble two mange to manage these 

parameters. Their proposed elite procedure first converts fuzzy clusters into crisp clustering 

and consider each cluster as a clustering, finally clustering NMI was used to assess each 

cluster. 

 

3. PRELIMINARIES 

Before explaining the proposed approach, the general formulation of the data, fuzzy clustering 

ensemble and entropy definitions should be introduced as follows:  

Definition 1. A data-object is a multi-tuple (𝑑𝑖
1, 𝑑𝑖

2, … 𝑑𝑖
𝑁) presented as 𝑑𝑖

⃗⃗  ⃗, where 𝑑𝑖
𝑗
 is the j-

th feature from i-th data, 𝑑:
𝑗
 is the j-th feature from whole data. 𝑁 is the number of features, 

𝑁 = |𝑑1
: | and 𝑀 is the number of the data-objects‘ 𝑀 = |𝑑:

𝑖|. 

Definition 2.  Fuzzy clustering of data set 𝑥 is a two-dimensional matrix with size 𝑀 ∗ 𝑐, 

where 𝑀 = |𝑑:
1| and 𝑐 is the number of clusters, presented as π(𝑑) so that: 

 ∀j ∈ {1,… , 𝑐}, 𝑖: 𝜋(𝑑𝑖
⃗⃗  ⃗)

𝑗
∈ [0,1]    (1)  

where ∀ i: ∑ 𝜋(𝑑 𝑖)
𝑗

𝑐
𝑗=1 = 1     (2)               

where 𝜋(𝑑 𝑖)
𝑗
 is the membership degree of i-th data-object belong to j-th cluster. 

Definition 3. A clustering ensemble consists of 𝛽 base-clusterings defined as: 

𝛱 = {𝜋1, … , 𝜋β}     (3)               

 where  𝜋𝑚 = {𝐶1
𝑚, … , 𝐶𝑛𝑚

𝑚 }    (4)          

Where, 𝜋𝑚   is the m-th base clustering in 𝛱, 𝐶𝑖
𝑚 is the i-th cluster in clustering 𝜋𝑚  and 𝑛𝑚  

is the number of clusters in 𝜋𝑚.  

To sum up, the set of all clusters in the ensemble is presented as 

C= {𝐶1
1, … , 𝐶

𝑛𝛽
𝛽

}    (5)         

where 𝐶𝑖
𝑗
 is the i-th cluster of clustering 𝜋𝑗  , thus the number of all clusters in the base 

clusterings (c) is computed as:  

𝑐 = 𝑛1 + ⋯+ 𝑛𝛽     (6)                 

Example 1. Three fuzzy clustering 𝜋1, 𝜋2 and 𝜋3 (𝛽 = 3) on dataset x  with 6 data-objects 

(𝑀 = 6) are shown in Table 1. 
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Table 1. Three fuzzy clustering 𝜋1 , 𝜋2  and 𝜋3. 

𝑐1 𝑐2 𝑐3    
𝑥1 0.1 0.7 0.2    
𝑥2 0.0 0.8 0.2    
𝑥3 0.1 0.4 0.5    
𝑥4 0.0 0.2 0.8    
𝑥5 0.8 0.1 0.1    
𝑥6 0.7 0.1 0.2    

 

   𝑐1 𝑐2 𝑐3

   𝑥1 0.6 0.3 0.1
   𝑥2 0.8 0.2 0.0
   𝑥3 0.5 0.5 0.0
   𝑥4 0.2 0.7 0.1
   𝑥5 0.0 0.5 0.5
   𝑥6 0.1 0.2 0.7

 

   𝑐1 𝑐2 𝑐3

   𝑥1 0.7 0.2 0.1
   𝑥2 0.9 0.1 0.0
   𝑥3 0.9 0.0 0.1
   𝑥4 0.2 0.6 0.2
   𝑥5 0.1 0.9 0.0
   𝑥6 0.0 0.2 0.8

 

 

 

4. Proposed approach 

In this paper, a new fuzzy clustering ensemble approach based on ensemble-driven 

clustering reliability calculation and local weighting strategy is proposed. As can be seen 

in Fig. 1 the proposed approach lies in phase 2 of fuzzy clustering ensemble and 

decomposed it in to 4 steps. The steps of the proposed approach are shown in Fig. 2 (after 

phase 1). In the first step, the similarity of each fuzzy cluster in relation to other clusters 

is computed. In the second step, the reliability of each clustering is calculated in Sec. 

(4.2), In the third step the fuzzy reliability-based co-association matrix is computed in 

Sec. (4.3) and in step 4, the consensus clustering is obtained as described in Sec. (4.4).  

 

Fig. 1. Proposed approach steps 

 

4.1 Computing the similarity between fuzzy cluster  

The first step in Fig. 2 is to compute the similarity of each fuzzy cluster in relation to other 

fuzzy clusters within different clusterings; i.e., the probability of agreement between two 

clusters in different clusterings which is obtained according to Definition 7. We measure it by 

extending the ‘similarity between fuzzy sets’ that proposed by Gao Zheng [46]. Then this 

extended criterion measures similarity relationship between two fuzzy clusters. 
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Definition 5. The similarity of cluster Ci
ki (cluster 𝐶𝑖 ∈ 𝜋𝑘𝑖 ) in relation to cluster Cj

kj
 (cluster 

𝐶𝑗 ∈ 𝜋𝑘𝑗 ), where 𝑖 ≠  𝑗 is computed through Eq. (9): 

𝑠𝑖𝑚(𝐶𝑖
𝑘𝑖 , 𝐶𝑗

𝑘𝑗
 ) =  ∑

min (1−𝜋𝑘𝑖(𝑥𝑡⃗⃗⃗⃗ )𝑖+𝜋𝑘𝑗(𝑥𝑡⃗⃗⃗⃗ )𝑗,1+𝜋𝑘𝑖(𝑥𝑡⃗⃗⃗⃗ )𝑖−𝜋𝑘𝑗(𝑥𝑡⃗⃗⃗⃗ )𝑗)

max (1−𝜋𝑘𝑖(𝑥𝑡⃗⃗⃗⃗ )𝑖+𝜋𝑘𝑗(𝑥𝑡⃗⃗⃗⃗ )𝑗,1+𝜋𝑘𝑖(𝑥𝑡⃗⃗⃗⃗ )𝑖−𝜋𝑘𝑗(𝑥𝑡⃗⃗⃗⃗ )𝑗
𝑀
𝑡=1 ∗

min (𝜋𝑘𝑖(𝑥𝑡⃗⃗  ⃗)𝑖, 𝜋𝑘𝑗(𝑥𝑡⃗⃗  ⃗)𝑗)        (7)  

The value of the cluster acceptability (𝑠𝑖𝑚) computed from (7) is in the range [0, 1]. 

Example 2 (Continuation of example 1). The sim values of fuzzy clusterings related to 

Example 1 in Table 1 is shown in Table 2.  

Table 2. The values of sim corresponding to fuzzy clusterings presented in Tables 1,2 and 3. 
 

c1 c2 c3 c4 c5 c6 c7 c8 c9 

c1 - 0.24 0.42 0.10 0.45 1.07 0.05 0.80 0.77 

c2 0.24 - 1.35 1.92 0.70 0.17 1.79 0.26 0.30 

c3 0.42 1.35 - 0.77 1.68 0.21 0.47 0.89 0.22 

c4 0.10 1.92 0.77 - 1.72 0.28 1.56 0.27 0.29 

c5 0.45 0.70 1.68 1.72 - 1.32 0.49 1.15 0.23 

c6 1.07 0.17 0.21 0.28 1.32 - 0.15 0.40 0.75 

c7 0.05 1.79 0.47 1.56 0.49 0.15 - 0.35 0.47 

c8 0.80 0.26 0.89 0.27 1.15 0.40 0.35 - 0.44 

c9 0.77 0.30 0.22 0.29 0.23 0.75 0.47 0.44 - 

 

4.2 clustering reliability calculation     

The second step in Fig. 1 is devoted to computing reliability of each clustering in the 

ensemble. for a given clustering in the ensemble the clustering reliability is defined as the 

quantity certain knowledge of the ensemble about the clustering. Reliable clusterings are 

clusterings that share more information with other clusterings in the ensemble, in other words 

reliable clusterings are stable clusterings. Because ignoring reliability of base clusterings 

makes ensemble method vulnerable to low-quality clusterings, then we compute the reliability 

of each clustering and considered as clustering weight in construction co-association matrix. 

We assume that there is no knowledge about the original data-object features, the reliability 

of each fuzzy clustering is computed based on its shared information with other based 

clustering in the ensemble (sub section 4.2.2). 

 

4.2.1 Estimating the cluster unreliability      

The reliability of fuzzy clustering 𝜋𝑚 in the ensemble 𝛱 means how much the clustering 

𝜋𝑚shares information with other base clusterings in the ensemble 𝛱. Then, The reliability of 

fuzzy clusterings is computed based on fuzzy normalized mutual information (FNMI) [30].  

FNMI is obtained without the knowledge of the original data features or making any 

assumptions on data distribution. The fuzzy normalized mutual information between two 

fuzzy base clusterings  𝜋𝑎 and 𝜋𝑏 is calculated according to definition 6.  
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Definition 6. Fuzzy Normalized Mutual Information between two fuzzy clustering 𝜋𝑎 , 𝜋𝑏 is 

shown by 𝐹𝑁𝑀𝐼  (𝜋𝑎 , 𝜋𝑏)  and is computed as: 

𝐹𝑁𝑀𝐼(𝜋𝑎, 𝜋𝑏) =
𝐹𝑀𝐼(𝜋𝑎, 𝜋𝑏)

𝑚𝑎𝑥(𝐻(𝜋𝑎
𝜋𝑏), (𝜋𝑏

𝜋𝑎))
⁄        (8) 

where 𝐹𝑀𝐼(𝜋𝑎, 𝜋𝑏) is the fuzzy mutual information between two clustering 𝜋𝑎and 𝜋𝑏, and 

is computed as, 

𝐹𝑀𝐼(𝜋𝑎, 𝜋𝑏) = 𝐻(𝜋𝑎
𝜋𝑏) + 𝐻(𝜋𝑏

𝜋𝑎) − 𝐽𝐻(𝜋𝑎 , 𝜋𝑏)      (9) 

where 𝐽𝐻(𝜋𝑎 , 𝜋𝑏) is the joint entropy between two fuzzy clusterings  𝜋𝑎 and  𝜋𝑏, and is 

computed by Eq. (12), 

𝐽𝐻(𝜋𝑎, 𝜋𝑏) = −∑ ∑ (
𝑠𝑖𝑚(𝐶𝑡

𝑎,𝐶𝑙
𝑏)

𝑀𝑆𝑠𝑖𝑚(πa,πb)
∗ log (

𝑠𝑖𝑚(𝐶𝑡
𝑎,𝐶𝑙

𝑏)

𝑀𝑆𝑠𝑖𝑚(πa,πb)
))  𝑛𝑏

𝑙=1
𝑛𝑎

𝑡=1  (10) 

and  𝐻(𝜋𝑎
𝜋𝑏) is the entropy of fuzzy clustering 𝜋𝑎in relation to clustering 𝜋𝑏 and is computed 

by Eq. (11) and  𝐻(𝜋𝑏
𝜋𝑎) is the entropy of fuzzy clustering 𝜋𝑏in relation to clustering 𝜋𝑏 

𝐻(𝜋𝑎
𝜋𝑏) = −∑

𝑆𝑠𝑖𝑚 (𝐶𝑡
𝑎

   𝜋𝑏)

𝑀𝑆𝑠𝑖𝑚(πa,πb)
log

𝑆𝑠𝑖𝑚 (𝐶𝑡
𝑎

   𝜋𝑏)

𝑀𝑆𝑠𝑖𝑚(πa,π𝑏)
 𝑛𝑎

𝑡=1       (11) 

where 𝑠𝑖𝑚(𝐶𝑡
𝑎 , 𝐶𝑟

𝑏) is the similarity between two fuzzy clusters 𝑐𝑡 ∈ πa, 𝑐𝑟 ∈ π𝑏 and is 

computed according to Definition 5, 𝑆𝑠𝑖𝑚 (𝐶𝑡
𝑎

   𝜋𝑏) is  the sum of similarity between the fuzzy 

clusters 𝑐𝑡 ∈ π𝑎 and all clusters 𝐶𝑙
𝑏 ∈ πb and is computed according to Eq. (12) and 

𝑀𝑆𝑠𝑖𝑚(𝜋𝑎, 𝜋𝑏) is the sum of similarity between each cluster of clustering 𝜋𝑎 in relation to 

each cluster of  clustering 𝜋𝑏  (Mutual similarity) and is computed according to Eq. (13). 

𝑆𝑠𝑖𝑚 (𝐶𝑡
𝑎

   𝜋𝑏) = ∑ 𝑠𝑖𝑚(𝐶𝑡
𝑎 , 𝐶𝑙

𝑏)𝑛𝑏

𝑙=1      (12) 

𝑀𝑆𝑠𝑖𝑚(𝜋𝑎, 𝜋𝑏) = ∑ ∑ 𝑠𝑖𝑚(𝐶𝑡
𝑎 , 𝐶𝑙

𝑏)𝑛𝑏

𝑙=1
𝑛𝑎

𝑡=1       (13) 

Example 3 (Continuation of example 2). The FNMI between the fuzzy clustering pairs in 

Table 1 based on the similarity between fuzzy clusters in Table 2 has been calculated 

according to Definition 6 and the result is shown in Table 4. 

 

 

 

Table 4 The values of FNMI corresponding to Table 1 
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 𝝅𝟏 𝝅𝟐 𝝅𝟑 

𝝅𝟏 - 0.3131 0.3012 

𝝅𝟐 0.3132 - 0.3012 

𝝅𝟑 0.3012 0.3012 - 

 

4.2.2 Computing the reliability of each fuzzy clustering in the ensemble 

As mentioned above the reliability of a clustering in the ensemble is the certainty knowledge 

of the ensemble about the cluster.  Because we supposed that we do not have any knowledge 

about the underlying dataset (we only access to an ensemble of clusterings) we must first 

compute the normalized mutual information between each pair of base clusterings in the 

ensemble. Then the reliability of each base clustering is the average of its normalized mutual 

information with respect to other base clusterings in the ensemble and is termed as reliability 

driven fuzzy clustering indicator (RDFCI) and computed as: 

Definition 7.  For an ensemble Π with 𝛽 base clusterings, the weight of each fuzzy clustering 

in clustering ensemble (i.e., RDFCI: reliability driven fuzzy clustering indicator) for a 

clustering 𝜋𝑎 is defined as   

𝐹𝐷𝐹𝐶𝐼(𝜋𝑎, Π  ) =
∑ 𝐹𝑁𝑀𝐼(𝜋𝑎,𝜋𝑡)

𝛽
𝑡=1

𝛽−1
           (14)          

where 𝐹𝑁𝑀𝐼(𝜋𝑎, 𝜋𝑡) is the normalized mutual information between fuzzy base clusterings 

𝜋𝑎 and 𝜋𝑡 that computed according to Definition 6. 

Example 4. The RDFCI values corresponding to Table 4 are computed according to equation 

(13) and the result is shown in Table 5 

Table 5. The values of RDFCI corresponding to Table 4. 

𝜋3 𝜋2 𝜋1 

0.3012 0.3072 0.3072 

 

4.3 Computing reliability based fuzzy co-association matrix 

As can be seen in Fig. 1, the third step is computing the co-association matrix with regard to 

the reliability of each clustering in the ensemble. One of the most common methods used to 

combine the base clustering is the co-association matrix-based method. Evidence 

Accumulation Clustering (EAC), which was first proposed by Fred and Jain [18]. EAC maps 

the individual data-object clustering in a clustering ensemble into a new pairwise similarity 

measure. 

Unlike in the general crisp evidence accumulation method, because a data-object doesn't 

belong to any base cluster absolutely we can't compute the co-association values by measuring 

how many times a pair of data-objects appears in the same cluster. In fuzzy clustering, each 

data-object belongs to each cluster with different membership degrees. Therefore, we should 

find a way to evaluate the strength of association between data-objects.    



B. Minaei-Bidgoli, et al./ IJDEA Vol.16, No.1, (2024), 20-45 

 

30 
 

Definition 9. The fuzzy co-association clustering ensemble matrix is expressed as: 

𝐹𝐶𝑜𝑖,𝑗
π:(x)

= 1
𝛽⁄ ∑ sup (inf (𝜋𝑘(𝑥𝑖⃗⃗  ⃗)𝑡, 𝜋𝑘(𝑥𝑗⃗⃗  ⃗)

𝑡
))𝑡=1

𝑛𝑘𝛽
𝑘=1     (15)                                 

 where 𝑥𝑖⃗⃗  ⃗ and 𝑥𝑗⃗⃗  ⃗ are the data-objects. If inf(𝑥, 𝑦) = 𝑥𝑦 and  𝑠𝑢𝑝(𝑥, 𝑦) = 𝑥 + 𝑦 , then  

𝐹𝐶𝑜:
𝜋𝑘

= 𝜋𝑘 × (𝜋𝑘)𝑇       (16) 

where (𝜋𝑘)𝑇 is the transposition matrix of 𝜋𝑘. 

As was mentioned in Definition 9, the co-association matrix reflects the strength of 

association between data-objects. In order to take the reliability of each clustering into account 

in the co-association matrix, RDCI would be considered as a multiplier term (weight) in co-

association matrix computation, leading to computation of the weighted (reliability based) 

fuzzy co-association matrix according to Definition 10.   

Definition 10.  The reliability based fuzzy co-association clustering ensemble matrix (𝑅𝐹𝐶𝑜) 

is defined as: 

𝑅𝐹𝐶𝑜𝑖,𝑗
π:(x)

= 1
𝛽⁄ ∑ 𝑅𝐷𝐹𝐶𝐼(𝜋𝑘, Π  ) sup (inf (𝜋𝑘(𝑥𝑖⃗⃗  ⃗)𝑡, 𝜋𝑘(𝑥𝑗⃗⃗  ⃗)

𝑡
))𝑡=1

𝑛𝑘𝛽
𝑘=1     (17)       

Example 6 (Continuation of example 5).  The 𝑅𝐹𝐶𝑜 matrix of fuzzy clustering ensemble in 

example 1 (Table 1) with regard to calculated RDFCI in Table 5 With 𝛽 = 3 is calculated as: 

 𝑅𝐷𝐶𝐼(𝐶1
1, 𝛱)=0.3218, 𝑅𝐷𝐶𝐼(𝐶2

1, 𝛱)=0.3666, 𝑅𝐷𝐶𝐼(𝐶3
1, 𝛱)=0.3407,𝑅𝐷𝐶𝐼(𝐶1

2, 𝛱)=0.3230,

𝑅𝐷𝐶𝐼(𝐶2
2, 𝛱)=0.3324,𝑅𝐷𝐶𝐼(𝐶3

2, 𝛱)=0.4116, 𝑅𝐷𝐶𝐼(𝐶1
3, 𝛱) = 0.4427, 𝑅𝐷𝐶𝐼(𝐶2

3, 𝛱) =

0.4105, 𝑅𝐷𝐶𝐼(𝐶3
3, 𝛱) = 0.3819 ,𝜋1(𝑥1⃗⃗⃗⃗ )

1 = 0.1, 𝜋1(𝑥2⃗⃗⃗⃗ )1 = 0.0,𝜋1(𝑥1⃗⃗⃗⃗ )
2 = 0.7, 𝜋1(𝑥2⃗⃗⃗⃗ )2 =

0.8 , 𝜋1(𝑥1⃗⃗⃗⃗ )
3 = 0.2,𝜋1(𝑥2⃗⃗⃗⃗ )3 = 0.2, 𝜋2(𝑥1⃗⃗⃗⃗ )

1 = 0.6, 𝜋2(𝑥2⃗⃗⃗⃗ )1 = 0.8,𝜋2(𝑥1⃗⃗⃗⃗ )
2 = 0.3, 

𝜋2(𝑥2⃗⃗⃗⃗ )2 = 0.2 , 𝜋2(𝑥1⃗⃗⃗⃗ )
3 = 0.1, 𝜋2(𝑥2⃗⃗⃗⃗ )3 = 0.0, 𝜋3(𝑥1⃗⃗⃗⃗ )

1 = 0.7, 𝜋3(𝑥2⃗⃗⃗⃗ )1 = 0.9,𝜋2(𝑥1⃗⃗⃗⃗ )
2 =

0.2, 𝜋3(𝑥2⃗⃗⃗⃗ )2 = 0.1 , 𝜋3(𝑥1⃗⃗⃗⃗ )
3 = 0.1 and 𝜋3(𝑥2⃗⃗⃗⃗ )3 = 0.0 according to Definition 10, 

𝑊𝐹𝐶𝑜1,2 = 1
3⁄ (sup [𝑅𝐷𝐶𝐼(𝐶1

1, 𝛱) ∗ 𝑖𝑛𝑓(𝜋1(𝑥1⃗⃗⃗⃗ )
1, 𝜋1(𝑥2⃗⃗⃗⃗ )1), 𝑅𝐷𝐶𝐼(𝐶2

1, 𝛱) ∗

inf (𝜋1(𝑥1⃗⃗⃗⃗ )
2), 𝜋1(𝑥2⃗⃗⃗⃗ )2), 𝑅𝐷𝐶𝐼(𝐶3

1, 𝛱) ∗ inf (𝜋1(𝑥1⃗⃗⃗⃗ )
3, 𝜋1(𝑥2⃗⃗⃗⃗ )3)] + sup [𝑅𝐷𝐶𝐼(𝐶1

2, 𝛱) ∗
𝑖𝑛𝑓(𝜋2(𝑥1⃗⃗⃗⃗ )

1, 𝜋2(𝑥2⃗⃗⃗⃗ )1), 𝑅𝐷𝐶𝐼(𝐶2
2, 𝛱) ∗ inf (𝜋2(𝑥1⃗⃗⃗⃗ )

2), 𝜋2(𝑥2⃗⃗⃗⃗ )2), 𝑅𝐷𝐶𝐼(𝐶3
2, 𝛱) ∗

inf (𝜋2(𝑥1⃗⃗⃗⃗ )
3, 𝜋2(𝑥2⃗⃗⃗⃗ )3)] + sup [𝑅𝐷𝐶𝐼(𝐶1

3, 𝛱) ∗ 𝑖𝑛𝑓(𝜋3(𝑥1⃗⃗⃗⃗ )
1, 𝜋3(𝑥2⃗⃗⃗⃗ )1), 𝑅𝐷𝐶𝐼(𝐶2

3, 𝛱) ∗

inf (𝜋3(𝑥1⃗⃗⃗⃗ )
2), 𝜋3(𝑥2⃗⃗⃗⃗ )2), 𝑅𝐷𝐶𝐼(𝐶3

3, 𝛱) ∗ inf (𝜋3(𝑥1⃗⃗⃗⃗ )
3, 𝜋3(𝑥2⃗⃗⃗⃗ )3)])=1

3⁄ (sup [0.3218 ∗

𝑖𝑛𝑓(0.2,0.1),0.3666 ∗ inf(0.8,0.1) , 0.3407 ∗ inf (0.7,0.8)] + sup [0.3230 ∗
𝑖𝑛𝑓(0.4,0.2),0.3324 ∗ 𝑖𝑛𝑓(0.6,0.1),0.4116 ∗ inf (0.0,0.7)] + sup [0.4227 ∗

𝑖𝑛𝑓(0.7,0.9),0.4105 ∗ inf(0.2,0.1) , 0.3819 ∗ inf (0.1,0.0)]] = 0.2488. In a similar way, the 

other entries of 𝑅𝐹𝐶𝑜 matrix can be obtained (see Table 7). 

Table 6. The RFCo matrix of fuzzy clustering ensemble presented in Table 1.  
x1 x2 x3 x4 x5 x6 

x1 0.0478 0.0555 0.0458 0.0286 0.0192 0.0153 

x2 0.0555 0.0676 0.0534 0.0268 0.0117 0.0082 

x3 0.0458 0.0534 0.0537 0.0353 0.0159 0.0137 

x4 0.0286 0.0268 0.0353 0.0517 0.0327 0.0214 

x5 0.0192 0.0117 0.0159 0.0327 0.0613 0.0382 
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x6 0.0153 0.0082 0.0137 0.0214 0.0382 0.0545 

 

4. 4 the consensus functions 

The final step in Fig. 1 is computing the final clustering (consensus clustering). The process 

of extracting final clustering from the co-association matrix using the RFCo method 

(Definition 10) is named consensus function. To obtain consensus function at the first we 

define the objective function to drive final clustering in section 4. 4.1, then we explain its 

solution in section 4. 4.2.  

 

4. 4.1 The objective function 

A consensus function is used to derive the final fuzzy clustering 𝜋∗ from Π by solving the Eq. 

(18). At the first, we formalize the problem of finding the final fuzzy clustering 𝜋∗ from the 

fuzzy clustering ensemble Π as objective function. Objective function must take into account 

both fuzzy cluster diversity and fuzzy cluster reliability of ensemble E summarized in fuzzy 

co-association clustering ensemble matrix (RFCo). We try to find the final fuzzy clustering 

𝜋∗ that its co-association matrix approximately equals to RFCo. According to Eq. (16), the 

co-association of  𝜋∗ is 𝜋∗ × 𝜋∗𝑇
. Hence, we try to minimize the (dissimilarity) distance 

between RFCo and co-association matrix of  𝜋∗ (minimize the sum of the absolute difference 

between co-association matrix of the final clustering and co-association matrix of ensemble 

E), as formalized in Eq. (18-1). Also 𝜋∗ is fuzzy clustering, each element must be satisfying 

the constraint (18-2). Additionally, because sum of membership of a data-object to all clusters 

in 𝜋∗ must equal to 1 the constraint (18-3) was added to Eq. (18).   This objective function is 

defined as Eq. (18).  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ |𝑅𝐹𝐶𝑜𝑘𝑙 − ∑ (𝜋∗
𝑘𝑗 × 𝜋∗

𝑗𝑙)
𝑘
𝑗=1 |  𝑀

𝑙=1
𝑀
𝑘=1     (18-1) 

Subject to:    

 ∀ 𝑗 ∈ {1,… . , 𝑘}, 𝑘 ∈ {1,… . ,𝑀}| 0 ≤ 𝜋∗
𝑘𝑗 ≤ 1    (18-2) 

∀  𝑘 ∈ {1,… . , 𝑀}|∑ 𝜋∗
𝑘𝑗

𝑘
𝑗=1 = 1          (18-3) 

Where RFCo is the fuzzy co-association matrix of base clusterings Π, 𝜋∗  is the final 

clustering matrix (problem variable that must be found), M is the number of data-objects, K 

is the number of clusters in the final clustering. It is worth noting that 𝜋∗ is a 𝑀 × 𝐾 

membership matrix, where rows correspond to data-objects and columns to clusters and where 

each element of it represents the membership degree of a data-object belonging to a particular 

cluster and each row of it is a membership degree of each data-object to final clusters.    

 

4. 4.2   Problem Solver 

The proposed solver named the FCESQP (Fuzzy Clustering Ensemble by Sequential 

Quadratic Programming) is introduced in this section. AS mentioned in the previous section, 

the cluster ensemble is formulated as an optimization problem. 

The goal of the optimization problem is to minimize the fuzzy clustering ensemble objective 

function that implicitly yields to a clustering in which its reliability among base clusterings is 

https://en.wikipedia.org/wiki/Sequential_quadratic_programming
https://en.wikipedia.org/wiki/Sequential_quadratic_programming
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maximized. To solve the proposed model, any nonlinear optimization solver can be applied. 

Sequential quadratic programming (SQP) method has proved highly effective for solving 

constrained optimization problems with smooth nonlinear functions in the objective and 

constraints [47], [48]. The objective function is nonlinear with linear constraints. Because the 

coefficient matrix of constraints is spare, the sparse SQP (SSQP) is applied for solving our 

optimization problem. 

 The SSQP algorithm is fully described by Gill, Murray and Saunders [49].  It employs a 

sparse sequential quadratic programming (SQP) algorithm with limited-memory quasi-

Newton approximations to the Hessian of the Lagrangian. It is especially effective for 

nonlinear problems with functions and gradients that are expensive to evaluate. The functions 

should be smooth but need not be convex. SSQP is suitable for large-scale for general 

nonlinear programs of the form 

min
𝑥

𝑓0(𝑥)     (19-1) 

Subject to:   𝐴𝑥 = 𝑎   (19-2) 

                    𝑥𝑙 ≤ 𝑥 ≤ 𝑥𝑢  (19-3) 

where l and u are lower and upper bounds (with constant values), 𝑓0(𝑥) is a smooth scalar 

objective function, A is a sparse matrix that refers coefficient values of the constraints, and  

𝑥𝑙, 𝑥𝑢 are lower and upper bound of variable x. We map the objective function (18) to Eq. 

(19) form as follows: 

  At the first, the transformation of matrix 𝜋∗  into the vector 𝑥 (containing  𝑀 × 𝐾 scalar 

variables) according to (Eq. (20)) is necessary.  

 𝑗 = 1. . 𝑘, 𝑖 = 1𝑀 ∶ 𝑥𝑡 = 𝜋∗
𝑖𝑗                     (20) 

where t=i+(j-1)*k 

After this transformation 𝑀 × 1 vector 𝑥𝑙 is set to zero, 𝑀 × 1 vector 𝑥ℎ is set to one, the a 

𝑀 × 1 vector is set to one and the  (𝑀) × (𝑀 × 𝑘)  sparse matrix 𝐴 is defined according to 

(Eq.(21)) 

𝑖 = 1. . .𝑀, 𝑗 = 1 . . . 𝑘, 𝑡 = 1… (𝑀 × 𝑘)       𝐴𝑖𝑡 = {
1              𝑖𝑓 𝑡 == (𝑖 − 1) ∗ 𝑗 + 𝑘
0                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    (21) 

Example 7. suppose the structurer of final clustering (𝑎 6 × 3 𝑚𝑎𝑡𝑖𝑥 𝜋∗  ) for fuzzy base 

clusterings in example 1 (suppose K=3) where its RFCo is shown in table 6, is shown in table 

7. This matrix (𝜋∗) is transformed to the 18× 1 vector x by Eq. (20) and it is as 

x=(𝜋∗
11, 𝜋∗

12, 𝜋∗
13, 𝜋∗

21, 𝜋
∗
21, 𝜋∗

22, 𝜋∗
23, 𝜋∗

31, 𝜋∗
32, 𝜋∗

32, 𝜋∗
33, 𝜋∗

41, 𝜋∗
42, 𝜋∗

43,

 𝜋∗
51, 𝜋

∗
52, 𝜋

∗
53, 𝜋

∗
61, 𝜋

∗
62, 𝜋

∗
63). The corresponding 6 × 18 matrix A is computed by Eq. 

(21) and the its values is shown in table 8. 

 

 

 

 

https://en.wikipedia.org/wiki/Sequential_quadratic_programming
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Table 7. The structurer of the final 

clustering corresponds to base clustering in 

Table 1 

Table 8. Coefficient matrix A related to example 5  

 

𝜋∗ =

𝜋∗
11 𝜋∗

12 𝜋∗
13

𝜋∗
21 𝜋∗

22 𝜋∗
23

𝜋∗
31

𝜋∗
41

𝜋∗
51

𝜋∗
61

𝜋∗
32

𝜋∗
42

𝜋∗
52

𝜋∗
62

𝜋∗
33

𝜋∗
43

𝜋∗
53

𝜋∗
63

 

[
 
 
 
 
 
1 1 1  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0  1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0  0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0  0 0 0 0 0 0 1 1 1 0 0 0 0 0 0
0 0 0  0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 1 1 1]

 
 
 
 
 

 

As the proposed algorithm is based on the SQP approach, we provide here a 

short synopsis of that method.  Because the objective function (19) (𝑓0(𝑥)) is nonlinear we 

approximate it to quadratic form with consider 3 first term of Taylor series as Eq. (22).  

𝐹(�̅�) = 𝐹(𝑥) + 𝑔𝑇(𝑥)(�̅� − 𝑥) +
1

2
(�̅� − 𝑥)𝑇𝐻(𝑥)(�̅� − 𝑥)        (22) 

where H and g are the Hessian matrix and gradient vector of the objective function, 𝑥 is the 

current value of variable X. At each iteration, Eq. (22) has only one variable �̅�, therefore 𝐹(𝑥) 

is constant and it can be eliminated. The constraint of our objective function is linear, then 

they not need to approximation. Therefore, it is rewritten as Eq. (23). 

𝐹(�̅�) = 𝑔𝑇(𝑥)(�̅� − 𝑥) +
1

2
(�̅� − 𝑥)𝑇𝐻(𝑥)(�̅� − 𝑥)   (23-1) 

𝐴(𝑥) = 𝑎  (23-2) 

𝐵(𝑥) ≤ 𝑏   (23-3) 

Eq. (23) is in the form of quadratic and we can solve it by using a sequence of quadratic 

programming (QP) subproblems in each iteration. Since the objective function (13) consists 

of equality and inequality constraints, the active-set method of QP is used to solve it as 

follows: 

Start from an arbitrary point 𝑥0, then find the next iterate by setting  𝑥𝑘+1 = 𝑥𝑘 + 𝑝𝑘𝑑𝑘, where 

𝑝𝑘 is step-length and 𝑑𝑘 is search direction at iteration k. 

At the current iterate 𝑥𝑘 determine the index set of active the inequality constraints:   

 𝐴𝑘 = {𝑗|𝑏𝑗
𝑇𝑥𝑘 − 𝑏𝑗 = 0, 𝑗 = 1,… ,𝑚2}     (24) 

Then we find the direction (d) value by solving Eq. (25). 

 min
𝑑

{𝑔𝑇(𝑥𝑘 + 𝑑) +
1

2
(𝑥𝑘 + 𝑑)𝑇𝐻(𝑥𝑘 + 𝑑)}    (25-1) 

Subject to: 

 𝑎𝑖
𝑇(𝑥𝑘 + 𝑑) = 𝑎𝑖, 𝑖 = 1,… ,𝑚1     (25-2) 

 𝑏𝑗
𝑇(𝑥𝑘 + 𝑑) = 𝑏𝑗, 𝑗 ∈  𝐴𝑘      (25-3) 

where 𝑚1 is the number of equation constraints.  

If we expand the Eq. (25), and simplify these expressions and drop constants to Eq. (26) is 

obtained. 
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min
𝑑

{(𝐻𝑥𝑘 + 𝑔)𝑇𝑑 +
1

2
𝑑𝑇𝐻𝑑}      (26-1) 

Subject to: 

𝐴𝑑 = 0         (26-2) 

�̃�𝑑 = 0        (26-3) 

where �̃� = [

⋮

𝑏𝑗
𝑇

⋮

] , 𝑗 ∈  𝐴𝑘     (26-4) 

To obtain the search direction 𝑑𝑘, solve the Eq. (27): 

min
𝑑

{1 2⁄ 𝑑𝑇𝐻𝑑 + [𝑔𝑘]𝑇𝑑}      (27-1) 

Subject to: 

𝐴𝑑 = 0         (27-2) 

�̃�𝑑 = 0          (27-3) 

where  𝑔𝑘 = 𝐻𝑥𝑘 + 𝑔.  

The Karush–Kuhn–Tucker (KKT) optimality conditions [50] lead to the Eq. (28): 

[
𝐻 𝐴𝑇 �̃�𝑇 

𝐴
�̃�

0 0
0 0

] [
𝑑
𝜆
�̃�
] = [

−𝑔𝑘

0
0

]       (28) 

where 𝜇, 𝜆 are Lagrange multipliers corresponding to active inequality and equality constraint, 

respectively. 

If 𝑑𝑘 is a solution of QP, then there are 𝜆𝑘 and �̃�𝑘 such that 

𝐻𝑑𝑘 + 𝑔𝑘 + 𝐴𝑇 𝜆𝑘 + �̃�𝑇 �̃�𝑘 = 0      (29-1) 

𝐴𝑑𝑘 = 0          (29-2) 

�̃�𝑑𝑘 = 0          (29-3) 

There are two cases: either 𝑑𝑘 =0 or 𝑑𝑘 ≠ 0. 

Case 1: 𝑑𝑘 =0. the Eq. (29) above reduces to Eq. (30). 

𝑔𝑘 + 𝐴𝑇 𝜆𝑘 + �̃�𝑇 �̃�𝑘 = 0      (30) 

Case 1-a: if  �̃�𝑘 ≥ 0 , 𝑥𝑘+1 = 𝑥𝑘 is a KKT point. Stop! 

Case 1-b: If some components of �̃�𝑘 are negative, then 𝑥𝑘 is not an optimal solution. Let µj𝑜 =

min{�̃�𝑗|�̃�𝑗 < 0,   𝑗 ∈  𝐴𝑘}. Remove the index j𝑜 from 𝐴𝑘 and solve the quadratic programming 

problem (31). 

min
𝑑

{1 2⁄ 𝑑𝑇𝐻𝑑 + [𝑔𝑘]𝑇𝑑}       (31-1) 

Subject to: 

𝑎𝑖
𝑇𝑑 = 0        (31-2) 
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𝑏𝑗
𝑇𝑑 = 0, 𝑗 ∈  𝐴𝑘\{j𝑜}       (31-3) 

Then the obtained direction is descent direction 𝑑𝑘 for (QP). 

Case 2: (𝑑𝑘 ≠ 0): Determine a step-length 𝑝𝑘 that guarantees 𝑥𝑘 + 𝑝𝑘𝑑𝑘 is feasible to QP. 

A common 𝑝𝑘 that guarantees the satisfaction of all constraints is 

𝑚𝑖𝑛 {1,
𝑏𝑗−𝑏𝑗

𝑇𝑑𝑘

𝑏𝑗
𝑇𝑑𝑘

|𝑗 ∉ 𝐴𝑘  𝑎𝑛𝑑 𝑏𝑗
𝑇𝑑𝑘 > 0}       (32) 

If 𝑝𝑘<1, then p=
𝑏𝑗−𝑏𝑗

𝑇𝑑𝑘

𝑏𝑗
𝑇𝑑𝑘

 for some j𝑜 ∉ 𝐴𝑘 . This implies that 𝑏j𝑜
𝑇(𝑥𝑖 + 𝑝 ∗ 𝑑𝑘) = 𝑏j𝑜 .  This 

is, the inequality constraint in Eq. (23) corresponding to the index j𝑜 becomes active and must 

be added to active set. Then 𝐴𝑘 = 𝐴𝑘 ∪ j𝑜}.   

The SQP algorithm is summarized in the Algorithm1. 

Algorithm 1. Consensus_clustering_SQP 

// Input: Objective function, number of final clustering K 

// output final clustering 𝜋∗   

1. Transform final clustering membership 𝜋∗ to vector form x by Eq. (20) 

2. rewrite the objective function (18) as a nonlinear form (19) by Eq. (21) 

3. convert nonlinear objective function (19-1) by Taylor series to quadratic form (29) 

4: Give a start vector 𝑥0  as initial solution for x; 

5: Identify the active index set 𝐴0 ; 

6: Set k = 0; 

7: while (no convergence) { 

8: Compute 𝑔𝑘 = 𝐻𝑥𝑘 + 𝑔         

9: Obtain 𝑑𝑘 , λ𝑘 and �̃�𝑘 by solving the KKT-equations for 

min
𝑑

{1 2⁄ 𝑑𝑇𝐻𝑑 + [𝑔𝑘]𝑇𝑑}   (27-1) 

Subject to: 

𝑎𝑖
𝑇𝑑 = 0            (27-2) 

𝑏𝑗
𝑇𝑑 = 0                   (27-3),   𝑗 ∈  𝐴𝑘 

10: if (𝑑𝑘 = 0) { 

11:         if �̃�𝑘 ≥ 0 { 

 12:                STOP! 𝑥𝑘 is a KKT point. 

13:        else 

14:              µj𝑜 = min{�̃�𝑗|�̃�𝑗 < 0,   𝑗 ∈  𝐴𝑘} 
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165: Update the index set 𝐴𝑘 ← 𝐴𝑘\{j𝑜}  and GOTO Step 6. 

16:       } // end if �̃�𝑘 ≥ 0 

17:    } // end if (𝑑𝑘 = 0) 

18. if (𝑑𝑘 ≠ 0)  

19.    Compute the step-length as: 

                 𝑝𝑘 = 𝑚𝑖𝑛 {1,
𝑏𝑗−𝑏𝑗

𝑇𝑑𝑘

𝑏𝑗
𝑇𝑑𝑘

|𝑗 ∉ 𝐴𝑘  𝑎𝑛𝑑 𝑏𝑗
𝑇𝑑𝑘 > 0} 

20.           update  𝑥𝑘+1 = 𝑥𝑘 + 𝑝𝑘 ∗ 𝑑𝑘 

21.            Update active index-set: if 𝑝𝑘 = 1, then 𝐴𝑘+1 = 𝐴𝑘 , else 𝐴𝑘+1 = 𝐴𝑘 ∪ {j𝑜}, where 

𝑝𝑘 = ,
𝑏j𝑜−𝑏j𝑜

𝑇𝑑𝑘

𝑏j𝑜
𝑇𝑑𝑘

  𝑓𝑜𝑟  𝑏j𝑜
𝑇𝑑𝑘 > 0  

22.  Update 𝑘 ← 𝑘 + 1. 

23 }  // end if (𝑑𝑘 ≠ 0) 

24. } //end while  

25. transform vector x to 𝑀 × 𝐾   matrix 𝜋∗  as final clustering    

The approximate Hessian matrix Q is updated from iteration to iteration using one of the 

variable metric updating formulas [51]. Because the matrix of coefficient constraints in our 

objective function (Eq. (20)) is sparse, SQP algorithm must exploits sparsity in the constraint 

Jacobian and maintains a limited-memory quasi-Newton approximation 𝐻𝑘 to the Hessian of 

the Lagrangian [52]. 

It is worth mentioning that the vector X is transformed to the  𝑀 × 𝐾   matrix 𝜋∗  by Eq. (33) 

𝑡 = 1… 𝑀 × 𝐾, 𝑗 = 1. . 𝐾, 𝑖 = 1…  𝑀 𝜋∗
𝑖𝑗 = 𝑥𝑡 where i = ⌊𝑡 𝐾⁄ ⌋ 𝑎𝑛𝑑 𝑗 = 𝑡 − 𝐾 × ⌊𝑡 𝐾⁄ ⌋        (33) 

 

4. 4.3 the consensus algorithm 

To obtain consensus clustering from base clustering Π according to the local reliability of 

each clustering in the ensemble, it is necessary to compute each clustering's reliability in the 

ensemble according to Eq. (14). For this purpose, the FNMI of each cluster in relation to other 

base clustering in Π needs to be computed according to Eq. (8). For this computation, 

computing the similarity between cluster pairs in the ensemble Π according to Eq. (7) is 

necessary. After computing the RDFCI, the weighted fuzzy co-association clustering 

ensemble matrix (𝑅𝐹𝐶𝑜) is obtained according to Eq. (16). Then based on 𝑅𝐹𝐶𝑜 the objective 

function (Eq. (17)) is constructed. Finally, by applying the Consensus_clustering_SQP 

algorithm as solver over the Eq. (18) the final clustering (𝜋∗) is obtained. 

This algorithm is named FCESQP (Fuzzy Clustering Ensemble by SQP) is presented in 

Algorithm 2 with details. In this algorithm Π is the base clustering ensemble and k is the 

number of clusters in the final clustering. 
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Algorithm 2 FCESQP (Fuzzy Clustering Ensemble by SQP Algorithm) Input: Π, k. 

// Input: Π, k  

// Π is an ensemble of basic clusterings 

// k is the number of final clusters 

// output: 𝜋∗ is final clustering 

1: Compute the similarity of each cluster in relation to other clusters in each clustering 

𝜋𝑚 belong to the ensemble Π according to Definition 5. 

2: for each two base clusterings in Π Compute the Fuzzy clustering pairwise FNMI 

according to Definition 6  

   3: Compute the RDFCI of the base clusterings in ensemble according to Definition 7. 

   4: Construct the RFCo matrix according to definition 10. 

   5: construct the objective function that consists of  RFCo  (Eq. (18)). 

   6. Obtain the final clustering with k clusters via  Consensus_clustering_SQP (Eq. (18),k)    

     //( 𝜋∗ = Consensus_clustering_SQP (𝐸𝑞. (18), 𝑘) 

 

Output: the consensus clustering 𝜋∗. 

 

5. EXPERIMENTS 

5.1 Datasets and quality evaluation criterion 

To evaluate the robustness and quality of the proposed fuzzy clustering ensemble approach, 

twelve data sets are selected from UCI Machine Learning Data Sets [53], the " Galaxy" dataset 

described in [54] and a well-known dataset HalfRing as the experimental datasets. The 

description of these datasets is shown in Table 9.  

Two evaluation criteria NMI and Dunn are applied here to assess the quality of clustering.  

NMI is normalized mutual information between two clusterings [5],  and for two clusterings 

𝜋1 and 𝜋2 is calculated as  

𝑁𝑀𝐼(𝜋1, 𝜋2) =
𝐼(𝜋1, 𝜋2)

(√𝐻(𝜋1)√𝐻(𝜋2))
⁄      (34) 

where  𝐼(𝜋1, 𝜋2)  denotes the mutual information between two clusterings and 𝐻(𝜋1)  denotes 

the entropy of 𝜋1. In this paper 𝜋1 is final clustering and 𝜋2 is ground truth of each dataset. 

A larger value of NMI indicate a better clustering result. 

The Dunn Index [43] is defined as 

𝐷𝑢𝑛𝑛(𝜋𝑖) = min
𝑗∈{1,…,𝑐𝑖}

𝑘∈{1,…,𝑐𝑖}

𝑗≠𝑘

{
min _𝑑𝑖𝑠(𝐶𝑗

𝑖,𝐶𝑘
𝑖 )  

max
𝑡∈{1,…,𝑐𝑖}

(𝑑𝑖𝑎𝑚(𝐶𝑡
𝑖))

}     (35) 
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where min _𝑑𝑖𝑠(𝐶𝑗
𝑖, 𝐶𝑘

𝑖 ) is the distance between the two nearest data-objects in clusters 

𝐶𝑗
𝑖  𝑎𝑛𝑑 𝐶𝑘

𝑖  and 𝑑𝑖𝑎𝑚(𝐶𝑡
𝑖) is the diameter of the cluster 𝐶𝑡

𝑖, similar to NMI, a higher value of 

the Dunn index indicates a better clustering result. 

 

5.2 base clustering generation 

To evaluate the consensus quality over various ensembles, base clustering are constructed 

through the FCM and K-means clustering algorithms. In order to construct diverse base 

clustering, the FCM and K-means are run with different numbers of clusters. The number of 

clusters for them is randomly chosen from the [2, √𝑀] interval, where M is the number of 

data-objects in the dataset under experiment.  

The ensemble size for performance evaluation of the methods was assumed as 𝛽 = 10. Base 

on empirical results, the best result is obtained when parameter ∅=0.84 approximately. To 
rule out the occasional luck factor and provide a fair comparison, this proposed 
approach, the state-of-the-art fuzzy clustering ensemble methods were assessed by 
their quality criteria and AC robustness average over numerous runs (40 runs). 

Table 9. Description of the data sets 

Dataset Number of data-objects (M) Number of classes (k) Number of features (N) 

Breast 683 2 9 

Galaxy 323 7 4 

Glass 214 7 10 

Haberman 306 2 3 

Halfring 400 2 2 

Ionesphere 351 2 34 

Iris 178 3 13 

Knowledge 258 4 5 

Seeds 210 3 7 

SAHeart 462 2 9 

Wine 178 3 13 

Vehicle 846 4 18 

All experiments are run in Matlab R2014a 64-bit environment on a Windows Server 2008 64-

bit, Intel Xeon CPU E5-2609(2.5 GHz 2.5 GHz) 2 processors and 16 GB of RAM workstation.  

 

5.3 Comparison of the quality of the proposed approach against the other clustering 

methods 

The proposed SQP approach were compared with eight clustering ensemble methods, i.e.  

GPMGLA [27], SVC [23], PVC [23], BVC [23], ISC [23], Berikov [31]  and FSCEOGA1 

[34]. The two quality-evaluating criteria, NMI and Dunn were applied to determine the quality 
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of the final clustering resulted from the proposed methods and the baseline methods. The 

number of clusters in each dataset is the same as the number of pre-defined classes (ground 

truth) in each dataset. 

For comparison purposes, each of the proposed methods and the baseline methods are 

executed 40 times. The average values of NMI and Dunn criteria of different methods over 40 

runs are shown in Tables 10 and 11 respectively. The value in bold in the rows represents the 

best quality-term of each dataset yield by all the examined algorithms. The last row shows the 

average quality-term for each algorithm over all the datasets. Because the FSCEOGA1 is 

computationally expensive, these methods cannot handle large datasets because of large 

execution time. For this reason, the quality results of FSCEOGA1 method are missing on the 

Vehicle dataset. Therefore, the quality of FSCEOGA1 the Vehicle dataset denoted as a dash. 

According to Table 10, FCESQP outperforms other algorithms on ten datasets, while 

GPMGLA and ISC outperform other algorithms only in one dataset. It is 2 times that the 

FCESQP algorithm obtains the third best results. We can see that FCESQP algorithm achieves 

the best average NMI with the value of 0.3753. 

To ensure the results do not happen by chance, and to assess quality of the proposed method 

running statistical analysis is a must. The Friedman test [55] is applied here to the results of 

Tables 10, subject to null hypothesis, where the mean ranks are equal for all the examined 

algorithms. The significant level is set to 0.05.  The experimental results, subject to Friedman 

test in Table 10 is shown in Fig.2. As observed in Fig. 2 and the null hypothesis that the mean 

rank of the NMI being equal in all algorithms is rejected, because p-value is 3.651E-6, 

indicating that there exists a significant difference. As observed in the mean ranks, FCESQP 

has the highest NMI score followed by SVC and then ISC.  

TABLE 10.  The NMI resulted from different algorithms 

Dataset GPMGLA SVC PVC BVC ISC Berikov FSCEOGA1 FCESQP 

Breast 0.0029 0.2789 0.1715 0.6985 0.3750 0.0457 0.6977 0.7685 

Galaxy 0.2768 0.3083 0.0461 0.0445 0.3196 0.0986 0.2309 0.2746 

Glass 0.3648 0.3129 0.0823 0.0944 0.3584 0.0901 0.2797 0.3410 

Haberman 0.0002 0.0253 0.0021 0.0002 0.0231 0.0164 0.0003 0.1025 

Halfring 0.3088 0.2838 0.0051 0.2238 0.2608 0.0264 0.2886 0.3130 

Ionesphere 0.0165 0.1448 0.1485 0.1312 0.1403 0.0642 0.1227 0.1767 

Iris 0.7869 0.5923 0.1272 0.5923 0.5458 0.0815 0.6813 0.7899 

Knowledge 0.1115 0.2681 0.0815 0.1703 0.2502 0.0669 0.2455 0.2614 

Seeds 0.6286 0.4161 0.2751 0.4698 0.7075 0.0741 0.5963 0.7156 

Sheart 0.0000 0.0388 0.0303 0.0592 0.0379 0.0194 0.0741 0.0768 

Wine 0.3927 0.2673 0.1256 0.3806 0.2315 0.0389 0.4033 0.4724 

Vehicle 0.2027 0.1610 0.0720 0.0807 0.2061 0.0170 - 0.2111 

Alg. Avg 0.2577 0.2581 0.0973 0.2455 0.2880 0.0533 0.3291 0.3753 
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Fig. 2. Friedman test result of Table 10 

According to Table 11, it is obvious FCESQP outperforms other algorithms on nine datasets, 

while FSCEOGA1 outperforms other algorithms on dataset Breast and PVC outperforms 

other algorithms on dataset Glass. GPMGLA and ISC achieve the best performance in terms 

of Dunn index on dataset Seeds. With respect to last row (average values on all datasets) it is 

obvious that FCESQP algorithm achieves the best average Dunn index with the value of 1.78, 

GPMGLA has the second score and FSCEOGA1 has the third score.  

The experimental results, subject to Friedman test in Table 11 is shown in Fig.3. As observed 

in Fig. 3 and the null hypothesis that the mean rank of the Dunn being equal in all algorithms 

is rejected, because p-value is 2.104E-7, indicating that there exists a significant difference. 

As observed in the mean ranks, FCESQP has the highest Dunn score followed by FSCEOGA1 

and then GPMGLA.  

TABLE 11.  The Dunn index resulted from different algorithms 

Dataset GPMGLA SVC PVC BVC ISC Berikov FSCEOGA1 FCESQP 

Breast 0.18 0.26 0.57 0.85 0.39 0.08 1.63 1.46 

Galaxy 1.39 1.10 0.10 0.43 1.27 0.05 0.69 1.45 

Glass 0.33 0.51 1.77 0.10 0.75 0.01 0.37 1.74 

Haberman 1.98 0.51 1.02 0.35 0.57 0.08 2.01 2.12 

Halfring 2.46 1.07 0.85 0.62 1.46 0.01 2.47 2.68 

Ionesphere 0.17 0.27 0.60 1.02 0.35 0.07 0.92 1.15 

Iris 2.41 2.15 1.61 2.15 1.12 0.04 1.92 2.46 

Knowledge 0.51 1.08 0.70 0.32 1.02 0.10 1.03 1.12 

Seeds 2.35 1.30 0.28 0.54 2.35 0.04 1.88 2.33 

SHeart 0.20 0.00 1.11 0.09 0.75 0.10 1.02 1.14 
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Wine 1.33 0.41 1.53 0.74 0.27 0.06 1.83 1.90 

vehicle 1.73 0.50 0.44 0.56 1.56 0.03 - 1.80 

Alg. Avg 1.25 0.76 0.88 0.65 0.99 0.06 1.43 1.78 

 

 

 

Fig. 3. Friedman test result of Table 11 

 

6. Conclusion and future work 

In this paper, a novel fuzzy cluster ensemble approach based on the computation of 

normalized mutual information of each fuzzy base clustering in the ensemble has been 

proposed. Then a new reliability driven fuzzy clustering indicator termed RDFCI was 

proposed. The RDFCI measure does not depend on the original data features and has no 

presumption on data distribution.  A local weighting scheme to promote the conventional co-

association matrix through the RDFCI weigh has been also introduced named RFCo. Instead 

of participating all fuzzy clusterings in the co-association matrix equally, in this approach 

each fuzzy clustering participates in the co-association matrix with respect to its reliability in 

the ensemble. In order to extraction final fuzzy clustering from matrix RFCo a constrained 

nonlinear optimization problem was formed. We solve this problem by sparse sequential 

quadratic programming (SSQP). The experimental results over twelve datasets confirm the 

quality improvement in comparison with other fuzzy clustering ensemble methods. 

Propose a parallel solution that obtains the final clustering by solving the optimization 

problem can be considered as in a future work (mapping it to map-reduce and solving by 

cluster computing). Solving this nonlinear optimization problem by other methods can be 

discussed as a future work of this paper. Apply this approach in some real-world applications 

(especially engineering applications) will also be carried out.  

 

  



B. Minaei-Bidgoli, et al./ IJDEA Vol.16, No.1, (2024), 20-45 

 

42 
 

References 

[1] J. C. Bezdek, R. Ehrlich, and W. Full, “FCM: The fuzzy c-means clustering 

algorithm,” Comput. Geosci., vol. 10, no. 2–3, pp. 191–203, 1984. 

 

[2] D. E. Gustafson and W. C. Kessel, “Fuzzy clustering with a fuzzy covariance matrix,” 

in Decision and Control including the 17th Symposium on Adaptive Processes, 1978 

IEEE Conference on, 1979, pp. 761–766. 

 

[3] I. Gath and A. B. Geva, “Unsupervised optimal fuzzy clustering,” IEEE Trans. Pattern 

Anal. Mach. Intell., vol. 11, no. 7, pp. 773–780, 1989. 

 

[4] D. Graves and W. Pedrycz, “Kernel-based fuzzy clustering and fuzzy clustering: A 

comparative experimental study,” Fuzzy Sets Syst., vol. 161, no. 4, pp. 522–543, Feb. 

2010. 

 

[5] A. Strehl and J. Ghosh, “Cluster ensembles---a knowledge reuse framework for 

combining multiple partitions,” J. Mach. Learn. Res., vol. 3, no. Dec, pp. 583–617, 

2002. 

 

[6] X. Z. Fern and C. E. Brodley, “Random projection for high dimensional data 

clustering: A cluster ensemble approach,” Proc. Twent. Int. Conf. Mach. Learn., vol. 

20, pp. 186–193, 2003. 

 

[7] X. Z. Fern and C. E. Brodley, “Solving cluster ensemble problems by bipartite graph 

partitioning,” in Proceedings of the twenty-first international conference on Machine 

learning, 2004, p. 36. 

 

[8] D. Greene, A. Tsymbal, N. Bolshakova, and P. Cunningham, “Ensemble clustering in 

medical diagnostics,” in Computer-Based Medical Systems, 2004. CBMS 2004. 

Proceedings. 17th IEEE Symposium on, 2004, pp. 576–581. 

 

[9] S. T. Hadjitodorov, L. I. Kuncheva, and L. P. Todorova, “Moderate diversity for better 

cluster ensembles,” Inf. Fusion, vol. 7, no. 3, pp. 264–275, 2006. 

 

[10] L. I. Kuncheva, S. T. Hadjitodorov, and L. P. Todorova, “Experimental comparison of 

cluster ensemble methods,” in Information Fusion, 2006 9th International Conference 

on, 2006, pp. 1–7. 

 

[11]  a. Topchy,  a. K. Jain, and W. Punch, “Combining multiple weak clusterings,” Third 

IEEE Int. Conf. Data Min., pp. 0–7, 2003. 

 

[12] A. P. Topchy, A. A. K. Jain, and W. F. Punch, “A Mixture Model for Clustering 

Ensembles.,” Sdm, pp. 379–390, 2004. 

 

[13] A. Topchy, A. K. Jain, and W. Punch, “Clustering ensembles: models of consensus 

and weak partitions,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 12, pp. 

1866–1881, Dec. 2005. 

[14] S. VEGA-PONS and J. RUIZ-SHULCLOPER, “a Survey of Clustering Ensemble 



B. Minaei-Bidgoli, et al./ IJDEA Vol.16, No.1, (2024), 20-45 

 

43 
 

Algorithms,” Int. J. Pattern Recognit. Artif. Intell., vol. 25, no. 03, pp. 337–372, 2011. 

 

[15] L. Franek and X. Jiang, “Ensemble clustering by means of clustering embedding in 

vector spaces,” Pattern Recognit., vol. 47, no. 2, pp. 833–842, 2014. 

 

[16] A. L. N. Fred and A. K. Jain, “Combining multiple clusterings using evidence 

accumulation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 6, pp. 835–850, 

2005. 

 

[17] H. P. B. Minaei-bidgoli, “A clustering ensemble framework based on selection of 

fuzzy weighted clusters in a locally adaptive clustering algorithm,” pp. 87–112, 2015. 

 

[18]  a. L. N. Fred and  a. K. Jain, “Data clustering using evidence accumulation,” Object 

Recognit. Support. by user Interact. Serv. Robot., vol. 4, pp. 276–280 vol.4, 2002. 

 

[19] C. Zhong, X. Yue, Z. Zhang, and J. Lei, “A clustering ensemble: Two-level-refined 

co-association matrix with path-based transformation,” Pattern Recognit., vol. 48, no. 

8, pp. 2699–2709, 2015. 

 

[20] V. Singh, L. Mukherjee, J. M. Peng, and J. H. Xu, “Ensemble clustering using 

semidefinite programming with applications,” Mach. Learn., vol. 79, no. 1–2, pp. 177–

200, 2010. 

 

[21] S. Vega-Pons, J. Correa-Morris, and J. Ruiz-Shulcloper, “Weighted partition 

consensus via kernels,” Pattern Recognit., vol. 43, no. 8, pp. 2712–2724, 2010. 

 

[22] H. G. Ayad and M. S. Kamel, “Cumulative voting consensus method for partitions 

with variable number of clusters,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, 

no. 1, pp. 160–173, 2008. 

 

[23] X. Sevillano, F. Alías, and J. C. Socoró, “Positional and confidence voting-based 

consensus functions for fuzzy cluster ensembles,” Fuzzy Sets Syst., vol. 193, no. 

Supplement C, pp. 1–32, 2012. 

 

[24] H. G. Ayad and M. S. Kamel, “On voting-based consensus of cluster ensembles,” 

Pattern Recognit., vol. 43, no. 5, pp. 1943–1953, 2010. 

 

[25] B. Minaei-Bidgoli, A. Topchy, and W. F. Punch, “Ensembles of partitions via data 

resampling,” Int. Conf. Inf. Technol. Coding Comput. ITCC, vol. 2, no. Cl, pp. 188–

192, 2004. 

 

[26] J.-P. Barthélemy and B. Leclerc, “The Median Procedure for Partitions.,” Partitioning 

data sets, vol. 19, pp. 3–34, 1993. 

 

[27] D. Huang, J.-H. Lai, and C.-D. Wang, “Combining multiple clusterings via crowd 

agreement estimation and multi-granularity link analysis,” Neurocomputing, vol. 170, 

no. November 2016, pp. 240–250, 2015. 

 



B. Minaei-Bidgoli, et al./ IJDEA Vol.16, No.1, (2024), 20-45 

 

44 
 

[28] T. Li and C. Ding, “Weighted consensus clustering,” in Proceedings of the 2008 SIAM 

International Conference on Data Mining, 2008, pp. 798–809. 

 

[29] Z. Yu et al., “Hybrid clustering solution selection strategy,” Pattern Recognit., vol. 47, 

no. 10, pp. 3362–3375, 2014. 

 

[30] A. Bagherinia, B. Minaei-Bidgoli, M. Hossinzadeh, and H. Parvin, “Elite fuzzy 

clustering ensemble based on clustering diversity and quality measures,” Appl. Intell., 

pp. 1–24, 2018. 

 

[31] V. B. Berikov, “A Probabilistic Model of Fuzzy Clustering Ensemble,” Pattern 

Recognit. Image Anal., vol. 28, no. 1, pp. 1–10, 2018. 

 

[32] T. Kailath, “The divergence and Bhattacharyya distance measures in signal selection,” 

IEEE Trans. Commun. Technol., vol. 15, no. 1, pp. 52–60, 1967. 

 

[33] I. Saha, U. Maulik, S. Bandyopadhyay, and D. Plewczynski, “SVMeFC : SVM 

Ensemble Fuzzy Clustering for Satellite Image Segmentation,” vol. 9, no. 1, 2012. 

 

[34] H. ALIZADEH, B. MINAEI-BIDGOLI, and H. PARVIN, “Optimizing Fuzzy Cluster 

Ensemble in String Representation,” Int. J. Pattern Recognit. Artif. Intell., vol. 27, no. 

02, p. 1350005, 2013. 

 

[35] H. W. Kuhn, “The Hungarian method for the assignment problem,” Nav. Res. Logist., 

vol. 2, no. 1–2, pp. 83–97, 1955. 

 

[36] M. Van Erp, L. Vuurpijl, and L. Schomaker, “An overview and comparison of voting 

methods for pattern recognition,” in Frontiers in Handwriting Recognition, 2002. 

Proceedings. Eighth International Workshop on, 2002, pp. 195–200. 

 

[37] J. C. de Borda, “M{é}moire sur les {é}lections au scrutin,” Hist. l’Academie R. des 

Sci. pour 1781 (Paris, 1784), 1784. 

 

[38] A. H. Copeland, “A reasonable social welfare function,” in Mimeographed notes from 

a Seminar on Applications of Mathematics to the Social Sciences, University of 

Michigan, 1951. 

 

[39] E. Bedalli, E. Mançellari, and O. Asilkan, “A Heterogeneous Cluster Ensemble Model 

for Improving the Stability of Fuzzy Cluster Analysis,” Procedia Comput. Sci., vol. 

102, no. August, pp. 129–136, 2016. 

 

[40] J. V. de Oliveira, A. Szabo, and L. N. de Castro, “Particle Swarm Clustering in 

clustering ensembles: Exploiting pruning and alignment free consensus,” Appl. Soft 

Comput., vol. 55, no. Supplement C, pp. 141–153, 2017. 

 

[41] G. H. Ball and D. J. Hall, “ISODATA, a novel method of data analysis and pattern 

classification,” 1965. 

[42] T. Caliński and J. Harabasz, “A dendrite method for cluster analysis,” Commun. Stat. 



B. Minaei-Bidgoli, et al./ IJDEA Vol.16, No.1, (2024), 20-45 

 

45 
 

Methods, vol. 3, no. 1, pp. 1–27, 1974. 

 

[43] J. C. Dunn, “Well-separated clusters and optimal fuzzy partitions,” J. Cybern., vol. 4, 

no. 1, pp. 95–104, 1974. 

 

[44] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and validation of 

cluster analysis,” J. Comput. Appl. Math., vol. 20, pp. 53–65, 1987. 

 

[45] N. R. Pal and J. C. Bezdek, “On cluster validity for the fuzzy c-means model,” IEEE 

Trans. Fuzzy Syst., vol. 3, no. 3, pp. 370–379, 1995. 

 

[46] G. Zheng, “A Similarity Measure between Fuzzy Sets,” in Applied Mechanics and 

Materials, 2012, vol. 229, pp. 2663–2666. 

 

[47] R. T. Haftka and Z. Gurdal, “Elements of Structural Optimization, Third revised and 

expanded edition,(1992).” Kluwer Academic Publishers. 

 

[48] T. F. Edgar, D. M. Himmelblau, and L. S. Lasdon, Optimization of chemical processes. 

McGraw-Hill, 2001. 

 

[49] P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT: An SQP algorithm for large-

scale constrained optimization,” SIAM Rev., vol. 47, no. 1, pp. 99–131, 2005. 

 

[50] H. W. Kuhn, “„& Tucker, AW (1951). Nonlinear programming,” in Proceedings of 

2nd Berkeley Symposium. Berkeley: University of California Press, pp. 481–492. 

 

[51] S.-P. Han, “Superlinearly convergent variable metric algorithms for general nonlinear 

programming problems,” Math. Program., vol. 11, no. 1, pp. 263–282, 1976. 

 

[52] J. E. Dennis Jr and R. B. Schnabel, Numerical methods for unconstrained optimization 

and nonlinear equations, vol. 16. Siam, 1996. 

 

[53] C. L. Blake and C. J. Merz, “UCI Repository of machine learning databases 

[http://www. ics. uci. edu/~ mlearn/MLRepository. html]. Irvine, CA: University of 

California,” Dep. Inf. Comput. Sci., vol. 55, 1998. 

 

[54] S. C. Odewahn, E. B. Stockwell, R. L. Pennington, R. M. Humphreys, and W. A. 

Zumach, “Automated star/galaxy discrimination with neural networks,” Astron. J., 

vol. 103, pp. 318–331, 1992. 

 

[55] R. L. Iman and J. M. Davenport, “Approximations of the critical region of the fbietkan 

statistic,” Commun. Stat. Methods, vol. 9, no. 6, pp. 571–595, 1980. 
 

 

 

 


