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Abstract

In this paper, we present a new computational method to solve Volterra integral equations of the first
kind based on Bernstein polynomials. In this method, using operational matrices turn the integral
equation into a system of equations. The computed operational matrices are exact and new. The
comparisons show this method is acceptable. Moreover, the stability of the proposed method is
studied.
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1 Introduction

I
ntegral equations are an important topic in
mathematics, physics and engineering sci-

ences. Many researchers spent their time to
find a solution for these equations. Their ef-
forts led to many numerical and analytical meth-
ods like Neumann series, Nystrom method, ex-
pansion method, collocation methods, residual
methods, Galerkin methods, homotopy methods,
perturbation method, the variational iteration
method, the Laplace transform method, the Ado-
mian decomposition method, the series solution
method, and the direct computation methods
[9, 10, 11, 1, 8, 27, 33]. Recently polynomials
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play a fundamental role in some valid numeri-
cal methods. In some of these approaches in-
tegral equations convert to a linear or nonlin-
ear system and by solving the system the ap-
proximate solution of the integral equation will
be found. Malek nejad et al. [17] and Mandal
and Bhattacharya used Bernstein polynomials in
approximation techniques [19], Shahsavaran em-
ployed Block Pulse functions and Taylor Expan-
sion method [29]. Taylor polynomials were also
used by Bellour and Rawashdeh [7] and Wang
[32] with computer algebra. These polynomials
have been also used for solving Fredholm inte-
gral equations of the second kind by Shirin and
Islam [30]. Babolian and Delves have described
an augmented Galerkin technique for the numer-
ical solution of the first kind Fredholm integral
equations [2]. In [12], a numerical solution of
Fredholm integral equations of the first kind via
piecewise interpolation is proposed. Lewis stud-
ied a computational method to solve first kind
integral equations[16], also, for more researches
see [28, 13, 24, 31, 25, 3, 4, 5, 34, 35, 18, 36]
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In the next section, we review Bernstein polyno-
mials and some basic theorems and concepts. In
section 3, transformation matrices are defined. In
subsections of section 4, operational matrices are
computed. These matrices are new and exact. In
section 5, the integral equations are changed to
a linear or nonlinear system. Some illustrative
examples, in section 6, show accuracy and exact-
ness of method. Then, a comparison between our
method with a direct method and an expansion-
iterative method is presented in section 7. Fi-
nally, in section 8, effect of a random noise on
data function is investigated.

2 Preliminaries

Definition 2.1 Suppose m is a positive integer
number, BPs of degree m on interval [a, b] are
defined as follows:

Bi,m(x) =

(
m

i

)
(x− a)i(b− x)m−i

(b− a)m
, 0 ≤ i ≤ m.

Also, Bi,m(x) = 0 if i < 0 or i > m . For
convenience we consider [a, b] = [0, 1] , namely
Bi,m(x) =

(
m
i

)
xi(1− x)m−i, 0 ≤ i ≤ m.

We denote Φm , an m-column vector as follows:

Φm(x) =
[
ϕ0(x) ϕ1(x) · · · ϕm(x)

]T
, where

ϕi(x) = Bi,m(x), 0 ≤ i ≤ m.

The BPs have many interesting properties
[14, 26, 20, 22]. But, here some of them that are
useful in our work are stated.

P1)Bi,m(x)Bj,m(x) =
(mi )(

m
j )

(2mi+j)
Bi+j,2m(x), 0 ≤

i, j ≤ m.

P2)
Bi,m(
m
i

) =
Bi,m+1(
m+1
i

) +
Bi+1,m+1(

m+1
i+1

) , i = 0, ...,m.

The following theorems are a fundamental tool
that justifies the use of polynomials.

Theorem 2.1 [15].Suppose H = l2([a, b]) is
a Hilbert space with the inner product de-
fined by ⟨f, g⟩ =

∫ b
a f(t)g(t)dt and also, Y =

Span {B0,m(x), B1,m(x), ..., Bm,m(x)} be the span
space by Bernsteins polynomials of degree m . Let
f be an arbitrary element in H . Since Y is a fi-
nite dimensional and closed subspace, it is a com-
plete subset of H . So, f has the unique best ap-
proximation out of Y such that yo

∃y0 ∈ Y ; ∀y ∈ Y :∥ f − y0 ∥2⩽∥ f − y ∥2 .
Therefore, there are the unique coefficients
αj , 0 ≤ j ≤ m. such that

f(t) ≈ y0(t) =

m∑
j=0

αjBj,m(t) = αT .Φm

where,α =
[
α0 α1 · · · αm

]T
, can be obtained

by

α =
⟨f(t),Φm(t)⟩
⟨Φm(t),Φm(t)⟩

such that ⟨f,Φm(t)⟩ =
∫ b
a f(t)Φm(t)dt. In the

above theorem we denote Q = ⟨Φm(t),Φm(t)⟩
as dual matrix. Furthermore, it is easy to see

Qi,j =

(
m
i−1

)(
m
j−1

)
(2m+ 1)

(
2m

i+j−2

) , i, j = 1, ...,m+ 1.

Next theorem indicates dual matrix is sym-
metric and invertible.

Theorem 2.2 [15]. Elements y0, y1, ..., yn of a
Hilbert space H constitute a linearly independent
set in H if and only if G(y0, y1, ..., yn) ̸= 0.
Where G(y0, y1, ..., yn) is thr Gram determinant
of y0, y1, ..., yn defined by

G(y0, y1, ..., yn) =

∣∣∣∣∣∣∣∣∣
⟨y1, y1⟩ ⟨y1, y2⟩ · · · ⟨y1, yn⟩
⟨y2, y1⟩ ⟨y2, y2⟩ · · · ⟨y2, yn⟩

...
...

. . .
...

⟨yn, y1⟩ ⟨yn, y2⟩ · · · ⟨yn, yn⟩

∣∣∣∣∣∣∣∣∣ .
For a 2-dimensional function k(x, t) ∈
l2([0, 1]×[0, 1]) , it can be similarly expanded with
respect to BPs such as k(x, t) ≃ ΦT (t)KΦ(x),
and K is the BP coefficient matrix with
Ki,j = Q−1(

∫ 1
0 (Q

−1
∫ 1
0 k(x, t)ϕi(t)dt)ϕj(x)dx), 0 ⩽

i, j ⩽ m.

3 Transformation matrices

Transformation matrix is used to change the di-
mension of the problem. In other words, these
matrix can convert Φm to Φn and vice versa. Sup-
pose m is less than n ,Tn

m is an (m+ 1)× (n+ 1)
matrix , called increasing transformation ma-
trix, that converts Φm to Φn . In other words,
Φm = Tn

mΦn. The increasing transformation ma-
trix can be computed as follows:

[Tn
m]i,j =


0 if i < j or j > i+ k(

m
i−1

)(
k

j−1

)(
m+k
i+j−2

) otherwise
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It is sufficient to use P2, k times where k = n−m.
Also, decreasing transformation matrix is an (n+
1) × (m + 1)matrix which is shown by Tm

n and
converts Φn to Φm where n is greater than m. In
other weords, Φn = Tm

n Φm. The i th row of de-
creasing transformation matrix can be calculated
as follows:

1

m+ n+ 1

[
1

(m+n
i )

1

(m+n
i+1 )

· · · 1

(m+n
i+m)

]
Q−1

, i = 0, ..., n.

4 Operational matrices

Operational matrix is a matrix that works on ba-
sis like an operator, in other words, if Λ is an
operator an operational matrix is a matrix like P
such that Λ(Φ) ≃ PΦ.

4.1 Operational matrix of integration

Lemma 4.1 Let M be operational
matrix of integration and Φm(x) =[
ϕ0(x) ϕ1(x) · · · ϕm(x)

]T
, then∫ x

0
Φm(x)dx = MΦm(x). (4.1)

Proof. With a simple calculation can be seen

Bi,m(x) =

∫ x

0
m(Bi−1,m−1(t)−Bi,m−1(t))dt

Assume 0 ≤ k ≤ m,∑m
i=k Bi,m(x) =

m∑
i=k

∫ x

0
m(Bi−1,m−1(t)−Bi,m−1(t))dt

= m

∫ x

0
Bk−1,m−1(t)dt.

Therefore,∫ x
0 Bk,m(t)dt =

1

m+ 1

m+1∑
i=k+1

Bi,m+1(x) = MT
k .Φm+1

where

Mk =
1

m+ 1
[

k+1︷ ︸︸ ︷
0, · · · , 0,

m+k−1︷ ︸︸ ︷
1, · · · , 1]T ,

it is obvious ,im =


MT

0

MT
1

...

MT
m

 is an (m+2)×(m+1)

matrix. Accordingly M = imTm
m+1.

4.2 Operational matrix of of product

Lemma 4.2 Let C be an (m+1)×(m+1)matrix
then,

ΦT
mCΦm = ĈTΦ2m (4.2)

where

Ĉk =

k∑
j=0

(
m
k−j

)
.
(
m
j

)(
2m
k

) .Ck−j,j k = 0, ..., 2m.

Proof. Let ϕ∗
i (x) = Bi,2m(x) ,for i = 0, ..., 2m,

ΦT
mCΦm =

m∑
i=0

m∑
j=0

ci,jϕiϕj

using P1 gives

ΦT
mCΦm =

∑m
i=0

∑m
j=0

(mi )(
m
j )

(2mi+j)
ϕ∗
i+j(x)

=

 1∑
j=0

(
m
1−j

)(
m
j

)(
2m
1

) C1−j,j

· · ·

k∑
j=0

( m
k−j

)(m
j

)(2m
k

) Ck−j,j · · ·
(m
m

)(m
m

)(2m
2m

) Cm,m

Φ∗

= ˆTΦ2m(x).

k∑
j=0

(
m
k−j

)(
m
j

)(
2m
k

) Ck−j,j · · ·
(
m
m

)(
m
m

)(
2m
2m

) Cm,m

Φ∗

= ĈTΦ2m(x).

Lemma 4.3 Let u be an arbitrary (m +
1)−vector then,

ΦmΦT
mu = ũΦ2m, (4.3)

where ũ is an (m+ 1)× (2m+ 1)matrix with el-
ements
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Table 1: Results of example 6.1 in some special points.

x m = 8 e8(x) m = 10 e˙10(x) exact solution

0 0.99274777 7.25× 10−3 1.0049204 4.92× 10−3 1.00
0.1 0.90237509 2.46× 10−3 0.90793960 3.10× 10−3 0.904837418
0.2 0.82088162 2.15× 10−3 0.81635890 2.37× 10−3 0.818730753
0.3 0.73878286 2.03× 10−3 0.74336086 2.54× 10−3 0.740818220
0.4 0.67145627 1.13× 10−3 0.66769187 2.63× 10−3 0.670320046
0.5 0.60698528 4.54× 10−4 0.60840722 1.87× 10−3 0.606530659
0.6 0.54718461 1.62× 10−3 0.54837489 4.37× 10−4 0.548811636
0.7 0.49821291 1.62× 10−3 0.49561978 9.65× 10−4 0.496585303
0.8 0.448407286 9.21× 10−4 0.45118619 1.85× 10−3 0.449328964
0.9 0.40743778 8.68× 10−4 0.40466694 1.90× 10−3 0.406569659

Table 2: Results of example 6.2 in some special points.

x m = 5 e5(x) m = 10 e˙10(x) exact solution

0 0.99945089 5.91× 10−4 1.0000 0.000 1.00
0.1 0.90500947 1.72× 10−4 0.90483741 1.× 10−10 0.904837418
0.2 0.81849734 2.33× 10−4 0.81873075 1.× 10−10 0.818730753
0.3 0.74075709 6.11× 10−5 0.74081822 1.5× 10−11 0.740818220
0.4 0.67060120 2.81× 10−4 0.67060120 3.6× 10−11 0.670320046
0.5 0.60669652 1.65× 10−4 0.60653065 2.× 10−10 0.606530659
0.6 0.54849402 3.17× 10−4 0.54881163 1.× 10−10 0.548811636
0.7 0.49620362 3.81× 10−4 0.49658530 1.× 10−10 0.496585303
0.8 0.4498142362 4.85× 10−4 0.44932896 1.9× 10−11 0.449328964
0.9 0.4071590358 5.89× 10−4 0.40656965 1.× 10−10 0.406569657

Table 3: Results of example 6.3 in some special points.

x m = 8 e8(x) m = 12 e12(x) Exact solution

0 -0.032078831 3.20× 10−2 0.00008978829 8.97× 10−5 0.0000000000
0.1 0.191776504 7.89× 10−3 0.1996870087 2.01× 10−5 0.1996668333
0.2 0.405304229 7.96× 10−3 0.3973191521 1.95× 10−5 0.3973386616
0.3 0.581192769 9.84× 10−3 0.5910549712 1.45× 10−5 0.5910404134
0.4 0.786819169 7.98× 10−3 0.7788219798 1.47× 10−5 0.7788366846
0.5 0.959541169 6.90× 10−4 0.9588688383 1.77× 10−5 0.9588510772
0.6 1.115121169 1.41× 10−2 1.129263004 2.19× 10−5 1.1292849470
0.7 1.316221169 2.77× 10−2 1.288461250 2.58× 10−5 1.2884353740
0.8 1.391721169 4.29× 10−2 1.434688846 2.33× 10−5 1.4347121820
0.9 1.637921169 7.12× 10−2 1.566617164 3.66× 10−5 1.5666538190

Table 4: Results of example 6.4 in some special points.

x m = 4 e4(x) m = 8 e8(x) Exact solution

0.00 0.0084887020 8.4× 10−3 0.000000046 4.6× 10−9 0.000
0.15 0.1478336203 2.1× 10−3 0.1500000083 8.3× 10−9 0.150
0.30 0.3058088085 5.8× 10−3 0.3000000032 3.2× 10−9 0.300
0.45 0.4463277275 3.6× 10−3 0.4499999969 3.1× 10−9 0.450
0.60 0.5904142554 9.5× 10−3 0.5999999962 3.8× 10−9 0.600
0.75 0.7674230210 1.6× 10−3 0.7500000045 4.5× 10−9 0.750
0.90 0.8934282466 6.5× 10−3 0.9000001447 1.4× 10−7 0.900
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Table 5: Comparison between BPs method and block-pulse methods in example 6.1.

method Mid-points, k = 32 Mid-points, k = 64 Ten points , k = 32 Ten points ,k = 64

Direct method 3.3× 10−3 1.6× 10−3 5.9× 10−3 2.9× 10−3

expansion-iterative rule 6.6× 10−4 1.9× 10−4 5.2× 10−3 2.6× 10−3

m = 5 m = 8 m = 10
BPs method 7.70× 10−4 1.78× 10−3 2.62× 10−3

Table 6: Comparison between BPs method and block-pulse methods in example 6.3.

method Mid-points, k = 64 Mid-points, k = 128 Ten points , k = 64 Ten points ,k = 128

Direct method 5.2× 10−3 2.6× 10−3 8.2× 10−3 4.1× 10−3

expansion-iterative rule 4.9× 10−4 1.4× 10−4 6.5× 10−3 3.3× 10−3

m = 5 m = 8 m = 12

BPs method 1.3× 10−3 2.5× 10−4 3.96× 10−5

Table 7: Effect of noise on example 7.1.

x m = 4 m = 4, ε = 0.01 m = 4, ε = 0.02 m = 4, ε = 0.03 Exact solution

0.0 0.00000 -0.00312608987 -0.00311339313 -0.003136934445 0.0000000
0.1 0.010000 0.01100083307 0.01097076095 0.01103789223 0.0100000
0.2 0.040000 0.03865110727 0.03854449585 0.03877979162 0.0400000
0.3 0.090000 0.08851961494 0.08827616242 0.08881386514 0.0900000
0.4 0.160000 0.15944664250 0.15900825960 0.1599768635 0.1600000
0.5 0.250000 0.24858913690 0.24790549840 0.2494161014 0.2500000
0.6 0.360000 0.35572905650 0.35475073140 0.3569125103 0.3600000
0.7 0.490000 0.48371881310 0.48238874880 0.4853278320 0.4900000
0.8 0.640000 0.63506381300 0.63331794130 0.6371759494 0.6400000
0.9 0.810000 0.80464208650 0.80242983060 0.8073183571 0.8100000
1.0 1.000000 0.96856101440 0.96589645720 0.9717837716 1.0000000

Table 8: Effect of noise on example 7.2.

x m = 8 m = 8, ε = 0.01 m = 8, ε = 0.02 m = 8, ε = 0.03 Exact solution

0.0 4.60× 10−8 0.005199858864 0.003101836424 0.0795857226 0.0000
0.1 0.100000018 0.1063241402 0.1042278036 0.1027680108 0.1000
0.2 0.199999982 0.2062665325 0.2041697813 0.2071972880 0.2000
0.3 0.300000003 0.3063655647 0.3042692155 0.3021127705 0.3000
0.4 0.400000025 0.4061393977 0.4040429008 0.4112898448 0.4000
0.5 0.499999963 0.5063383726 0.5042415973 0.5047514740 0.5000
0.6 0.599999995 0.6064074962 0.6043110989 0.6021586937 0.6000
0.7 0.700000068 0.7059853291 0.7038889421 0.7138653497 0.7000
0.8 0.799999897 0.8065711616 0.8044741803 0.7994762500 0.8000
0.9 0.900000144 0.9058954184 0.9037997147 0.9145590776 0.9000

ũi,j =

 0 if j < i and j > i+m
(mi )(

m
j )

(2mi+j)
uj otherwise

for i, j = 0, ...,m.

Proof. Property P1 implies

Φm(x)ΦT
m(x)u

= [

m∑
j=0

(
m
0

)(
m
j

)(
2m
j

) ujϕ
∗
j

m∑
j=0

(
m
1

)(
m
j

)(
2m
j+1

) ujϕ
∗
j+1

...

m∑
j=0

(
m
m

)(
m
j

)(
2m
m+j

) ujϕ
∗
m+j ]

T .
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Now, ith entry of the above matrix can be rewrit-
ten as follows:

∑m
j=0

( m
i−1)(

m
j )

( 2m
j+i−1)

ujϕ
∗
j+i−1 =[

i−1︷ ︸︸ ︷
0 · · · 0 ( m

i−1)(
m
0 )

(2m
i−1)

u0 · · · ( m
i−1)(

m
m)

( 2m
m+i−1)

um

m−i+1︷ ︸︸ ︷
0 · · · 0

]
Φ2m

5 Solution of integral equation
of the first kind

In this section, with respect to operational matri-
ces and function approximation, integral equation
converts to a system of equations.

5.1 Linear Volterra integral equation
of the first kind

Consider the following Volterra integral equation
of the first kind

f(x) =

∫ x

0
k(x, t)u(t)dt (5.4)

where f and k are known but u is not. Moreover,
k(x, t) ∈ l2([0, 1] × [0, 1]) and f(t) ∈ l2([0, 1]).
Approximating functions f, u and kwith respect
to BPs gives

f(x) = F TΦm(x) = ΦT
m(x)F

u(t) = UTΦm(t) = ΦT
m(t)U

k(x, t) ≃ ΦT
m(x)KΦm(t)

(5.5)

where the vectors F,U and matrix K are BPs
coefficients of f(x), u(t) and k(x, t)respectively.
Now, replacing (5.5) into the (5.4) gives:

F TΦm(x) =

∫ x

0
ΦT
m(x)KΦm(t)ΦT

m(t)Udt

= ΦT
m(x)K

∫ x

0
Φm(t)ΦT

m(t)Udt.

Using (4.3) follows:

F TΦm(x) = ΦT
m(x)K

∫ x

0
ŨΦ2m(t)dt

= ΦT
m(x)KŨ

∫ x

0
Φ2m(t)dt.

(5.6)

Using operational matrix of integrationM , in Eq.
(5.6) gives:

F TΦm(x) = ΦT
m(x)KŨMΦ2m(t)dt. (5.7)

Let U∗ = KŨMTm
2m, where U∗ is an (m + 1) ×

(m+ 1) matrix. Eq. (5.7) changes to:

F TΦm(x) = ΦT
m(x)U∗Φm(x). (5.8)

Using Eq. (4.2) in (5.8) gives:

F TΦm(x) = ΦT
m(x)U∗Φm(x) = Û∗TΦ2m(x).

Using decreasing transformation matrixTm
2m ,

gives the final system:

Ū = F,

where ŪT = Û∗TTm
2m.

5.2 Nonlinear Volterra integral equa-
tion of the first kind

Consider the following nonlinear Volterra integral
equation

f(x) =

∫ x

0
k(x, t)g(u(t))dt (5.9)

Put w(t) = g(u(t)) and Subsequently w(t) =
W TΦm(t) . WhereW is an unknown (m+1)- vec-
tor. Following the same procedure, final system
is as follows: W̄ = F.Finally, u(x) = g−1(w(x))
is the desired solution.

6 Numerical examples

To show the efficiency of the proposed numerical
method, we implement it on some Volterra inte-
gral equations. For every example we use a ta-
ble that shows exact solution, our approximation
and absolute errors in some points. In the follow-
ing examples, the absolute error is used to check
the accuracy. The amount is far more than other
computational errors like mean absolute error.

Example 6.1 u(x) = e−xis the exact solution of
the following Volterra integral equation of the first
kind xex =

∫ x
0 ex+tu(t)dt. Numerical solution of

this equation and its errors are shown in table 1.

Example 6.2 Consider x =
∫
/x0(x+t−1)u(y)dt

with the exact solution u(x) = e−x. The table 2
shows approximation solutions, error and exact
solution in some points.

Example 6.3 u(x) = 2sinx is the exact solution
of the following Volterra integral equation of the
first kind xsinx =

∫ x
0 cos(x − t)u(t)dt. Result of

example 6.3 are shown in table 3.
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Example 6.4 x =
∫ x
0 (x− t+1)e−u(t)dtis a non-

linear Volterra integral equation of the first kind
with exact solution u(x) = x. Table 4 shows the
exact solution, approximation solutions and abso-
lute errors at some points.

Now, we compare our method with a direct
method to solve Volterra integral equation of the
rst kind using operational matrix with block-
pulse functions [6] and an expansion-iterative
method based on the block-pulse functions [21].
Consider example 6.1, Table 5 shows the mean-
absolute errors for direct method and expansion-
iterative method for two values of k, where k is
the number of partitions of [0, 1) also we can see
absolute errors for some values of m, for the same
example.
Table 6 shows the same errors for some different
values of k and m for example 6.3. Tables 5 and 6
show our method is more accurate with respect to
dimensions of the system. The final system in our
method has smaller size than block-pulse meth-
ods also, as another advantage if k(x, x) = 0 then
the block-pulse methods do not work and their
final systems are incompatible but our method
works correctly.

7 Stability

To demonstrate the stability of the method, we
review effect of noise on data function. In other
word, we replace f(x) by(1 + εp)f(x) in (5.4) or
(5.9).wherep is a real random number between -1
and 1, and ε is percent of noise.

Example 7.1 Consider the following Volterra

integral equation of the first kind
7

12
x4 =

∫ x
) (x+

t)u(t)dt with the exact solution u(x) = x2.
Suppose p is a random real number in (0, 1)and
ε = 0.01, 0.02, 0.03. In table 7, we present ex-
act solution, approximate and noisy solutions at
some points.

Example 7.2 u(x) = x is the exact solution of
the following Volterra integral equation of the first
kind x =

∫ x
0 (x+ t)u(t)dt.

Table 8 shows exact solution, approximate solu-
tion and noisy solutions.

As a result of the tables, errors are proportional
to the amount of noise.

8 Conclusion

In this article, we applied Bernsteins approxima-
tion to approximate the solution of linear and
nonlinear Volterra integral equations of the first
kind. In this method, we obtained some new op-
erational matrices based on Bernstein polynomi-
als. Our achieve results in this paper, show that
our approach for solving Volterra integral equa-
tions of the first kind is very effective, simple and
stable. The answers are trusty and their accuracy
are high and we this method can be can executed
in a computer easily. The numerical examples
support this claim. The method can be applied
for integro-differential equations, integral equa-
tions of the second and control problems.
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