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Abstract

In this paper, we present a numerical method for solving fuzzy differential equation of fractional
order under gH-fractional Caputo differentiability. The main idea of this method is to approximate
the solution of fuzzy fractional differential equation (FFDE) by an implicit method as corrector and
explicit method as predictor. This method is tested on numerical examples.
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1 Introduction

F
uzzy fractional differential equation (FFDE) is
a generalization of fuzzy ordinary differential

equation to arbitrary non-integer order. FFDE
is used in mathematical modeling of several real
world physical phenomena and various branch of
science. The concept of FFDE was introduced
by Agarwal, Lakshmikantham and Nieto [1]. Ar-
shad and Lupulescu proved some results on the
existence and uniqueness of solutions of Riemann-
Liouville fuzzy fractional differential equations in
[2, 3]. Allahviranloo et al in [14, 5] proposed the
analytical methods for solving fuzzy fractional
differential equations under Riemann-Liouville H-
differentiability using Mittag- Leffler functions
and Laplace transforms method. Mazandarani
and Vahidian Kamyad [10], introduced the solu-
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tion to Fuzzy Fractional Initial Value Problem
under Caputo- type fuzzy fractional derivatives
by a modified fractional Euler method. The nu-
merical method for solving FFDE is an area not
yet widely investigated, in this paper we intro-
duce a Predictor-Corrector method for solving
fuzzy fractional differential equation. In this ap-
proach, the FFDEs are expressed in terms of Ca-
puto type under the Generalized Hukuhara dif-
ferentiability.

The paper is organized as follows: In section 2,
some basic definitions are brought. A proposed
method for FFDE is introduced in section 3. A
numerical example are presented in section 4 and
finally conclusion is drawn.

2 Preliminaries

First notations which shall be used in this paper
are introduced.
We denote by RF , the set of fuzzy numbers, that
is, normal, fuzzy convex, upper semi-continuous
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and compactly supported fuzzy sets which are de-
fined over the real line.
For 0 < r ≤ 1, set [u]r =

{
t ∈ R

∣∣∣u(t) ≥ r
}
,

and [u]0 = cl
{
t ∈ R

∣∣∣u(t) > 0
}
. We represent

[u]r = [u−(r), u+(r)], so if u ∈ RF , the r-level
set [u]r is a closed interval for all r ∈ [0, 1].
For arbitrary u, v ∈ RF and k ∈ R, the ad-
dition and scalar multiplication are defined by
[u+ v]r = [u]r + [v]r , [ku]r = k[u]r respectively.

A triangular fuzzy number is defined as a fuzzy
set in RF , that is specified by an ordered triple
u = (a, b, c) ∈ R3 with a ≤ b ≤ c such that
u−(r) = a+(b− a)r and u+(r) = c− (c− b)r are
the endpoints of r-level sets for all r ∈ [0, 1].

The Hausdorff distance between fuzzy numbers
is given by D : RF × RF −→ R+ ∪ {0} as in [11]

D(u, v) = sup
r∈[0, 1]

max
{
|u−(r)− v−(r)| (2.1)

, |u+(r)− v+(r)|
}
.

Consider u, v, w, z ∈ RF and λ ∈ R, then the
following properties are well-known for metric D,

1. D(u⊕ w, v ⊕ w) = D(u, v);

2. D(λu, λv) = |λ|D(u, v);

3. D(u⊕ v, w ⊕ z) ≤ D(u, w) +D(v, z);

4. D(u⊖v, w⊖z) ≤ D(u, w)+D(v, z), as long
as u⊖ v and w⊖ z exist, where u, v, w, z ∈
RF .

where, ⊖ is the Hukuhara difference(H-
difference), it means that w ⊖ v = u if and
only if u⊕ v = w.

Definition 2.1 The generalized Hukuhara dif-
ference of two fuzzy numbers u, v ∈ RF is defined
as follows

u⊖gH v = w ⇐⇒
{

(i). u = v + w;
or (ii). v = u+ (−1)w.

The conditions for the existence of u⊖gH v ∈ RF
are given in [7].

Definition 2.2 Let u, v ∈ RF . If there exists
w ∈ RF such that

u⊖gH v = w ⇔
{

(i) u = v + w,
or (ii) v = u+ (−1)w,

Then w is called the generalized Hukuhara differ-
ence of u and v.

A function f : [a, b] → RF so called fuzzy-
valued function. The r-level representation of
fuzzy valued function f is expressed by [f ]r(t) =
[f−(t, r), f+(t, r)], where t ∈ [a, b], r ∈ [0, 1].

Definition 2.3 The generalized Hukuhara
derivative of a fuzzy-valued function
f : (a, b) → RF at t0 is defined as

f ′
gH(t0) = lim

h→0

f(t0 + h)⊖gH f(t0)

h
, (2.2)

if f ′
gH(t0) ∈ RF , we say that f is generalized

Hukuhara differentiable (gH-differentiable) at t0.
Also we say that f is [i− gH]-differentiable at t0
for 0 ≤ r ≤ 1 if

[f ′
gH ]r(t0) = [(f−)′(t0, r), (f

+)′(t0, r)], (2.3)

and say f is [ii− gH]-differentiable at t0 if

[f ′
gH ]r(t0) = [(f+)′(t0, r), (f

−)′(t0, r)], (2.4)

Definition 2.4 We say that a point t0 ∈ (a, b),
is a switching point for the differentiability of f ,
if in any neighborhood V of t0 there exist points
t1 < t0 < t2 such that
type (I): at t1 (2.3) holds while (2.4) does not hold
and at t2 (2.4) holds and (2.3) does not hold, or
type (II):at t1 (2.4) holds while (2.3) does not hold
and at t2 (2.3) holds and (2.4) does not hold.

Definition 2.5 A fuzzy-valued function f :
[a, b] → RF is said to be continuous at t0 ∈
[a, b] if for each ϵ > 0 there is δ > 0 such
that D(f(t), f(t0)) < ϵ, whenever t ∈ [a, b] and
|t − t0|< δ. We say that f is fuzzy continuous
on [a, b] if f is continuous at each t0 ∈ [a, b] such
that the continuity is one-sided at endpoints a, b.

Definition 2.6 ([6]) Let f : (a, b) → RF . Con-
sider f(t) is gH-differentiable of order i, i =
1, ..., n− 1 at t0 with no switching point on [a, b].
We say that f(t) is gH-differentiable of the nth-

order at t0, if (f)
(n)
gH(t0) ∈ RF exists such that

(f)
(n)
gH(t0) = lim

h→0

f (n−1)(t0 + h)⊖gH f (n−1)(t0)

h
.
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Definition 2.7 Let f : [a, b] → RF , for each
partition P = {t0, t1, · · · , tn} of [a, b] and for
arbitrary ξi ∈ [ti−1, ti], 1 ≤ i ≤ n, sup-
pose Rp =

∑n
i=1 f(ξi)(ti − ti−1), and △ :=

max |ti − ti−1|, 1 ≤ i ≤ n. The definite Reimann
integral of f(t) over [a, b] is∫ b

a
f(t)dt = lim

△→0
Rp,

provided that this limit exists in the metric D.

Note that if the fuzzy function f(t) is continuous
in the metric D, Lebesgue interval and Riemann
integral yield the same value, and also for 0 ≤
r ≤ 1,

[

∫ b

a
f(t)dt]r = [

∫ b

a
f−(t, r),

∫ b

a
f+(t, r)],

In this paper CF [a, b] is the space of all continuous
fuzzy-valued function on [a, b]. Also we denote
the space of all Lebesgue integrable fuzzy-valued
functions on the bounded interval [a, b] ⊂ R by
LF [a, b].

Definition 2.8 [6]. Let f : [a, b] → RF ; the
fuzzy Riemann-Liouville integral of fuzzy-valued
function f is defined as follows:

(Jα
a f)(x) =

1

Γ(α)

∫ x

a

f(t)

(x− t)1−α
dt

for a ≤ x, and 0 < α ≤ 1 . For α = 1, we set
J1
a = I, the identity operator.

Definition 2.9 Let f
(m)
gH ∈ CF [a , b]∩LF [a , b].

The fuzzy gH-fractional Caputo differentiability
of fuzzy-valued function f is defined as following:

( gHDα
∗ f)(x) = Jm−α

a (f
(m)
gH )(x) (2.5)

=
1

Γ(m− α)

∫ x

a
(x− t)(m−α−1)(f

(m)
gH )(t)dt

where m− 1 < α ≤ m , m ∈ N , x > a .

In this paper, we only consider
gH−differentiability of order 0 < α ≤ 1
for fuzzy-valued function f , so Eq.(2.5) can be
written as the following form

( gHDα
∗ f)(x) = J1−α

a (f ′
gH)(x)

=
1

Γ(1− α)

∫ x

a

(f ′
gH)(t)dt

(x− t)α
, x > a

Theorem 2.1 ([6]) Let f ′
gH ∈ CF [a , b] ∩

LF [a , b] where f(x; r) = (f−(x; r), f+(x; r)) for
0 ≤ r ≤ 1 , x ∈ [a, b]. Let f−(x; r) and f+(x; r)
are Caputo differentiable functions then the func-
tion f is gH−differentiable. Furthermore

( gHDα
∗ f)(x; r) = [min{(Dα

∗ f
−)(x; r), (Dα

∗ f
+)(x; r)},

max{(Dα
∗ f

−)(x; r), (Dα
∗ f

+)(x; r)}],

Definition 2.10 Let f : [a, b] → RF be
[gH]−differentiable at x0 ∈ (a, b).We say that f
is CF [(i)−gH]−differentiable at x0 for 0 ≤ r ≤ 1,
if

(i) ( gHDα
∗ f)(x0; r) = [(Dα

∗ f
−)(x0; r), (D

α
∗ f

+)(x0; r)],

and that f is [(ii)− gH]−differentiable at x0 if

(ii) ( gHDα
∗ f)(x0; r) = [(Dα

∗ f
+)(x0; r), (D

α
∗ f

−)(x0; r)],

where

(Dα
∗ f

−)(x0; r) =
1

Γ(1− α)

∫ x

a

(f−)′(t)

(x− t)α
dt,

(Dα
∗ f

+)(x0; r) =
1

Γ(1− α)

∫ x

a

(f+)′(t)

(x− t)α
dt,

3 Predictor-Corrector Method

Consider the following fuzzy fractional differen-
tial equation{

( gHDα
∗ y)(t) = f(t, y(t)), t ∈ [t0, T ],

y(t0) = y0 ∈ RF ,
(3.6)

where 0 < α ≤ 1 is real number and the operator

gHDα
∗ denote gH-fractional Caputo differentiabil-

ity of fuzzy-valued function f of order α.
The following Peano-type theorem is given to de-
rive solution of fuzzy fractional differential equa-
tions with order 0 < α ≤ 1 under Caputo’s dif-
ferentiability.

Theorem 3.1 [13] Let R0 = [t0, t0 + p] ×
B(y0, p), p, q > 0, y0 ∈ RF , where B(y0, p) = {y ∈
RF : d(y, y0) ≤ q} denote a closed ball in RF and
let f : R0 → RF be a continuous function such
that d(0, f(t, y)) ≤ M for all (t, y) ∈ R0 and f
satisfies the Lipschitz condition
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Table 1: Error of Proposed method by Hausdorff distance at t = 1 in example 4.1

h Error of y− Error y+

0.1 1.3776 0.6888
0.01 0.3941 0.1970
0.001 0.1284 0.0642
0.002 0.0914 0.0457
0.005 0.0582 0.0291
0.0001 0.0413 0.0207
0.0005 0.0181 0.0091

Table 2: Error of Proposed method by Hausdorff distance at t = 1 in example 4.1

h/ r 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 0 0.4649 0.9298 1.3947 1.8596 2.3245 2.7894 3.2543 3.7192 4.1841 4.6491

0.01 0 0.4941 0.9882 1.4823 1.9763 2.4704 2.9645 3.4586 3.9527 4.446 4.9408
0.001 0 0.4988 0.9976 1.4964 1.9952 2.4940 2.9928 3.4916 3.9904 4.4892 4.9880
0.005 0 0.5000 0.9999 1.4999 1.9998 2.4998 2.9997 3.4997 3.9996 4.4996 4.9995
0.0001 0 0.5002 1.0005 1.5007 2.0009 2.5011 3.0014 3.5016 4.0018 4.5020 5.0023
0.0005 0 0.5006 1.0012 1.5018 2.0024 2.5030 3.0036 3.5042 4.0049 4.5054 5.0060

Table 3: The approximate solution to example (4.2)-y+ at t = 1

h/ r 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 9.2981 8.8332 8.3683 7.9034 7.4385 6.9736 6.5087 6.0438 5.5789 5.1140 4.6491
0.01 9.8817 9.3876 8.8935 8.3994 7.9053 7.4113 6.9172 6.4231 5.9290 5.4349 4.9408
0.001 9.9760 9.4772 8.9784 8.4796 7.9808 7.4820 6.9832 6.4844 5.9856 5.4868 4.9880
0.005 9.9990 9.4991 8.9991 8.4992 7.9992 7.4993 6.9993 6.4994 5.9994 5.4995 4.9995
0.0001 10.0045 9.5043 9.0041 8.5038 8.0036 7.5034 7.0032 6.5029 6.0027 5.5025 5.0023
0.0005 10.0119 9.5113 9.0107 8.5101 8.0095 7.5089 7.0083 6.5077 6.0072 5.5066 5.0060

d((t1 − s)α−1f(t, y), (t2 − s)α−1f(t, z))

≤ |(t1 − s)α−1 − (t2 − s)α−1|.L.d(y, z),

∀(t, y) ∈ R0, t1, t2, s ∈ [t0, t0 + p] and d(y, z) ≤
q. If there exists d > 0 such that for t ∈
[t0, t0 + p] the sequence given by ŷ0(t) = y0,

ŷn+1(t) = y0 ⊖ (−1)
µ(α)

∫ t
t0
(t − z)α−1f(z, yn(z))dz is

defined for any n ∈ N. Then the fuzzy frac-
tional differential equation (3.6) has two solu-
tion y, ŷ : [t0, t0 + τ ] → B(y0, q) where τ =

min{p, ( qµ(α+1)
M )

1
α , ( qµ(α+1)

M1
)

1
α , d} and the succes-

sive iterations for 0 < α ≤ 1,

y(t0) = y0,

y(tn+1) = y(t0)

+
1

Γ(α)

∫ tn+1

t0

(tn+1 − z)α−1f(z, yn(z))dz,

ŷ(t0) = ŷ0,

ŷ(tn+1) = ŷ(t0)

⊖ −1

Γ(α)

∫ tn+1

t0

(tn+1 − z)α−1f(z, ŷn(z))dz,

converge to these two solutions.

Here, we state the numerical method under
CF [(i)− gH]−differentiability.
Now, by theorem (3.1) is easy to verify that the
problem (3.6) is solved when the following fuzzy
Voltera integral

∫ tn+1

t0

(tn+1 − u)α−1f(u, y(u))du (3.7)
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is approximated.

∫ tn+1

t0

(tn+1 − u)α−1f(u, y(u))du (3.8)

≃
∫ tn+1

t0

(tn+1 − u)α−1g(u)du,

where g(u) is the fuzzy piecewise linear interpola-
tion for fuzzy function f , whose nodes and knots
are chosen at the tj , j = 0, 1, 2, · · · , n + 1. This
means g(u) = (g−(u, r), g+(u, r)) is construct by

g−(u; r) = ℓ0(t)g
−(t0; r)

+

n∑
j=1

γj(t)g
−(tj ; r) + ℓn+1(t)g

−(tn+1; r),

g+(u; r) = ℓ0(t)g
+(t0; r)

+
n∑

j=1

γj(t)g
+(tj ; r) + ℓn+1(t)g

+(tn+1; r),

where the positive coefficients ℓ0, ℓn+1 and γj for
j = 1, · · · , n are as following:

ℓ0(t) =
(t1 − t)

(t1 − t0)
, t0 < t < t1,

ℓn+1(t) =
(t− tn)

(tn+1 − tn)
, tn < t < tn+1,

γj(t) =

{
t−tj−1

tj−tj−1
tj−1 < t < tj ,

tj+1−t
tj+1−tj

tj < t < tj+1,

We can write the right-hand side of eq.(3.8) as

∫ tn+1

t0

(tn+1 − u)α−1g−(u; r)du

=

∫ tn+1

t0

(tn+1 − u)α−1ℓ0(u)g
−(t0; r)du

+
n∑

j=1

∫ tn+1

t0

(tn+1 − u)α−1γj(u)g
−(tj ; r)du

+

∫ tn+1

t0

(tn+1 − u)α−1ℓn+1(u)g
−(tn+1; r)du

and ∫ tn+1

t0

(tn+1 − u)α−1g+(u; r)du

=

∫ tn+1

t0

(tn+1 − u)α−1ℓ0(u)g
+(t0; r)du

+

n∑
j=1

∫ tn+1

t0

(tn+1 − u)α−1γj(u)g
+(tj ; r)du

+

∫ tn+1

t0

(tn+1 − u)α−1ℓn+1(u)g
+(tn+1; r)du

therefore by integration we have∫ tn+1

t0

(tn+1 − u)α−1g−(u; r)du

=

n+1∑
j=0

ωjg
−(tj ; r),∫ tn+1

t0

(tn+1 − u)α−1g+(u; r)du

=
n+1∑
j=0

ωjg
+(tj ; r),

whereas

ω0 =
hα

α(α+ 1)
[nα+1 + (n+ 1)α(α− n)],

ωj =
hα

α(α+ 1)
[(n− j)α+1

−2(n+ 1− j)α+1

+(n− j + 2)α+1], 1 ≤ j ≤ n,

ωn+1 =
hα

α(α+ 1)
,

in the case of equal space nodes tj = t0+jh, with
some fixed h.

This gives us our implicit formula, which is:

y−(tn+1; r) = y−(t0; r)

+
1

Γ(α)
(

n∑
j=0

ωj f−(tj , y(tj ; r))

+ωn+1f
−(tn+1, y

P (tn+1; r))),

y+(tn+1; r) = y+(t0; r)

+
1

Γ(α)
(

n∑
j=0

ωj f+(tj , y(tj ; r))

+ωn+1f
+(tn+1, y

P (tn+1; r))),
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as corrector, we replace the integral on the right-
hand side of eq. (3.8) by using a single interpola-
tion point (the left endpoint of interval), i.e.∫ tn+1

t0

(tn+1 − u)α−1f(u; y(u))du

=
n∑

j=0

∫ tj+1

tj

(tn+1 − u)α−1f(tj , y(tj))du,

∫ tn+1

t0

(tn+1 − u)α−1f(u; y(u))du

=

n∑
j=0

∫ tj+1

tj

(tn+1 − u)α−1f(tj , y(tj))du,

where ∫ tj+1

tj

(tn+1 − u)α−1du = qj

=
hα

α
[(n+ 1− j)α − (n− j)α],

Therefore the predictor (y−)P , (y+)P is deter-
mined by

(y−)P (tn+1, r) = y−(t0, r)

+
1

Γ(α)

n∑
j=0

qjf
−(tj , y(tj , r)),

(y+)P (tn+1, r) = y−(t0, r)

+
1

Γ(α)

n∑
j=0

qjf
+(tj , y(tj , r)),

Finally the fractional version of the Predictor-
Corrector method is complete.
The Predictor-Corrector method under CF [(ii)−
gH]− differentiability, is as follows.

(ŷ)−(tn+1; r) = (ŷ)−(t0; r)

⊖ −1

Γ(α)
(

n∑
j=0

ωj f−(tj , ŷ(tj ; r))

+ωn+1f
−(tn+1, ŷ

P (tn+1; r))),

(ŷ)+(tn+1; r) = (ŷ)−(t0; r)

⊖ −1

Γ(α)
(

n∑
j=0

ωj f+(tj , ŷ(tj ; r))

+ωn+1f
+(tn+1, ŷ

P (tn+1; r))),

as corrector and

((ŷ)−)P (tn+1, r) = (ŷ)−(t0, r))

⊖ −1

Γ(α)

n∑
j=0

qjf
−(tj , ŷ(tj , r)),

((ŷ)+)P (tn+1, r) = (ŷ)+(t0, r))

⊖ −1

Γ(α)

n∑
j=0

qjf
+(tj , y(tj , r)),

as predictor.

4 Examples

We validate our theoretical results from the previ-
ous section by considering the following examples,
which were solved by MathLab.

Example 4.1 [6] Consider the following fuzzy
Caputo differential equation{

( gHD0.5
∗ y)(x) = y(x), t ∈ [0, 1],

y(0; r) = (r, 2− r),
(4.9)

y(t) be CF [(i)− gH]−differentiable, the solution
of (4.9) is given by [6] as follows

y(t, r) = (r, 2− r)E0.5(t
0.5) (4.10)

we solve this example by predictor-corrector
method and compare the solutions by real solu-
tion (4.10) in Table 1.

Example 4.2 [6]Consider the following fuzzy
Caputo differential equation{

( gHD0.5
∗ y)(t) = y(t)⊕ c⊙ t2 t ∈ [0, 1],

y(0; r) = (r, 2− r),
(4.11)

In this example we consider c = (r, 2 − r). Ac-
cording to gHD0.5

∗ and using Predictor-Corrector
method, the approximate solution of (4.11) with
h = 0.1, 0.01, 0.001, 0.005, 0.0001, 0.005 is shown
in Tables 2 and 3.

5 Conclusion

In this paper a numerical method for solving
fuzzy differential equation of fractional order
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under gH-fractional Caputo differentiability was
proposed. We used fuzzy Lagrange interpola-
tion for approximating unknown fuzzy solution
of FFDE. The proposed method was predictor-
corrector that was obtained by combining explicit
and implicit methods.
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