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Abstract 

Sensitivity analysis in Data Envelopment Analysis (DEA) is studied for perturbations of 

data for which ranking of efficient Decision Making Units (DMUs) is preserved. Sufficient 

conditions for efficient DMUs to preserve their ranks under the perturbations of data are 

achieved. Accordingly, it can be found out how to change outputs or inputs of an efficient 

DMU while preserving ranking of all efficient DMUs. In addition, an illustrative numerical 

example is provided to receive a better comprehension. 
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1. Introduction 

Data envelopment analysis (DEA) is a 

mathematical programming technique to 

evaluate relative efficiency of decision 

making units (DMUs) with multiple input-

output. It computes a scalar measure of 

efficiency and discriminates between 

efficient and inefficient DMUs. Hence, it 

ranks DMUs unless some DMUs have 

efficiency score unity. One of the 

interesting research subjects is to 

discriminate among efficient DMUs. 

Several authors proposed methods for 

ranking the best performers (see [2, 9, 10, 

13, 14 and 16] among others).  

Another feature of this DEA technique 

which has been studied by many 

researchers is sensitivity analysis. One of 

the topics of DEA sensitivity analysis is 

based upon data variations. The first DEA 

sensitivity analysis paper by Charnes et al. 

[5] examined a change in a single output. 

This was followed by a series of sensitivity 

analysis articles by Charnes and Neralic [7] 

to allow simultaneous proportional changes 

of all inputs and outputs for a specific DMU 

which is under consideration. This data 

variation condition is relaxed in Zhu [15] 

and Seiford and Zhu [12] to a situation 

where inputs or outputs can be changed 

individually. The DEA sensitivity analysis 

methods, we have just reviewed, are all 

developed for the situation where data 

variations are only applied to the under 

evaluation efficient DMU, and the data for 

the other remaining DMUs are assumed 

fixed.  

Seiford and Zhu [11] generalized the 

technique in Zhu [15] and Seiford and Zhu 

[12] to the worst-case scenario where the 

efficiency of the under evaluation DMU is 

deteriorating while the efficiencies of the 

other DMUs are improving. The mentioned 

sensitivity analysis methods are based on 

the increase of some or all inputs and the 

decrease of some or all the outputs. In this 

paper, the attention is devoted to the case 

where the decrease of outputs and the 

increase of inputs for an efficient DMUp 

are not preformed simultaneously.  

The purpose of this research is to study 

sensitivity analysis in DEA for the case of 

perturbations of outputs or of inputs of an 

efficient DMU preserving ranking of all 

efficient DMUs. In that way sufficient 

conditions for efficient DMUs to preserve 

their ranks under the perturbations of data 

(inputs or outputs) are provided. 

Furthermore, an illustrative example is 

provided. 

The paper is organized as follows: Section 2 

briefly reviews a mathematical basis used 

for this study. Sensitivity analysis in LP 

under different problem variations is 

discussed in section 3. In section 4, 

sensitivity analysis in DEA for the case of 

changes of data is studied. In particular, the 

way of changing outputs of an efficient 

DMU while preserving ranking of all 

efficient DMUs is represented. In section 5, 

an illustrative example is given. Concluding 

remarks are summarized in the last section. 

 

2. Background 

Suppose that we have a set of n DMUs each 

of which utilizes m inputs to produce s 

outputs. The inputs and outputs for all of 

the DMUs are assumed to be nonnegative, 

but at least one component of every input 

and output vector is positive.  

For evaluating the efficiency of DMUp 

 ( 1,..., )p n , we can use the envelopment 

forms of (the input-oriented) CCR and BCC 

model.  

(1a): Input-oriented CCR model 

Min        

s.t       pj

n

j

j xx  
1

 

           pj

n

j

j yy 
1

   

njj ,...,1,0   

(1b): Input-oriented BCC model              (1) 

Min        
(1) 
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s.t        pj

n

j

j xx  
1

   

           pj

n

j

j yy 
1

    

          



n

j

j

1

1  

njj ,...,1,0   

 

For an inefficient DMUj, we define its 

reference set jE  by : 

 
*

0
1, ...,

(1) ((1 ) (1 ))

p in some optimalpE n
j

Solution of a or b

 
 
  
 
  

 

 

Definition 1. DMUp }),...,1{( np  is CCR 

efficient (BCC efficient), if and only if 

1*   in (1a) ((1b)) and the optimal value 

of (2 a) ((2 b)) is equal to zero:     

(2 a): Max      
  eses   

s.t      


 
n

j

pjj xsx
1

  

         


 
n

j

pjj ysy
1

    

njj ,...,1,0   

0,0   ss   

(2 b): Max      
  eses                           (2) 

s.t      


 
n

j

pjj xsx
1

  

         


 
n

j

pjj ysy
1

  

         



n

j

j

1

1    

njj ,...,1,0    

0,0   ss   

         

The efficiency score obtained by standard 

DEA models cannot be used for ranking 

efficient DMUs. So Charnes et al. [4] 

proposed a procedure for ranking efficient 

DMUs by simply counting the number of 

times they appear in the reference sets of 

inefficient units. Therefore, an efficient unit 

is highly ranked if it is chosen as a useful 

reference by many other inefficient units.  

 

3. Sensitivity analysis in LP 

When the final optimal solution of an LP 

has been obtained, we may discover that 

some of the entries in the cost coefficients, 

right-hand-side constants or constraint 

matrix have to be changed or that extra 

constraints or variables have to be 

introduced into the model. It is important to 

be able to find the new optimal solution of 

the problem without the expensive task of 

resolving the problem from scratch. These 

and other related topics constitute 

sensitivity analysis. Some methods for 

updating the optimal solution under 

different problem variations will be briefly 

discussed. 

 

3.1. Change in the cost coefficient 

Suppose that the cost coefficient of one of 

the variables is changed. The effect of this 

change on the final tableau will occur in the 

cost row. That means dual feasibility may 

be lost. 

 

3.2. Change in the right-hand-side 

In this case, primal optimality is 

maintained. The only possible violation of 

optimality is that the new right-hand-side 

vector may have some negative entries; 

therefore, the dual simplex algorithm 

should be applied until a new terminal basis 

is obtained. 

 

3.3. Change in the constraint matrix 

We now discuss the effect of changing 

some of the entries of the constraint matrix. 

A change in the activity vector for a 

nonbasic column does not affect the primal 

feasibility. This can only change the cost 

row. But a change in the activity vector for 

a single basic column will change the 

inverse of basis matrix, thus, the entries in 

every column will be changed. In fact this 
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change may destroy one or both primal and 

dual feasibility. 

 
3.4. Introducing a new activity  

Suppose a new activity has to be introduced 

into the model. If the optimality condition 

for the new variable is satisfied, the value of 

this variable in optimality will vanish and 

the current solution will remain optimal. 

Otherwise, the simplex method continues to 

find the new optimal solution. 

 
3.5. Introducing a new constraint 

Suppose that a new constraint is added to 

the problem. This operation is dual to that 

adding a new activity. If the optimal 

solution of the original problem satisfies the 

added constraint, it is obvious that the point 

will be also an optimal solution of the new 

problem. If, on the other hand, the point 

does not satisfy the new constraint, the dual 

simplex method can be used to find the new 

optimal solution.      

 
4. Nonnegative perturbations of data  

 

In this section, we are interested in 

particular variations of outputs of an 

efficient DMU that preserves the ranking of 

all efficient DMUs. In addition, Variations 

of inputs are alike. 

For this purpose, we first find all efficient 

DMUs and reference sets of inefficient 

DMUs (with models (1) and (2)). By using 

the Charnes ranking method, we obtain the 

ranks of all efficient DMUs.  

Now, we consider decrease of outputs of an 

efficient DMUp:  

sryy rrrprp ,...,1,0,0ˆ         (3) 

 
We note that by decreasing the outputs of 

an efficient DMUp, the new efficient 

frontier gets closer to the inefficient DMUs 

(even changing some of these inefficient 

DMUs to efficient), that is, the ranking 

results of efficient DMUs obtained by 

Charnes may be affected by this 

perturbation. 

Let },...,{ 1 lp jjJ  be the set of indices 

associated with the inefficient DMUs in 

which 
tj

Ep  (t=1,…,l). The region of 

variations of   )),...,(( 1 s  for 

which pJ remains unchanged is a region 

within which the ranking of efficient DMUs 

is preserved. In other words, we want to 

preserve the inefficiency of all inefficient 

DMUs in a region, keeping the reference 

sets for them the same. 

From the definition of the reference set, for 

each inefficient DMUj
t
(t=1,…,l) vector 

t

pp yx ),(  must occur in every optimal 

basis of (1). 
tj

Ep for each t=1,…,l as 

long as all optimum bases corresponding to 

these inefficient DMUs include
*

p as basic 

variable.  

Let B is an optimal basis for (1) in 

evaluating an inefficient DMUj
t
(t=1,…,l) ( 

It is important to note that the perturbations 

of outputs (3) do not affect the right hand 

side of this linear programming problem). 

Now we attempt to identify a region within 

which B  remains an optimal basis.  

Perturbations (3) are accompanied by 

alteration in the inverse of the optimal basis 

matrix )( 1B . From the discussion in 

section (3.3) this change may destroy either 

or both primal and dual feasibility. We 

therefore proceed to show how these 

variations can be accommodated by 

building on the inverse which is already 

available in the optimum simplex tableau.  

Recall that the vector 
t

pp yx ),( must 

occur in every optimal basis of (1) in 

evaluating DMUj
t
(t=1,…,l). To perturb the 

rth component of py by r  (r=1,…,s), we 

need only add to the basis B , the matrix T , 

whereT is a (m+s) (m+s) ((m+s+1)
(m+s+1)) matrix in the CCR (BCC) model 

with non-zero entries only in the pth 

column which is associated with variable
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*

p . Let TBB ˆ  denote the altered 

basis 
 

Where 

      pth column            pth column  

                                         


























00

00
000

000

1










s

T





(



























000
00

00
000

000

1











s

T




)      (4) 

 

In order to get the perturbed basis inverse, 

we can use the Sherman-Morrison-

Woodbury formula (see, for example, [8, p. 

11]).  
1 1

1 1 1 1 1

ˆ( ) ( )

( )

B B T

B B T I B T B

 

    

  

 
               (5) 

 

Using the abbreviation  
11 )(  TBITR                 (6) 

 

We can write (5) as  
1111)ˆ(   RBBBB                (7) 

 

Theorem 1: For each efficient DMUp, let 

},...,{ 1 lp jjJ   be the set of indices 

associated with the inefficient DMUs in 

which 
tj

Ep  (t=1,…,l). Suppose B is an 

optimal basis for (1) in evaluating an 

inefficient DMUj
t
(t=1,…,l). Sufficient 

conditions for efficient DMUs to preserve 

their ranks under the perturbations (3) are 

njwRycz jjj ,...,1,                 (8) 

 

j an index of nonbasic variables  

0)( 11   bBRBI                             (9) 

 

Where jj aBy 1  and 
1 Bcw B in which 

the components of Bc are the coefficients in 

the objective function corresponding to the 

basic variable. 

Proof. We can characterize optimality of the 

perturbed basis TBB ˆ from the 

conditions that all nonbasic variables must 

continue to price out unfavorably, and all 

basic variables be non-negative. That is 

respectively: 

Case I: 0)ˆ(  jj cz ,   nj ,...,1  

With  jBj aBcz 1)ˆ(ˆ       

 

Using notation (7) we have  

jjBjj caRBBBccz   )(ˆ 111
, nj ,...,1  

jjBjB caRBBcaBc   111
 

jBjjB aRBBccaBc 111    

0 jjj wRycz  

 

The last expression can be written in an 

equivalent form jjj wRycz  , nj ,...,1 . 

Case II: 
1 1 1 1

1 1 1 1 1

ˆ0 ( ) ( )

( )

B b B B RB b

B b B RB b I B R B b

   

    

   

  
  

 

It means that 0)( 11   bBRBI and this 

completes the proof. 

For each inefficient DMUj
t
, the conditions 

of Theorem 1 will determine a region 

within which the corresponding optimum 

basis remains optimal. In other words, 

under these conditions, p remains a member 

of the reference set of each inefficient 

DMUj
t
(t=1,…,l),  so the ranking of efficient 

DMUs is preserved. Overall assurance 

region is defined as the intersection of all 

regions in which the conditions of Theorem 

1 are maintained. It should be noted that 

there may be alternative optimal solutions 

for (1), so we need to deal with any one 

optimal bases satisfying the conditions of 

Theorem 1. 
 

5. Numerical example 

Consider the six DMUs with single input 

and single output as defined in Table 1. 
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Table 1: DMUs' data of Numerical example 

DMU                  A               B               C               F               G               H 

Input                  1                2                5               4                6                5 

Output                 1                3                 5                2                2.5               4        

 

By evaluating these DMUs by (1b) and 

(2b), we find out that the DMUs A, B and C 

are efficient and DMUs F, G and H are 

inefficient. The reference sets of inefficient 

DMUs are as follows:  

 BAEF ,  

 BAEG ,  

 CBEH ,  

 

Charnes method ranks DMUB, DMUA and 

DMUC, the rank of which is 1, 2 and 3, 

respectively. [4] 

Let us consider arbitrary change of output 

of DMUB. We are interested in conditions 

that preserve ranking of efficient DMUs 

under this perturbation.  

It is easy to see that F, G and H belong to 

set BJ . By using (8) and (9) for these 

inefficient DMUs, we have:  

DNUF:  

First we solve the following linear 

programming problem 

Min        

s.t        

0456452 1654321    s
 

245.2253 2654321  s
 

1654321    

6,5,4,3,2,1,0  jj  

0, 21  ss  

 

Optimal basic variables of linear 

programming problem (10) are 
* , 

*

2  and 

*

1 , optimal basic matrix is  













 


110
130
124

B  

With inverse 

 



























2

3

2

1
0

2

1

2

1
0

8

1

8

1

4

1

1B    

and corresponding optimum tableau in 

Table 2. 

 
Table 2: Optimum tableau for DMUF 

          1           2           3           4           5           6                      
1s           

2s  ib  

           0          0          –
2

1
          –

8

5
          –

16

17
          –

8

5
          1           –

4

1
          –

8

1
 

2         0          1            2            
2

1
            

4

3
             

2

3
          0             0            –

2

1
 

1          1         0           –1           
2

1
            

4

1
           –

2

1
          0             0              

2

1
 

jj cz   0         0           –
2

1
        –

8

5
         –

16

17
          –

8

5
          0          –

4

1
           –

8

1
 

8

3
  

2

1
 

2

1
 

8

3
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In this case we have the following optimal 

basis perturbation matrix  
















000
00
000

T  

 

Using )( 1B  it is easy to get 

  11 )( TBITRF























000

0
2

2
0

000



  

and 

)
8

1
,

8

1
,

4

1
(1  Bcw B  

We are interested in conditions that 

preserve B as a member of FE under the 

perturbation in the output of DMUB. 

Using elements of Table 2 in conditions (8) 

for indices of nonbasic variables we have: 

1  

Because of condition (9) it also follows that 

1 . 

DMUG: 

By applying the similar LP with (10) for 

DMUG, we obtain the corresponding 

optimum tableau in Table 3. 

We now wish to replace ),,( 12 B by 

a new TBB ˆ  where the choice 
















000
00
000

T  

 

perturbs only the output element in DMUB. 

To study the consequences of this 

perturbation it is easy to get 



























2

3

2

1
0

2

1

2

1
0

12

1

12

1

6

1

1B
 

Using )( 1B we have 
























000

0
2

2
0

000




GR  

and 

)
12

1
,

12

1
,

6

1
(w  

 

Turning to (8) we carry out a sample 

calculation which, by reference to the 

preceding optimum tableau, yields 1 . 

Using (9) we have 
2

1
 . 

 

 
 

Table 3: Optimum tableau for DMUG 

               1           2           3           4           5           6                      
1s         

2s  ib  

              0            0           –
3

1
       –

12

5
         –

24

17
        –

12

5
          1          –

6

1
       –

12

1
 

   2         0            1              2           
2

1
           

4

3
           

2

3
           0            0         –

2

1
 

   1          1             0            –1           
2

1
           

4

1
           –

2

1
          0             0          

2

1
 

jj cz      0            0            –
3

1
       –

12

5
        –

24

17
        –

12

5
           0          –

6

1
       –

12

1
 

24

7
  

4

3
 

4

1
 

24

7
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Table 4: Optimum tableau for DMUH 

               1           2           3           4           5           6                      
1s          

2s  ib  

           –
5

2
           0             0        –

10

7
        –

20

19
        –

10

3
           1          –

5

1
       –

10

3
 

   3        –1            0             1         –
2

1
          –

4

1
           

2

1
           0            0         –

2

1
 

   2         2           1             0          
2

3
            

4

5
            

2

1
           0            0           

2

1
 

jj cz    –
5

2
          0              0        –

10

7
         –

20

19
        –

10

3
          0          –

5

1
      –

10

3
 

10

7
  

2

1
 

2

1
 

10

7
 

 

DNUH: 

In the similar way for inefficient DMUH, we 

produce the full details of the optimum 

tableau as shown in table 4.  

As can be seen, we have the following 

optimal basis matrix 













 


110
350
255

),,( 23 B   

With inverse 































2

5

2

1
0

2

3

2

1
0

2

1

10

3

5

1

1B  

 

and the following change of the optimal 

basis matrix 


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Using )( 1B  it is easy to get 
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According to the conditions provided by 

(8), it follows that 12   . Similarly 

we also obtain 1  from condition (9). 

Finally, from the intersection of all 

intervals,  must be in the range of 

].5.0,0[  After the change of output of 

DMUB in this range, the ranking of efficient 

DMUs will be preserved. 

 

6. Conclusion 

Sensitivity analysis in LP has been 

reviewed in this paper firstly under different 

problem variations. Then, sensitivity 

analysis in DEA for the case of changes of 

data has been studied. In particular, we have 

presented how to change outputs of an 

efficient DMU while preserving ranking of 

all efficient DMUs. Sufficient conditions 

for efficient DMUs to preserve their ranks 

under these perturbations have been 

achieved. An illustrative example has also 

been provided. As we know, there is not 

any relation between input-oriented and 

output-oriented BCC models (in spite of the 

CCR model). For example, the reciprocal 

relation between input and output 

efficiencies is not available for the BCC 



P. Zamani /IJDEA Vol.5, No.1, (2017).1183-1192 

 

1191 

model. Also they supply different 

projections of the inefficient DMUs onto 

the production frontier, and this leads to 

alternative reference sets for these 

inefficient DMUs. Therefore, the results of 

Charnes ranking method are not the same in 

two directions. If we rank the efficient 

DMUs in the input-oriented (output-

oriented) BCC model, all earlier discussion 

and obtained conditions will be extended to 

the input-oriented (output-oriented) BCC 

model. The problem of preserving ranking 

of all efficient DMUs under the 

simultaneous perturbations of all inputs and 

outputs seems to be an interesting problem 

for future research.  
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