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Abstract 

     The portfolio is a perfect combination of stock or assets, which an investor buys them. The 

objective of the portfolio is to divide the investment risk among several shares. Using non-parametric 

DEA and DEA-R methods can be of great significance in estimating portfolio. In the present paper, 

the efficient portfolio is estimated by using non-radial DEA and DEA-R models. By proposing non-

radial models in DEA-R when there is ratio data the efficient portfolio is determined. At the end of the 

study, an applicatory example based on article [2] with non-radial DEA and DEA-R models has been 

conducted and results are presented. 
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1. Introduction 

DEA is a technique to calculate the relative 

efficiency of a set of decision-making units 

conducted by the mathematical programming. 

DEA divides decision-making units into two 

categories of efficient and inefficient and 

compares decision-making units by 

determining the amount of efficiency. For the 

first time Farrell [1] proposed using non-

parametric methods to determine the 

efficiency. His suggestion has been extended 

by Charnes and Cooper inRhodes’PhD thesis 

[2] was called DEA. In his study, Rhodes 

analyzed student achievement in American 

schools and presented the CCR model in 

cooperation with Charnes-Cooper model. 

Then, in 1984, DEA method was developed by 

Banker, Charnes and Cooper under a model 

named BCC [3]. Furthermore, in addition to 

CCR and BCC models other models were also 

presented later in DEA. 

Shareholders usually form a collection of 

financial assets known as portfolio in order to 

reduce the investment risk. The monetary or 

cash value of the portfolio of any legal or 

natural person is the value of the portfolio. The 

portfolio is the most important factor in 

valuation of investment companies listed on 

the Stock Exchange. In order to reduce risk, 

The portfolio is selected in a way that in 

normal circumstances the possibility of 

reduction in the efficiency of all assets (i.e. 

purchased shares) is close to zero. In this case, 

like other countries the portfolio plays an 

important role in stock market in Iran. Along 

with the dramatic growth of DEA and the 

focus on the input and output data, the subject 

of ratio data was introduced. With the 

integration of DEA and Ratio analysis, Despic 

at al. proposed ratio-based analysis of DEA 

(DEA-R) [4]. Wei et al. indicated false in 21 

medical centers inefficiency in Taiwan by 

utilizing DEA-R models [5]. Later, Wei et al. 

studied problems of CCR model in DEA and 

advantages of DEA-R [6]. In addition, Wei et 

al. measured the efficiency and super 

efficiency by developing input oriented DEA-

R and constant returns to scale models [7]. 

With the introduction of DEA-R for ratio data 

Liu et al. proposed DEA models with hidden 

input from a different viewpoints and studied 

15 research institutes with ratio data in China 

[8]. Following this path, Mozaffari et al. 

studied the relationship between DEA and 

DEA-R models [9]. Mozaffari et al. compared 

efficiency of cost and revenue in DEA and 

DEA-R [10]. 

Overall efficient portfolio is estimated by non-

parametric methods due to large data and 

multiple inputs and outputs. Even if there are 

ratio input and output, the portfolio is 

estimated as optimized. Another approach was 

considered in the study published by Joro and 

Na [11], and Vorst [12]. By considering 

diversification, Briec et al. also developed a 

quadratic constraint nonlinear DEA model in 

the mean-variance framework for a single 

period [15]. Liu et al. [13] applied the DEA 
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model for Estimation of portfolio efficiency.  

Juo et al. [14] discussed profit-oriented 

productivity change. Briec and Kerstens 

extended the multi-horizon mean-variance 

portfolio analysis. [16,17]. In the present 

study, in addition to the radial and non-radial 

models ratio-based models are also utilized in 

order to estimate efficient portfolio. In 

specific, in this study a proper algorithm is 

recommended for efficient portfolio using 

non-parametric methods such as the DEA and 

DEA-R. This article is structured as follows: 

in the second section the basic concepts of 

statistics, DEA and DEA-R are presented. In 

the third and fourth sections, non-radial 

models are recommended for determining 

efficient portfolio in DEA and DEA-R. In the 

last section, a case study will be provided. 

2. Basic Concepts 

In this section the basic concepts of statistics, 

DEA and DEA-R are briefly stated. 

2-1.Review of Co-Variance and Correlation 

Coefficient  

If X is a one-dimensional random variable in 

discrete space, the expected value and variance 

of X are obtained from the following equation, 

respectively: 

V(X)= E(X ଶሻ - ሺEሺXሻሻଶ  & E(X)=∑ x୧Pሺx୧ሻ
୬
୧ୀଵ  

Where P (xi) is the probability density 

function. 

Definition 1: in variance if the number of 

variables is more than one, there is new 

concept called Covariance calculated from the 

following equation: 

)=Covߜ ܺ , ܻሻ ൌ ܧ ቀሺ ܺ െ ሺܧ ܺሻሻ൫ ܻ െ ሺܧ ܻ൯ቁ ൌ

൫ܧ ܺ ܻ൯ െ ሺܧ ܺሻܧሺ ܻሻ 

Definition 2: In the case of more than one 

variable in addition to covariance another 

concept called correlation coefficient that is a 

double operator defined as 

=(X,Y)ߩ
௩ሺ,ሻ

ඥሺሻሺሻ
 such thatหߩ,ห 1.  Thus, 

we have a correlation coefficient matrix which 

is the positive-definite matrix and its main 

diagonal elements are all one. 

Note 1. If X is a random vector and ‘a’ is a 

vector that is the transpose of the row matrix, 

aT, the variance and standard deviation are 

defined as follows: 

∑ ∑ ܽܽ ܽ

ୀଵ


ୀଵ ൌ V൫aTX൯ =σଶ

ୟTX 

σୟTX ൌ ඩ  ܽܽ ܽ



ୀଵ



ୀଵ

 

2.2 Overview of the concepts of DEA 

The production function is a function that 

provides maximum output for any 

combination of input. In most cases, obtaining 

a production function is not an easy task, due 

to the complexity of the production process, 

change in the production technology and the 

multi-validness of the production function. 

This means that in most cases, a vector of 

inputs such as ܺ=(x1,…,xm) produces an 

output vector such as ܻ=(y1,…,ys). 

The purpose of DEA is to calculate the 

efficiency of a decision-making unit according 

to the production function. Meanwhile, 

calculating the production function is not an 
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easy task and in some cases, it is impossible.  

Therefore, a set named the production 

possibility set is made and its boundary is 

considered as an approximate of the 

production function. The production function 

obtained from the production possibility set is 

the proximate boundary which is intended 

according to the production technologies. The 

production possibility set shown by T is 

defined as follows: 

T={(X,Y)| X vector produces Y vector }.  

Consider the production possibility of (θXo, 

Yo) where Y ≥Yo and 0 ≤ θXo ≤ Xo. If we 

want put this possibility on the frontier, then θ 

is the lowest amount which (θXo, Yo) will be 

on the frontier of Tc. If θ <1, then the 

production possibility in which the input is 

θXo and its output is at least Yo , i.e. the θXo≤ 

Xo and Y≥Yo will dominate DMUo. 

Therefore, in order to reduce inputs and to 

evaluate DMUo, Charnes et al. introduced 

CCR modelas follows: 

Min   θ 
S.T    ∑ λ୨

୬
ୀଵ    i =1,...,m,                 (1)ݔ≤θݔ

          ∑ λ୨
୬
ୀଵ ݕ             ,  r =1,...,sݕ 

         λj≥0                        j=1,…,n.            
 

3. Determining the portfolio in non-radial 

model of DEA 

Assume that there are m portfolios under 

analysis such that  a=(ܽଵ
, ܽଶ

, … , ܽ
ሻand 

∑ ܽݎ

ୀଵ ሺሻand σݎ= ൌ ඥ∑ ∑ ܽ

ߪܽ


ୀଵ

ୀଵ  

for j = 1,2, ..., m are the weight of the 

portfolio, the expected return and standard 

deviation (risk) of the jth portfolio, respectively. 

First consider the subject as risk-free assets. In 

Figure (1) the horizontal axis represents the 

standard deviation and the vertical axis 

represents the expected return and ܤଵܤܥଶ curve 

represents the efficient frontier of portfolio. 

Suppose that A (r, σ) is one share and 

,ሺଵሻݎଵሺܤ ሺଵሻߪ   ، ,ሺଶሻݎଶሺܤ ,ሺଷሻݎ)ሺଶሻሻ and Cߪ  ሺଷሻሻߪ

are theoptimized portfolio on the boundary. 

Therefore, using different distances different PE 

(efficient portfolios) is defined as follows:  

ܚ۳۾
܀  ൌ

ܚ

 ሺሻ                                                        (2)ܚ

۳ો۾
܀ ൌ  

ોሺሻ

ો
                                                    (3) 

ોܚ۳۾ 
ܛ ൌ

ି
ોషોሺሻ

ો

ା
ܚሺሻషܚ

ܚ

                                               (4) 

ોܚ۳۾ 
ܙ  =  




ሺሺ െ  

ሺሻ࣌ି࣌

࣌
)+(   

࢘ሺሻି࢘

࢘
))       (5) 

In this section, by using additive and enhanced 

Russell models and taking into account the 

expected return and risk of portfolio decision 

making units are determined. 
 

 

Figure (1). The efficiency of risk free portfolio 
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Considering n decision-making units with 

inputs of ߪሺሻ and outputs ofݎሺሻfor ܯܦ ܷ the 

additive model is proposed as follows: 

∑  Max  =כߛ ݏ

ୀଵ   ∑ ݏ

௦
ୀଵ  

S.T     ∑ ሺሻߪߣ
ୀଵ   ݏ  ൌ     ,      i=1,…,mߪ 

∑ λ୨rሺ୨ሻ୬
୨ୀଵ       -   s ൌ r୭                f=1,…,s , (6) 

ݏ  0   ,   s  0 ,    ݅ ൌ 1, … , ݉  , ݂ ൌ 1, … , s, 

ߣ    0 ,                    ݆ ൌ 1, … , ݊. 

Model (6) which is anon-radial model evaluates 

 . with the input and output of (σo, ro)ܷܯܦ

Axiom 1: model (6) is always feasible. 

Proof: Considering ߣ ൌ ݁ and ݏ ൌ 0and 

ݏ ൌ 0this model is always feasible. The 

model shows the inefficiency scale for 

DMUO ൌ ሺߪ,  ሻ and 1-γ* indicates its scaleݎ

inefficiency.ז 

Furthermore, in order to assess the DMUO, 

enhanced Russell model is presented as follows: 

כܶ ൌ  ݊݅ܯ

ଵ


∑ ߠ


ୀଵ

ଵ

௦
∑ ߮

௦
ୀଵ

 

S.T.      ∑ ሺሻߪߣ
ୀଵ     ߪ 

ߠ     ݅ ൌ 1, … , ݉, 

∑ ሺሻݎߣ
ୀଵ   ݎ 

߮  ݂ ൌ 1, … ,   (7)              , ݏ

ߠ   1 ,   ߮  1     ݅ ൌ  1, … , ݉,   ݂ ൌ 1, … ,  ,ݏ

ߣ   0                       ݆ ൌ 1, …, n.                         

In model (7), since the fractional objective 

function, it is not linear and the objective is to 

decrease all inputs and increase all outputs. 

4-Determination of the Portfolio in Non-

Radial DEA-R Models 

The DEA based on the analysis of fraction 

(DEA-R) makes use of linear programming 

models in order to evaluate DMUs. In case of 

ratio data in DEA-R by defining efficiency as 

a weighted sum of the ratio of input to output 

or vice versa scale efficiency is calculated. The 

production possibility set in DEA - R is 

defined as follows: 

TR ൌ ൜
୶

୷
ฬ∑ λ୨ ൬

୶ౠ

୷౨ౠ
൰ 

୶

୷
& ∑    λ୨ ൌ 1 ୬

୨ୀଵ ,୬
୨ୀଵ

λ୨  0, j ൌ 1, … , n  ൠ                                    (8) 

If there is ratio data and a ratio of inputs to outputs 

(or vice versa) is defined, for instance  
୶ౠ

୷౨ౠ
, the 

input- oriented DEA - R models in constant 

returns to scale technology are as follows: 

Min θ 

S. T    θ ൬
x୧୭

y୰୭
൰ א TR                                             ሺ9ሻ 

Output-oriented Model (9) can be obtained as 

follows: 

Max θ 

S. T    λ୨ሺ
y୰୨

x୧୨
ሻ  θ ൬

y୰୭

x୧୭
൰

୬

୨ୀଵ

             i ൌ 1 , … , m,

r ൌ 1 , … , s 

 λ୨ ൌ 1

 ୬

୨ୀଵ 

ሺ10ሻ 

λ୨  0     ,    j ൌ 1 , … , n 

Model (10) is a linear programming problem 

that has been introduced inconstant returns to 

scale technology in DEA-R . (See [9]) 

In DEA-R Models some axioms are hold. 

TR is a closed and bounded set. (See [8] ) 

The inclusion principle of observations related 

to ratios of  
୶ౠ

୷౨ౠ
is hold. 

The convexity principle in DEA-R is hold.  

(See [8] ). 
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In DEA models, the efficiency is equal to the 

weighted sum of the output divided into the 

weighted sum of the input and the relative 

efficiency is defined as the absolute efficiency 

divided into the maximum defined absolute 

efficiency. In this regard, the following 

problems exist: 

First, what is the reason for defining efficiency? 

Secondly, the use of non-Archimedean number 

(ε) that prevents zero weights, such that neither 

nominator nor denominator becomes zero. 

Thirdly, in DEA the aforementioned reasons 

may lead to the false inefficiency. In these 

regards, the DEA-R model is helpful and it 

creates no problem. 

In addition, the scale efficiency in input-

oriented models of DEA-R is equal to or less 

than the scale efficiency in DEA. The scale 

efficiency in DEA and DEA - R models when 

there is one output and multiple inputs is 

exactly equivalent to each other, and it can 

easily be proved (Wei et al, 2011). 

The following additive model in non-radial 

DEA-R models is recommended for 

recognizing the efficiency and inefficiency 

among units in determining the portfolio: 

Max   ߙ = ∑ ∑ ݏ
௦
ୀଵ


ୀଵ  

S.T  ∑ ሺߣ
ఙሺೕሻ

ሺೕሻሻ
ୀଵ ݏ +   ൌ  

ఙ

        

i=1, … , m    و   f=1, … , s, 

∑ ߣ

ୀଵ  =1                                                   (11) 

ݏ            0       ݅ ൌ 1, … , ݂   و    ݉ ൌ 1, … ,  ,ݏ

ߣ             0                                       ݆=1, … , n. 

  in model (11) is efficient if and only ifܷܯܦ

כߙ  ൌ 0.  

Also, Russell’s additive model is presented for 

evaluating DMUo in non-radial DEA-R models 

as follows: 

Min   β = 
ଵ

௦
∑ ∑ ߠ

௦
ୀଵ


ୀଵ  

S.T     ∑ ሺߣ
ఙሺೕሻ

ሺೕሻሻ
ୀଵ 

ఙ

        ߠ

             i=1, … , m    ,       f=1, … , s, 

             ∑ ߣ

ୀଵ  =1                                        (12) 

ߠ               0      ݅ ൌ 1, … , ݉   ,   ݂ ൌ 1, … ,  ,ݏ

ߣ                0                  ݆=1, … , n.  

In each optimal solution of model (12), all input 

and output constraints are enforced. In model 

כߚ is efficient if and only ifܷܯܦ ,(12) ൌ 1 . 

5-Numerical Example 

In this section, using the data in the article [13], 

the expected returns and covariance matrix, 

which its statistical details are presented in 

Table (1) and (2).The Random sample weights 

of m = 10, 50 and 100 are created by the EXEL 

software. In addition, EXEL and GAMS 

software are utilized to produce efficient 

portfolio. By selecting the samples of m = 10, 

50 and 100, the obtained solutions from model 

(4), (5), (6) and (7) are shown in Table (3), (4) 

and (5). The objective function and constraints in 

model (6) using GAMS program are as follows:  
 

Equations 

Objective,       Const1(i),       Const2(f); 

Objective1..  z=e=sum(i, s(i))+ sum(f, t(f)); 

Const 1(i).. 

Sum(j,SIGMA(i,j)*Lambda(j))+s(i)=e=SIGMAo(i); 

Const 2(f).. 

Sum(j,EXR(f,j)*Lambda(j))-t(f)=e=EXRo(f) ; 
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Also, the objective function and constraints in 

model (7) using GAMS program is as follows: 

Equations 

Objective  ,  Const1(i) ,  Const2(f),  Const3(f) ,  

Const4(i)   ,Const5(i); 

Objective..  

z=e=Sum(i,Teta(i).m).Sum(f,Phi(f).s); 

Const1(i)..  

Sum(j,sigma(i,j)*Lambda(j))=l=Teta(i)*sigmao(i); 

Const2(f)..  

Sum(j,exr(f,j)*Lambda(j))=g=Phi(f)*yo(f); 

const3(f)..  Phi(f)=g=1; 

const4(i)..  Teta(i)=l=1; 

const5(i)..  Teta(i)=g=0; 
 

Finally, in table (5), the coefficient correlation 

between each pair of solutions obtained from 

models (5) and (6) and solutions obtained from 

models (4) and (7) are presented as following: 

By selecting a sample with m = 10, in Table 3 

from the left side to right, the first column 

shows the obtained solutions from model (6), 

second column shows obtained solutions from 

model (5), third column shows obtained 

solutions from model (7) and the fourth 

column  

shows obtained solutions from model (4). 

Table 1.Expected return(%) 
1          2         3         4            5  

57.2     36.1     83.1     49,1     85.0 Returns 

 

Table 2. Covariance Matrix 
Covariance    5           4          3          2          1 

1 
2 
3 
4 
5 

28.91    11.74    50.75   14.97   40.174 
02.133  97.143  87.12   52.280  14.97 
04.72    28.107  62.256  87.125  50.75 
83.88    83.172  28.107  97.143  11.74 
25.168  83.88    04.72    02.133  28.91 

Table 3. The obtained solutions from model and 
definition with 10 samples 

 
Model 

(4) 

Model 

(7) 

Definition 

(5) 

Model 

(6) 

0.41 
0.36 
0.25 
0.36 
0.36 
0.31 
0.36 
0.46 
0.46 
0.27 
0.38 
0.33 
0.33 
0.42 
0.38 
0.33 
0.31 
0.31 
0.30 
0.24 
0.31 
0.28 
0.38 
0.32 
0.41 
0.35 
0.38 
0.37 
0.39 
0.39 
0.30 
0.32 
0.38 
0.40 
0.32 
0.26 
0.44 
0.35 
0.37 
0.36 
0.35 
0.38 
0.38 
0.38 
0.30 
0.38 
0.44 
0.33 
0.36 
0.27 

0.85 
0.77 
0.53 
0.78 
0.78 
0.67 
0.79 
0.99 
1.00 
0.59 
0.82 
0.71 
0.72 
0.90 
0.81 
0.70 
0.67 
0.67 
0.65 
0.53 
0.68 
0.60 
0.82 
0.70 
0.89 
0.75 
0.82 
0.80 
0.84 
0.85 
0.64 
0.70 
0.81 
0.87 
0.69 
0.56 
0.95 
0.75 
0.80 
0.78 
0.76 
0.82 
0.83 
0.81 
0.65 
0.82 
0.95 
0.71 
0.77 
0.58 

0.71 
0.77 
2.12 
0.88 
0.94 
0.93 
0.84 
1.05 
1.10 
1.36 
0.69 
0.69 
1.03 
0.85 
1.08 
1.02 
0.95 
1.05 
1.04 
1.58 
1.17 
1.08 
0.70 
2.05 
0.91 
0.88 
0.84 
0.75 
0.73 
0.89 
1.06 
1.42 
0.87 
0.81 
1.05 
1.14 
0.95 
0.67 
0.81 
1.04 
0.89 
0.93 
1.19 
1.79 
1.02 
0.96 
0.82 
1.29 
0.93 
1.02 

42.80 
90.57 
90.20 
77.26 
71.20 

119.06 
77.15 
2.15 
0.00 

114.45 
77.53 

136.72 
88.42 
31.97 
52.49 
95.41 

118.76 
109.58 
118.60 
123.36 
92.77 

136.28 
74.23 
48.91 
32.01 
91.58 
63.19 
77.66 
63.56 
48.24 

119.15 
69.88 
64.20 
46.49 
98.33 

148.99 
14.86 

117.03 
76.18 
66.45 
81.93 
55.68 
41.58 
31.49 

118.55 
55.88 
15.24 
74.26 
74.77 

160.67 
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By selecting a sample with m = 50, in Table 4 

from the left side to right, the first column 

shows the obtained solutions from model (6), 

the second column shows obtained solutions 

from model (5),the third column shows 

solutions obtained from the model (7) and the 

fourth column shows solutions obtained from 

the model (4). 

Selecting a model with m = 100, we go 

through the same procedures like samples of 

10 and 50. 

In Table 5, the first row shows the sample size, 

the second shows thecoefficient correlation of 

obtained solutions from model (5) and (6) and 

the third row shows the coefficient correlation 

of obtained solutions from the model (4) and 

(7). 

 

6. Conclusion 

In this study, we define the portfolio by DEA 

frontier. In other words, it is possible to utilize 

a frontier from DEA in order to approximate 

the real frontier and to estimate the efficient 

portfolio. We also consider various limitations 

that exist for investments in the market. Given 

that DEA is a linear programming model and, 

it needs to a large extent simple calculations, 

with selecting several different sample, using 

covariance matrix and non-radial DEA and 

DEA-R models we show that by increasing the 

sample size, the frontier of the efficient 

portfolio gradually becomes close to the 

frontier of DEA and this is the practical 

application of DEA models. 

Table 4. Obtained solutions from the model and 
definition with 50 samples 

 

Model 

(4) 

Model 

(7), (12) 

Definition 

(5) 

Model 

(6), (11) 

0.41 
0.36 
0.25 
0.36 
0.36 
0.31 
0.36 
0.46 
0.46 
0.27 
0.38 
0.33 
0.33 
0.42 
0.38 
0.33 
0.31 
0.31 
0.30 
0.24 
0.31 
0.28 
0.38 
0.32 
0.41 
0.35 
0.38 
0.37 
0.39 
0.39 
0.30 
0.32 
0.38 
0.40 
0.32 
0.26 
0.44 
0.35 
0.37 
0.36 
0.35 
0.38 
0.38 
0.38 
0.30 
0.38 
0.44 
0.33 
0.36 
0.27 

0.85 
0.77 
0.53 
0.78 
0.78 
0.67 
0.79 
0.99 
1.00 
0.59 
0.82 
0.71 
0.72 
0.90 
0.81 
0.70 
0.67 
0.67 
0.65 
0.53 
0.68 
0.60 
0.82 
0.70 
0.89 
0.75 
0.82 
0.80 
0.84 
0.85 
0.64 
0.70 
0.81 
0.87 
0.69 
0.56 
0.95 
0.75 
0.80 
0.78 
0.76 
0.82 
0.83 
0.81 
0.65 
0.82 
0.95 
0.71 
0.77 
0.58 

0.71 
0.77 
2.12 
0.88 
0.94 
0.93 
0.84 
1.05 
1.10 
1.36 
0.69 
0.69 
1.03 
0.85 
1.08 
1.02 
0.95 
1.05 
1.04 
1.58 
1.17 
1.08 
0.70 
2.05 
0.91 
0.88 
0.84 
0.75 
0.73 
0.89 
1.06 
1.42 
0.87 
0.81 
1.05 
1.14 
0.95 
0.67 
0.81 
1.04 
0.89 
0.93 
1.19 
1.79 
1.02 
0.96 
0.82 
1.29 
0.93 
1.02 

42.80 
90.57 
90.20 
77.26 
71.20 
119.06 
77.15 
2.15 
0.00 

114.45 
77.53 
136.72 
88.42 
31.97 
52.49 
95.41 
118.76 
109.58 
118.60 
123.36 
92.77 
136.28 
74.23 
48.91 
32.01 
91.58 
63.19 
77.66 
63.56 
48.24 
119.15 
69.88 
64.20 
46.49 
98.33 
148.99 
14.86 
117.03 
76.18 
66.45 
81.93 
55.68 
41.58 
31.49 
118.55 
55.88 
15.24 
74.26 
74.77 
160.67 
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Table 5. Correlation coefficients of efficiency ranks 
with different sample sizes 

 
10                50100 Sample Size 

 
 
-0.28991      0.007682   -0.01786 

 

the coefficient 
correlation of 
obtained 
solutions 
from model 
(5) and (6 or 
11), 

 

0.996806     0.997481   0.996867 

 

the coefficient 
correlation of 
obtained from 
the model (4) 
and (7 or 12) 
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