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Abstract 

 

   Data Envelopment Analysis (DEA) models with interval inputs and outputs have been rarely 

discussed in DEA literature. This paper, using the enhanced Russell measurement proposes an extended 

model which permits the presence of interval scale variables which can take both negative and positive 

values. The model is compared with most well-known DEA models of which include the CCR model, 

the BCC model and the additive model. An empirical data set is used to illustrate the model. 

 

Keywords: data envelopment analysis; decision making; Translation invariance; interval scale; ratio 

scale. 

 

1. Introduction 

   Data envelopment analysis (DEA) is a non-parametric method for evaluating the relative efficiency 

of decision-making units (DMUs) on the basis of multiple inputs and outputs. The original DEA models 

use (positive) input and output variables which are measured on a ratio scale but these models do not 

apply to variables in which interval scale data can appear [2]. With the widespread use of interval scale 

variables, such as profit or the increase/decrease in bank accounts emphasis has shifted to the 

simultaneous consideration of ratio and interval scale data in DEA models. However, interval scale 

inputs/outputs cannot be used widely in DEA models. The problem with interval scale variables arises 

from the fact that rations of measurement on such a scale are meaningless. For handling interval scale 

data, Halme et al. (2000) proposed an approach which based on the idea of replacing each of the interval 

scale variables with the two ratio scale variables that give rise to them [6]. As acknowledged by Halme 

et al. as a drawback, since the number of variables rise as a consequence of the decomposition of the 
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interval scale variables, some of the inefficient units may become efficient. But, there are some cases 

which the interval scale variables is not a consequence of using the subtraction of two ratio scale 

variables. For instance in the assessment of the quality of research of different departments of a 

university, one of the criteria may be ‘‘standard of Research at International Level” with a scale where 

one represents ‘‘Poor” and two represents ‘‘Fair”. The scale can be regarded as a proxy to the value 

scale, which is an interval scale. Thus we cannot say that a score of two (‘‘Fair”) implies that it is two 

times better than ‘‘Poor”. 

In this paper, we propose an extended of enhanced Russell measurement (pastor et al, 1999) that yields 

a measure of efficiency and also is able to handle variables consisting of positive values for some and 

negative values for other sample DMUs. This paper unfolds as follows. In section 2 we discuss interval 

scale, ratio scale, translation invariant and the problem of interval scale data in DEA models. In section 

3, we introduce preliminaries of DEA. In sections 4 using the enhanced Russell measurement we 

propose an extended model which permits the presence of interval scale variables which can take both 

negative and positive values. In section 5 we provide a numerical example to compare the results. 

Conclusions are summarized in section 6. 

 

2. Interval scale, ratio scale and translation invariant 

   Definition 2.1 : (Interval Scale)  Let P is a set of observed judgments and ℛ real numbers. A mapping 

s: P ⟶ ℛ such that   ∀i, j(i, jϵP ⟹ i is preferred to j ⟺ s(i) > s(j) ). 

is said to be interval scale if any transformation of the function values that preserves their numerical 

difference produces another function that shares the same one-to-one relation between comparisons 

among objects (using ) and comparisons among corresponding function values (using – ) [7]. 

So the set of permissible transformations for interval scales preserves relative differences. Specifically, 

a transformation, f, is permissible for interval scales if and only if there is a constant c such that 𝑠(𝑖) −

𝑠(𝑗) = 𝑐{𝑓[𝑠(𝑖)] − 𝑓[𝑠(𝑗)]}.Thus, linear transformations in which we add the same constant to each 

value and/or multiply each value by a constant are permissible for interval scale data. On these scales, 

of course, it is meaningless to say, one value is twice or some other proportion greater than another [10] 

.An example of an interval scale is temperature, either measured on a Fahrenheit or Celsius scale. But 

it is important to understand the different levels of measurement when using and interpreting scales. 

For example, we cannot say that 100 degrees is twice as hot as 50 degrees. The interval scale data are 

invariant under any translation transformation. Thus, the zero point on an interval scale is arbitrary; that 

is, it does not present the total absence of the measured characteristic; therefore a negative interval scale 

data, for example–20 C, is a menningful quantity. 
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Definition 2.2 : (Ratio Scale)  Let P is a set of observed judgments and ℛ real numbers. A mapping 

s: P ⟶ ℛ such that 

∀i, j(i, jϵP ⟹ i is preferred to j ⟺ s(i) > s(j) ). 

is said to be ratio scale if any transformation of the function values that preserves their numerical ratio 

produces another function that shares the same one-to-one relation between comparisons among objects 

(using ) and comparisons among corresponding function values (using / ) [7]. 

So, a transformation, f, is permissible for ratio scales if and only if there is a constant c such 

that 𝑠(𝑖)/𝑠(𝑗) = 𝑐{𝑓[𝑠(𝑖)]/𝑓[𝑠(𝑗)]}. Thus, it is permissible to multiply ratio scale data by a constant, 

but we may not take logs or add a constant, and so the ratio scale data are not invariant under any 

translation transformation. Therefore, a defined zero on these scales may not be changed. Thus, the zero 

point in Kelvin degrees which is about -485 F means that there is no hot. Also the absolute or true zero 

point, means that observations can be compared as a ratio. Therefore, we can say that 100 K is twice as 

hot as50 K. Also the true zero point represent the total absence of the measured characteristic. In other 

words, the ratio scale measures characteristic being measured from true zero point, for example Kelvin 

degrees measures the hot characteristic from the true zero point, therefore, negativity of such a scale are 

meaningless. 

Definition 2.3: (Translation Invariance)  Given any problem, a DEA model is said to be tranlation 

invariant if translating the original inpout and/or output data values results in a new problem that has 

the same optimal solution for the envelopment form as the old one.[10]. 

The translation invariance property of a DEA model allows us to deale with negative data. On the other 

hand, translation transformations in which we add the same constant to each value by a constant are 

permissible for interval scale data. But, translation transformations are not permissible for ratio scale 

data. Therefore, we can use the translation invariance property of a DEA model only to deal with 

unrestricted-in-sign interval scale input and/or output variables. 

 

3. The initial DEA models 

   Suppose we have n peer observed DMUs (decision-making units) where every 𝐷𝑀𝑈𝑗(𝑗 = 1,2, … , 𝑛) 

produce multiple outputs 𝑦𝑟𝑗 , (𝑟 = 1, … , 𝑠) by utilizing multiple inputs 𝑥𝑖𝑗 , (𝑖 = 1, … , 𝑚). The input 

and output vectors of 𝐷𝑀𝑈𝑗 are denoted by 𝑥𝑗 and 𝑦𝑗, respectively, and we assume 𝑥𝑗and 𝑦𝑗 are semi 

positive, i.e., 

𝑥𝑗 ≥ 0, 𝑥𝑗 ≠ 0;  𝑦𝑗 ≥ 0, 𝑦𝑗 ≠ 0,   for 𝑗 = 1, … , 𝑛.                                                         (1) 

We use by (𝑥𝑗, 𝑦𝑗) to descript 𝐷𝑀𝑈𝑗, and specially use (𝑥𝑜, 𝑦𝑜) (𝑜𝜖{1,2, … , 𝑛}) as the DMU under 

evaluation. Also we assume 
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∀𝑖 (𝑖𝜖{ 1, … , 𝑚} ⇒ ∃𝑗(𝑗𝜖{1, … , 𝑛} & 𝑥𝑖𝑗 > 0 )) ,

∀𝑟 (𝑟𝜖{ 1, … , 𝑠} ⇒ ∃𝑗(𝑗𝜖{1, … , 𝑛} & 𝑦𝑟𝑗 > 0 )) .
                                                          (2) 

Throughout this paper, vectors will be denoted by bold letters. 

The efficiency of each 𝐷𝑀𝑈𝑜 can be evaluated by the envelopment form of the input-oriented CCR 

model by solving the following linear program, 

min 𝜃 − 𝜀(∑ 𝑠𝑖
− + ∑ 𝑠𝑟

+𝑠
𝑟=1

𝑚
𝑖=1 )                                                                 

s. t.

∑ 𝜆𝑗𝑥𝑖𝑗 + 𝑠𝑖
− = 𝜃𝑥𝑖𝑜 ;    𝑖 = 1, … , 𝑚,𝑛

𝑗=1                                            

∑ 𝜆𝑗𝑦𝑖𝑗 − 𝑠𝑟
+ = 𝑦𝑟𝑜;    𝑟 = 1, … , 𝑠,𝑛

𝑗=1                                                

 𝜆𝑗 ≥ 0, 𝑠𝑖
− ≥ 0, 𝑠𝑟

+ ≥ 0;    𝑗 = 1, … , 𝑛 , 𝑖 = 1, … , 𝑚 , 𝑟 = 1, … , 𝑠,

                     (3) 

where 𝜃 is a scalar, and 𝜀 > 0 is the non-Archimedean element. 

As shown by Charnes and Cooper [2], 𝐷𝑀𝑈𝑜 is CCR-efficient if and only if for the optimal solution 

(𝜃∗, 𝜆∗, 𝑠∗−, 𝑠∗+) of the linear programming problem (3) the following are satisfied: 

𝜃∗ = 1, 𝑠−∗ = 0, 𝑠+∗ = 0.  

Also, 𝐷𝑀𝑈𝑜 is extreme CCR-efficient if only if 𝐸𝑜 = {𝐷𝑀𝑈𝑜} where 𝐸𝑜 is defined as 

𝐸𝑜 = {𝐷𝑀𝑈𝑗|𝑗𝜖{1, … , 𝑛}& 𝜆𝑗
∗ > 0 in some optimal solution (𝜃∗, 𝜆∗, 𝑠−∗, 𝑠+∗) of model (3)} 

𝐸𝑜 ≠ ∅ and DMUs in 𝐸𝑜 are CCR-efficient [10]. 

Theorem 2.1.  𝐷𝑀𝑈𝑜 is extreme CCR-efficient iff 

min 𝜃 − 𝜀(∑ 𝜆𝑗𝑗≠𝑜 )                                                                                        

s. t.

∑ 𝜆𝑗𝑥𝑖𝑗 + 𝑠𝑖
− = 𝜃𝑥𝑖𝑜 ;     𝑖 = 1, … , 𝑚,𝑛

𝑗=1                                           

∑ 𝜆𝑗𝑦𝑖𝑗 − 𝑠𝑟
+ = 𝑦𝑟𝑜;     𝑟 = 1, … , 𝑠,𝑛

𝑗=1                                              

 𝜆𝑗 ≥ 0, 𝑠𝑖
− ≥ 0, 𝑠𝑟

+ ≥ 0;    𝑗 = 1, … , 𝑛 , 𝑖 = 1, … , 𝑚 , 𝑟 = 1, … , 𝑠,

  
                       (4) 

has an optimal objective function value of one. 

Proof.  Let 𝐷𝑀𝑈𝑜 not be extreme CCR-efficient. Then there exists an optimal solution (𝜃∗, 𝜆∗, 𝑠∗−, 𝑠∗+) 

to model (3) such that a 𝜆𝑗
∗ > 0 (𝑗 ≠ 𝑜). Also, 𝜃∗ ≤ 1. Thus 𝜃∗ − 𝜀 ∑ 𝜆∗

𝑗 < 1𝑗≠𝑜 .  

Let the optimal objective function value of model )4( be less one, and let (�̃�, �̃�, �̃�−, s̃+) be an the model, 

then either �̃� < 1 or �̃� = 1 and ∑ 𝜆�̃�  > 0𝑗≠𝑜 . If �̃� < 1, 𝐷𝑀𝑈𝑜 isn't extreme BCC-efficient. If �̃� = 1 and 

∑ 𝜆�̃�  > 0𝑗≠𝑜 , then either (�̃�−, �̃�+) ≠ (0,0) or (�̃�−, �̃�+) = (0,0) If (�̃�−, �̃�+) ≠ (0,0), since (�̃�, 𝜆,̃ �̃�−, �̃�+) 

is a feasible solution of model (3). Then 𝐷𝑀𝑈𝑜 isn't CCR-efficient, thus 𝐷𝑀𝑈𝑜 isn't extrem CCR-

efficient. If (�̃�−, �̃�+) = (0,0), then either (�̃�, 𝜆,̃ �̃�−, �̃�+) is an optimal solution of mode (3) or isn't. If 

(�̃�, 𝜆,̃ �̃�−, �̃�+) be an optimal solution of (3), then, since ∑ �̃�𝑗 > 0𝑛
𝑗=1 , thus 𝐷𝑀𝑈𝑜 isn't extrem CCR-

efficient. If (�̃�, 𝜆,̃ �̃�−, �̃�+) not be an optimal solution of (3), then there exists an optimal 

solution(𝜃∗, 𝜆∗, 𝑠∗−, 𝑠∗+) of model (3) such that 𝜃∗ = 1 with(𝑠∗−, 𝑠∗+) ≠ (0,0). Thus 𝐷𝑀𝑈𝑜 isn't 

extreme CCR-efficient.∎ 



  M.Mohammadpour /IJDEA Vol.2, No.3, (2014). 461-472        465                                                                    

 

In model (3) the ratio of virtual effect inputs and observed inputs (positive data) play a central role in 

the calculations, thus input data must be measured on ratio scale; however in this model the ratio of 

virtual effect outputs and observed outputs hasn't any role in the calculations. Therefore we can apply 

the model (3) with interval scale output data. But, since an assumption of CRS is not possible in 

technologies where negative data can exist (see Portela et al., 2004), thus the model (3) cannot be used 

with the negative interval scale output data. Also, since negativity ratio scale variables is meaningless, 

therefore in model (3) none of the input and output variables cannot be negative. If some inputs are 

interval scale data, a modified ratio scale input-oriented CCR model is proposed as follows: 

min
1

|𝑅𝑖𝑛𝑝|
∑ 𝜃𝑖𝑖𝜖𝑅𝑖𝑛𝑝

− 𝜀(∑ 𝑠𝑖
−m

i=1 + ∑ 𝑠𝑟
+s

r=1 )                                    

s. t.

∑ 𝜆𝑗𝑥𝑖𝑗 + 𝑠𝑖
− = 𝜃𝑖𝑥𝑖𝑜;       𝑖𝜖𝑅𝑖𝑛𝑝,           𝑛

𝑗=1                                

∑ 𝜆𝑗𝑥𝑖𝑗 + 𝑠𝑖
− = 𝑥𝑖𝑜;  𝑛

𝑗=1        𝑖𝜖𝐼𝑖𝑛𝑝,                                            

∑ 𝜆𝑗𝑦𝑟𝑗 − 𝑠𝑟
+ = 𝑦𝑟𝑜;         𝑟𝜖𝑅𝑜𝑢𝑡 ∪ 𝐼𝑜𝑢𝑡

𝑛
𝑗=1 ,                             

  𝜃𝑖 ≥ 0, 𝑖 = 1, … , |𝑅𝑖𝑛𝑝|,
  

 𝜆𝑗 ≥ 0, ∀𝑗; 𝑠𝑖
− ≥ 0, ∀𝑖;  𝑠𝑟

+ ≥ 0, ∀𝑟.

                              (5)  

Where  

𝑅𝑖𝑛𝑝 = {𝑖|𝑖𝜖{1, … , 𝑚} & ∀𝑗(𝑗𝜖{1, … , 𝑛} ⇒  𝑥𝑖𝑗  is a ratio scale variable)}       

𝐼𝑖𝑛𝑝 = {𝑖|𝑖𝜖{1, … , 𝑚} & ∀𝑗(𝑗𝜖{1, … , 𝑛} ⇒  𝑥𝑖𝑗  is an interval scale variable)}

𝑅𝑜𝑢𝑡 = {𝑟|𝑟𝜖{1, … , 𝑠} & ∀𝑗(𝑗𝜖{1, … , 𝑛} ⇒ 𝑦𝑟𝑗 is a ratio scale variable)}        

𝐼𝑜𝑢𝑡 = {𝑟|𝑟𝜖{1, … , 𝑠} & ∀𝑗(𝑗𝜖{1, … , 𝑛} ⇒ 𝑦𝑟𝑗  is an interval scale variable)},

               (6) 

and for simplification in using defined sets in (6) let 𝑅𝑖𝑛𝑝 = {1, … , |𝑅𝑖𝑛𝑝|}, 𝑅𝑜𝑢𝑡 = {1, … , |𝑅𝑜𝑢𝑡|}, 

where symbol of |. | is the cardinality of sets. Since 𝐷𝑀𝑈𝑗 ( 𝑗 =  1 , … , 𝑛 ) are peer, then 𝑅𝑖𝑛𝑝 ∪ 𝐼𝑖𝑛𝑝 =

{1, … , 𝑚}, 𝑅𝑜𝑢𝑡 ∪ 𝐼𝑜𝑢𝑡 = {1, … , 𝑠}. 

Let 

(λ∗, (𝜃1
∗, … , 𝜃|𝑅𝑖𝑛𝑝|

∗ ) , 𝑠−∗, s+∗)                                                                                         (7) 

be an optimal solution of model (5), by (1) and (2), 𝜃𝑖
∗ > 0 (𝑖 = 1, … , |𝑅𝑖𝑛𝑝|). Also since  

((𝜃1, … , 𝜃|𝑅𝑖𝑛𝑝|) , 𝜆, 𝑠−, s+ ), with 𝜃𝑖 = 1 (i = 1, … , |𝑅𝑖𝑛𝑝|), 𝜆𝑗 = 0 (𝑗 ≠ 𝑜), 𝜆𝑜 = 1, 𝑠𝑖
− = 0(𝑖 =

1, … , 𝑚), and 𝑠𝑟
+ = 0( 𝑟 = 1, … , 𝑠) is a feasible solution to model of (1), thus 𝜃𝑖

∗ ≤ 1 (𝑖 =

1, … , |𝑅𝑖𝑛𝑝|).   Therefore 0 <
1

|𝑅𝑖𝑛𝑝|
∑ 𝜃𝑖

∗
𝑖𝜖𝑅𝑖𝑛𝑝

≤ 1. 
1

|𝑅𝑖𝑛𝑝|
∑ 𝜃𝑖

∗
𝑖𝜖𝑅𝑖𝑛𝑝

 represents the ratio scale input-

oriented CCR-efficiency measure of 𝐷𝑀𝑈𝑜. 

Model (5), at first evaluates the radial efficiencies of ratio scale input data 𝜃𝑖
∗(𝑖𝜖𝑅𝑖𝑛𝑝), then it takes 

account of the interval scale input excesses and output shortfalls that are represent by non-zero slacks. 

Thus model (5) detects all inefficiencies of inputs and outputs, if any; therefore , the model indicates 

DMUo with the interval scale input and/or output data is CCR-efficient. Also, assuming that (7) be an 
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optimal solution of model (5), the production possibility (∑ 𝜆𝑗
∗𝑥𝑗

𝑛
𝑗=1 , ∑ 𝜆𝑗

∗𝑦𝑗
𝑛
𝑗=1 ) is BCC-efficient. 

However, model (5), does not indicate DMUo that it is extreme BCC- efficient. A modified version of 

the model is proposed as follows, also indicate extreme CCR-efficiency and provide a performance 

measure DMUo with interval scale inputs and/or outputs, 

min
1

|𝑅𝑖𝑛𝑝|
∑ 𝜃𝑖𝑖𝜖𝑅𝑖𝑛𝑝

− 𝜀(∑ 𝜆𝑗j≠o )                                                                 

s. t.

∑ 𝜆𝑗𝑥𝑖𝑗 + 𝑠𝑖
− = 𝜃𝑖𝑥𝑖𝑜;       𝑖𝜖𝑅𝑖𝑛𝑝,            𝑛

𝑗=1                                   

∑ 𝜆𝑗𝑥𝑖𝑗 + 𝑠𝑖
− = 𝑥𝑖𝑜;  𝑛

𝑗=1        𝑟𝜖𝐼𝑖𝑛𝑝,                                                

∑ 𝜆𝑗𝑦𝑟𝑗 − 𝑠𝑟
+ = 𝑦𝑟𝑜;        𝑟 = 1, … , 𝑠𝑛

𝑗=1 ,                                        

  𝜃𝑖 ≥ 0, 𝑖 = 1, … , |𝑅𝑖𝑛𝑝|; 
  

  𝜆𝑗 ≥ 0, ∀𝑗;  𝑠𝑖
− ≥ 0, ∀𝑖;   𝑠𝑟

+ ≥ 0, ∀𝑟. 

                       (8) 

Models (5) and (8) are not translation invariant with respect to either outputs or inputs; however these 

models with convexity constraint ∑ λj = 1 n
j=1  are translation invariant with respect to interval scale 

outputs. Therefore, model (5) with convexity constraint ∑ λj = 1 n
j=1  can be used with non-negative 

interval scale inputs and negative interval scale outputs. Also, model (5) with constraint∑ λj = 1 n
j=1  

both indicates DMUo with interval input and/or output data is BCC-efficient and provide a performance 

measure that we call it the ratio scale input-oriented measure of BCC-efficiency of DMUo. Model (8) 

with constraint ∑ λj = 1 n
j=1  also indicates DMUo with the scale interval input and/or output data is 

extreme CCR-efficient and provide a performance measure. 

In model (6) we assume that Rinp ≠ ∅. Now, if Rinp = ∅, then the following model is obtained: 

max ∑ 𝑠𝑖
−𝑚

𝑖=1 +  ∑ 𝑠𝑟
+𝑠

𝑟=1                                                     

s. t.

∑ 𝜆𝑗𝑥𝑖𝑗 + 𝑠𝑖
− = 𝑥𝑖𝑜;       𝑖 = 1, … , 𝑚,              𝑛

𝑗=1

∑ 𝜆𝑗𝑦𝑟𝑗 + 𝑠𝑟
+ = 𝑦𝑟𝑜;    𝑛

𝑗=1  𝑟 = 1, … , 𝑠,               
   

                                              
 𝜆𝑗 ≥ 0, 𝑠𝑖

− ≥ 0, 𝑠𝑟
+ ≥ 0;   ∀𝑗, 𝑖, 𝑟.                            

                                                 (9) 

which is the model additive model proposed by Charnes et al. (1985) and it can be used with 

nonnegative scale interval inputs and/or outputs. Model (9) with convexity constraint ∑ λj = 1 n
j=1  is 

the additive model with the variable returns to scale assumption as follows: 

max (∑ 𝑠𝑖
− + ∑ 𝑠𝑟

+𝑠
𝑟=1

𝑚
𝑖=1 )                                                       

s. t.

∑ 𝜆𝑗𝑥𝑖𝑗 + 𝑠𝑖
− = 𝑥𝑖𝑜 ;   𝑖 = 1, … , 𝑚,𝑛

𝑗=1                        

∑ 𝜆𝑗𝑦𝑖𝑗 − 𝑠𝑟
+ = 𝑦𝑟𝑜;    𝑟 = 1, … , 𝑠,𝑛

𝑗=1                         

∑ 𝜆𝑗 = 1,                                                                    𝑛
𝑗=1

𝜆𝑗 ≥ 0, 𝑠𝑖
− ≥ 0, 𝑠𝑟

+ ≥ 0;   ∀𝑖, 𝑗, 𝑘.                             

                                           (10) 

Model (10) which is translation invariant as demonstrated by Ali and Seiford can be used with the 

interval scale and/or negative interval scale input and output data. Also model (10) indicates DMUo is 

BCC- efficient. In other words, the optimal solution model of (10) is zero if and only if DMUo be BCC-
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efficient [4]. The model (10), however, does not provide an efficiency measurement for DMUs which 

are not BCC-efficient. 

 

4. DEA models with enhanced Russell measurement (ERM) 

   Enhanced Russell measurement proposed by Pastor et al (1999) under the constant returns-to-scale 

assumption is as follows: 

𝑚𝑖𝑛
1

𝑚
∑ 𝜃𝑖

𝑚
𝑖=1

1

𝑠
∑ 𝜑𝑟

𝑠
𝑟=1

                                                      

𝑠. 𝑡.

∑ 𝜆𝑗𝑥𝑖𝑗 ≤ 𝜃𝑖𝑥𝑖𝑜;      𝑖 = 1, … , 𝑚,𝑛
𝑗=1

    ∑ 𝜆𝑗𝑦𝑟𝑗 ≥ 𝜑𝑟𝑦𝑟𝑜;  𝑛
𝑗=1   𝑟 = 1, … , 𝑠,   

       

     
𝜆𝑗 ≥ 0, 𝜃𝑖 ≤ 1, 𝜑𝑟 ≥ 1;   ∀𝑖, 𝑗, 𝑘.           

                                                        (11) 

where inputs and outputs of each DMU are positive. In model (11) both the ratio of virtual effect inputs 

and observed inputs and the ratio of virtual effect outputs and observed outputs plays a central role in 

the calculations, thus input and output data must be measured on ratio scale. Therefore model (11) 

cannot be used with interval scale data. If there are some interval scale input and/or output data, then a 

modified version of ERM for dealing with non-negative interval scale inputs and/or outputs is proposed 

as follows: 

𝑚𝑖𝑛

1

|𝑅𝑖𝑛𝑝|
∑ 𝜃𝑖𝑖𝜖𝑅𝑖𝑛𝑝

1

|𝑅𝑜𝑢𝑡|
∑ 𝜑𝑟𝑟𝜖𝑅𝑜𝑢𝑡

                                                         

s. t.

∑ 𝜆𝑗𝑥𝑖𝑗 ≤ 𝜃𝑖𝑥𝑖𝑜;       𝑖𝜖𝑅𝑖𝑛𝑝,                           𝑛
𝑗=1

∑ 𝜆𝑗𝑥𝑖𝑗 ≤ 𝑥𝑖𝑜; 𝑛
𝑗=1        𝑟𝜖𝑅𝑜𝑢𝑡 ,                            

    
 

∑ 𝜆𝑗𝑦𝑟𝑗 ≥ 𝜑𝑟𝑦𝑟𝑜;     𝑟𝜖𝑅𝑜𝑢𝑡 ,            𝑛
𝑗=1

∑ 𝜆𝑗𝑦𝑟𝑗 ≥ 𝑦𝑟𝑜;  𝑛
𝑗=1      𝑟𝜖𝑅𝑜𝑢𝑡 ,              

               

𝜆𝑗 ≥ 0, ∀𝑗;  𝜃𝑖 ≤ 1, 𝑖𝜖𝑅𝑖𝑛𝑝;  𝜑𝑟 ≥ 1, 𝑟𝜖𝑅𝑜𝑢𝑡 ,     
    

                                                    (12) 

where the ratio scale input and/or output data of all DMUs are positive. Model (12) with convexity 

constraint ∑ λj = 1 n
j=1  is translation with respect to interval scale inputs and outputs, thus it can be 

applied with unrestricted-in-sign interval scale input and/or output data. In model (12) we have 

∀𝑖(𝑖𝜖𝑅𝑖𝑛𝑝 ⇒ 𝜃𝑖 ≤ 1) & ∀𝑟(𝑟𝜖𝑅𝑜𝑢𝑡 ⇒ 𝜑𝑟 ≥ 1) , thus the model provide a performance measure that 

we call it ratio scale data-oriented ERM- efficiency measure of 𝐷𝑀𝑈𝑜. Although model of (12) is a 

nonlinear programming, the model is an ordinary linear fractional programming problem that solution 

can be found through a linear fractional programming problem. Therefore, using the following Charnes 

and Cooper (1962) transformations, let 
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𝜆 = (
1

|𝑅𝑜𝑢𝑡|
∑ 𝜑𝑟 > 0rϵRout

)  −1   

𝛼𝑖 = 𝜆𝜃𝑖;             𝑖𝜖𝑅𝑖𝑛𝑝,                 

𝛽𝑟 = 𝜆𝜑𝑟;            𝑟𝜖𝑅𝑜𝑢𝑡,                
𝜇𝑗  =  𝜆𝜆𝑗;           𝑗 = 1, … , 𝑛.        

                                                                                 (13) 

Then, an optimal solution of the following linear programming problem 

min
1

|𝑅𝑖𝑛𝑝|
∑ 𝛼𝑖  𝑖𝜖𝑅𝑖𝑛𝑝

                                                                        

s. t.

∑ 𝜇𝑗𝑥𝑖𝑗 ≤ 𝛼𝑖 𝑥𝑖𝑜;         𝑖𝜖𝑅𝑖𝑛𝑝,                                           𝑛
𝑗=1

∑ 𝜇𝑗𝑥𝑖𝑗 ≤ 𝜆𝑥𝑖𝑜;  𝑛
𝑗=1         𝑖𝜖𝐼𝑖𝑛𝑝,                                             

   
∑ 𝜇𝑗𝑦𝑟𝑗 ≥ 𝛽𝑟𝑦𝑟𝑜;        𝑟𝜖𝑅𝑜𝑢𝑡 ,                                     𝑛

𝑗=1       

∑ 𝜇𝑗𝑦𝑟𝑗 ≥ 𝜆𝑦𝑟𝑜;          𝑟𝜖𝐼𝑜𝑢𝑡 ,                                            𝑛
𝑗=1

1

|𝑅𝑜𝑢𝑡|
∑ 𝛽𝑟  𝑟𝜖𝑅𝑜𝑢𝑡

= 1,                                                              

        𝜆 > 0; 𝜇𝑗 ≥ 0, ∀𝑗;   0 < 𝛼 𝑖
≤ 𝜆, 𝑖𝜖𝑅𝑖𝑛𝑝;   𝛽𝑟 ≥ 𝜆, 𝑟𝜖𝑅𝑜𝑢𝑡 ,     

                    (14) 

gives rise to an optimal solution of (12). To be precise, let  

( 𝜆∗, 𝜇∗ = (𝜇1
∗, … , 𝜇𝑛

∗ ), (𝛼1
∗, … , 𝛼|𝑅𝑖𝑛𝑝|

∗ ) , (𝛽1
∗, … , 𝛽|𝑅𝑜𝑢𝑡|  

∗ ))                                        (15) 

be an optimal solution of (14). Then, by (1) and (2) and with by𝜇∗ ≥ 0,𝜆∗ > 0. Thus through the change 

of variables (13) we can obtain the following optimal solution for model (12). 

((𝜆1
∗ , … , 𝜆𝑛

∗ ), (𝜃1
∗, … , 𝜃|𝑅𝑖𝑛𝑝|

∗ ) , (𝜑1
∗, … , 𝜑|𝑅𝑜𝑢𝑡|  

∗ ))                                                       (16) 

Also the associated optima are equal (see Charnes and Cooper, 1962). Moreover, since 𝜆∗ > 0, we have  

1

|𝑅𝑖𝑛𝑝|
∑ 𝛼𝑖

∗
𝑖𝜖𝑅𝑖𝑛𝑝

=

1

|𝑅𝑖𝑛𝑝|
∑ 𝛼𝑖

∗
𝑖𝜖𝑅𝑖𝑛𝑝

1

|𝑅𝑜𝑢𝑡|
∑ 𝛽𝑟

∗
𝑟𝜖𝑅𝑜𝑢𝑡

=

1

|𝑅𝑖𝑛𝑝|
∑ 𝜃𝑖

∗
𝑖𝜖𝑅𝑖𝑛𝑝

1

|𝑅𝑜𝑢𝑡|
∑ 𝜑𝑟

∗
𝑟𝜖𝑅𝑜𝑢𝑡

  

Thus, if we are only interested in these efficiency values and not in the efficient projection of the DMUs 

being evaluated, we do not even need to transform the optimal solution of (14) through (13). If constraint 

∑ 𝜇𝑗 = 𝜆𝑛
𝑗=1  that associated to the convexity constraint in model of (12) if VRS over the reference 

technology were assumed, is imposed to model (14), then we can apply the obtained model for dealing 

with unrestricted-in-sign  interval scale input and/or output data. Let (15) be a feasible of model (14), 

then a necessary condition for optimality in the model is  

∑ 𝜇𝑗
∗𝑥𝑖𝑗

𝑛
𝑗=1 =  𝛼𝑖

∗𝑥𝑖𝑜;        𝑖𝜖𝑅𝑖𝑛𝑝,

∑ 𝜇𝑗
∗𝑦𝑟𝑗

𝑛
𝑗=1 = 𝛽𝑟

∗𝑦𝑟𝑜;       𝑟𝜖𝑅𝑜𝑢𝑡.
                                                                              (17) 

Therefore, by transformations of (13), 
(𝜆∗ –𝛼𝑖

∗)𝑥𝑖𝑜

𝜆∗
   and 

(𝛽𝑟
∗−𝜆∗)𝑦𝑟𝑜

𝜆∗
  are surplus of 𝑥𝑖𝑜 (𝑖𝜖𝑅𝑖𝑛𝑝) and 

shortfall of 𝑦𝑟𝑜(𝑟𝜖𝑅𝑜𝑢𝑡), respectively. Model (14) takes account of all ratio scale input and output 

inefficiencies for providing of also the efficiency measurement and the efficiency projections 𝐷𝑀𝑈𝑜, 
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but the mode does not dealing with interval scale input and output inefficiencies. To address this 

problem, by (13), a modified version of model (14) is proposed as follows: 

min
1

|𝑅𝑖𝑛𝑝|
∑ 𝛼𝑖  𝑖𝜖𝑅𝑖𝑛𝑝

+ 𝜀 (∑ 𝑡𝑖
−

𝑖𝜖𝐼𝑖𝑛𝑝
+ ∑ 𝑡𝑟

+
𝑟𝜖𝐼𝑜𝑢𝑡

)                     

s. t.

∑ 𝜇𝑗𝑥𝑖𝑗 = 𝛼𝑖 𝑥𝑖𝑜;                𝑖𝜖𝑅𝑖𝑛𝑝,                                       𝑛
𝑗=1

∑ 𝜇𝑗𝑥𝑖𝑗 + 𝑡𝑖
− = 𝜆𝑥𝑖𝑜;   𝑛

𝑗=1      𝑖𝜖𝐼𝑖𝑛𝑝,                                       

∑ 𝜇𝑗𝑦𝑟𝑗 = 𝛽𝑟𝑦𝑟𝑜;               𝑟𝜖𝑅𝑜𝑢𝑡 ,                                     𝑛
𝑗=1

∑ 𝜇𝑗𝑦𝑟𝑗 − 𝑡𝑟
+ = 𝜆𝑦𝑟𝑜;         𝑟𝜖𝐼𝑜𝑢𝑡 ,                                     𝑛

𝑗=1

 
1

|𝑅𝑜𝑢𝑡|
∑ 𝛽𝑟  𝑟𝜖𝑅𝑜𝑢𝑡

= 1,                                                                 

𝜆 ≥ 0; 𝜇𝑗 ≥ 0, ∀𝑗;   0 < 𝛼 𝑖
≤ 𝜆, 𝑖𝜖𝑅𝑖𝑛𝑝;  𝛽𝑟 ≥ 𝜆, 𝑟𝜖𝑅𝑜𝑢𝑡 ,

 𝑡𝑖
− ≥ 0, 𝑖𝜖𝐼𝑖𝑛𝑝;   𝑡𝑟

+ ≥ 0, 𝑟𝜖 𝐼𝑜𝑢𝑡 .                                              

                                (18) 

Model (18) takes account of all input and output inefficiencies. Thus 𝐷𝑀𝑈𝑜 is BCC-efficient if only if 

the optimal objective function value of model of )14(, be equal one. Also, assuming  

(𝜆∗, (𝜃1
∗, … , 𝜃|𝑅𝑖𝑛𝑝|

∗ ) , (𝜑1
∗, … , 𝜑|𝑅𝑜𝑢𝑡|

∗ ), (𝑠|𝑅𝑖𝑛𝑝|+1
−∗ , … , 𝑠𝑚

−∗) , (𝑠|𝑅𝑜𝑢𝑡|+1
+∗ , … . , 𝑠𝑠

+∗))           (19) 

be an optimal solution of (14), production possible (∑ 𝜆𝑗
∗𝑥𝑗

𝑛
𝑗=1 , ∑ 𝜆𝑗

∗𝑦𝑗
n
j=1 ), where 𝜆𝑗

∗ =
𝜇𝑗

∗

𝜆∗ is BCC-

efficient. Model (14) with constraint ∑ 𝜇𝑗 = 𝜆𝑛
𝑗=1 , take account of all input and output inefficiencies of 

𝐷𝑀𝑈𝑜 in the presence of unrestricted-in-sign interval scale input and/or output data. Alternatively, also 

to indicate extreme CCR-efficiency and to provide efficiency measure of DMUo with interval scale 

inputs and/or outputs, we propose, by model (14) and model (2), a modified model as follows: 

min
1

|𝑅𝑖𝑛𝑝|
∑ 𝛼𝑖  𝑖𝜖𝑅𝑖𝑛𝑝

− 𝜀(∑ 𝜇𝑗𝑗≠𝑜 )                                               

s. t.

∑ 𝜇𝑗𝑥𝑖𝑗 = 𝛼𝑖 𝑥𝑖𝑜;                 𝑖𝜖𝑅𝑖𝑛𝑝,                                     𝑛
𝑗=1

∑ 𝜇𝑗𝑥𝑖𝑗 + 𝑡𝑖
− = 𝜆𝑥𝑖𝑜;   𝑛

𝑗=1      𝑖𝜖𝐼𝑖𝑛𝑝,                                       

∑ 𝜇𝑗𝑦𝑟𝑗 = 𝛽𝑟𝑦𝑟𝑜;                 𝑟𝜖𝑅𝑜𝑢𝑡 ,                                    𝑛
𝑗=1

∑ 𝜇𝑗𝑦𝑟𝑗 − 𝑡𝑟
+ = 𝜆𝑦𝑟𝑜;         𝑟𝜖𝐼𝑜𝑢𝑡 ,                                     𝑛

𝑗=1

 
1

|𝑅𝑜𝑢𝑡|
∑ 𝛽𝑟  𝑟𝜖𝑅𝑜𝑢𝑡

= 1,                                                                

𝜆 ≥ 0; 𝜇𝑗 ≥ 0, ∀𝑗;  0 < 𝛼 𝑖
≤ 𝜆, 𝑖𝜖𝑅𝑖𝑛𝑝; 𝛽𝑟 ≥ 𝜆, 𝑟𝜖𝑅𝑜𝑢𝑡 ,   

 𝑡𝑖
− ≥ 0, 𝑖𝜖𝐼𝑖𝑛𝑝;  𝑡𝑟

+ ≥ 0, 𝑟𝜖 𝐼𝑜𝑢𝑡 .                                              

                                   (20) 

Model (20) with constraint ∑ 𝜇𝑗 = 𝜆𝑛
𝑗=1  can be used for dealing with unrestricted in sign interval scale 

input and/or output data. 
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5. Illustrative example 

   In this section, we use the data recorded in table 1 to illustrate how approaches introduced in Section 

3 perform. These correspond to 20 DMUs, whose efficiency is assessed using three inputs that the first 

and second inputs are measured on ratio scale; the third input is measured on interval scale, and three 

outputs that the first and second outputs are measured on ratio scale; the third output is measured on 

interval scale. 

In Table 2, the first and second columns, respectively, record the efficiency measure provided by model 

(3) and model (5). The third column contains efficiency measure provided by the phase I procedure of 

model (8). The fourth column contains efficiency measure provided by model (8). The fifth and the 

sixth, respectively, record the efficiency measure provided by model (14) and model (18). Applying 

model (3) to the data reveals 8 efficient units. The most inefficient unit detected by model (3) is Unit 2, 

with 0.3214259. The efficiency measure of Unit 2 detected by of model (8) and model (14), 

respectively, is 0.1632614 and 0.1069703. Also values of Eff (3), for inefficient unites go from 

0.3214259, for Unit 2, to 0.9999992, for Unit 7. Values of Eff (8-2), for inefficient unites go from 

0.1428554, for Unit 3, to 0.9999992, for Unit 7 which is ratio scale input-oriented CCR-efficient. Values 

of Eff (18), for inefficient unites go from 0.1069690, for Unit 2, to 0.9549058, for Unit 9. This shows 

that the discriminating capability model (18) is much stronger than that of model (3), and model (8), 

also discriminating capability model (8) is much stronger than that of model (3). Model (18) diagnoses 

radial efficient units correctly. On the other hand, the efficiency scores for units which are not efficient 

will differ with efficiency scores obtained from model (3). 

Table1. Data Set 

 Input1 Input2 Input3 Output1 Output2 Output3 

Unit 1 7 1 4 1 2.5 3 

Unit 2 3 7 4 2.5 1 3 

Unit 3 6 6 3 2.5 2 3 

Unit 4 3 1 3 4 5.5 7 

Unit 5 6 0.5 3 5 3.5 6 

Unit.6 4 0.5 3 2 6 6 

Unit.7 1.5 2.5 3 6 4 7 

Unit.8 0.5 4 4 1.5 5 6 

Unit.9 2.75 1.75 4 8 3 6 

Unit.10 1 3 3 8 3 7 

Unit.11 2 2 3 5.5 5 7 

Unit.12 2.5 1.5 3 7 3 6 

Unit.13 4.5 1.5 6 4 2 4 

Unit.14 2 4 7 1.5 2 4 

Unit.15 4 3 6 6.5 3.5 3.5 

Unit.16 2 5 4 5 3.5 4 

Unit.17 1.5 6 4 4.5 4.5 5 

Unit.18 0.5 4 3 3.5 5.5 6 

Unit.19 3.5 0.75 3 7.5 2.5 6 

Unit.20 6 3.5 4 3.5 3.5 6 
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Table2. Example Results 

 Eff (3) Eff (5) Eff (8-1) Eff (8-2) Eff (14) Eff (18) 

Unit 1 0.3461525 0.3461534 0.2678571 0.2678541 0.1470588 0.1470579 

Unit 2 0.3214259 0.3214281 0.1632653 0.1632614 0.1069703 0.1069690 

Unit 3 0.4285680 0.4285710 0.1428571 0.1428554 0.1418440 0.1418423 

Unit 4 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 

Unit 5 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 

Unit.6 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 

Unit.7 0.9999992 0.9999990 1.0000000 0.9999992 0.9411765 0.9411765 

Unit.8 0.9999965 0.9999990 1.0000000 0.9999965 0.5825243 0.5825237 

Unit.9 0.9765503 0.9765507 0.9741641 0.9741627 0.9549072 0.9549058 

Unit.10 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 

Unit.11 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 

Unit.12 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 

Unit.13 0.4309243 0.4309246 0.4093567 0.4093524 0.3527337 0.3527309 

Unit.14 0.3809487 0.3809518 0.3658537 0.3658457 0.1829268 0.1829243 

Unit.15 0.5607670 0.5607692 0.5594298 0.5594240 0.5004307 0.5004255 

Unit.16 0.6052253 0.6052271 0.4541045 0.4541015 0.4476744 0.4476712 

Unit.17 0.6847133 0.6847146 0.4925373 0.4925352 0.4801402 0.4801376 

Unit.18 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 

Unit.19 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 

Unit.20 0.6428523 0.6428563 0.3378237 0.3378211 0.2795755 0.2795744 

 

6. Conclusion 

   In this paper we presented a systematic investigation of the problem of interval scale data in DEA. 

The problem with interval scale variables arises from the fact that rations of measurement on such a 

scale are meaningless. Consequently, a DEA model can be used to deal with interval scale input and/or 

output variables in which the ratio of virtual effect inputs and/or outputs and observed inputs and/or 

outputs does not have any role in the calculations. Also, we pointed out that only the interval scale 

variables are invariant under translation transformations; therefore we can use the translation invariance 

property of a DEA model to deal only with interval scale input and/or output variables. We have paid 

attention to the issue that since only the interval scale data are invariant under translation 

transformations, thus negativity of such a scale is meaningful, but negativity of the ratio scale variables 

are meaningless. We also discussed an extended model using the enhanced Russell measurement which 

permits the presence of interval scale variables which can take both negative and positive values. 
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