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Abstract 

 

For efficiency evaluation of some of the Decision Making Units that have uncertain information, 

Rough Data Envelopment Analysis technique is used, which is derived from rough set theorem and 

Data Envelopment Analysis (DEA). In some situations rough data alter nonradially. To this end, this 

paper proposes additive rough–DEA model and illustrates the proposed model by a numerical 

example. 
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1   Introduction 

 

   Data envelopment analysis (DEA), was first put forward by Charnes, Cooper and Rhodes (CCR 

model) in 1978 [1],  it is performance measurement technique which can be used for evaluating the 

relative efficiency of Decision Making Units (DMU’s) in organizations. 

One of research of DEA is Rough-DEA that researches on Rough-DEA (RDEA) are still very 

restricted. Therefore, the research on combining DEA with Rough set theory is an attractive study 

field.  

Pawlak introduced a theory of Rough sets in 1982. Since then rough-set theory has been developed 

very rapidly and has resulted in a number of applications.  

In order to provide an axiomatic theory to describe rough events, Liu [2], established the thrust theory 

which is branch of mathematics that studies the behavior of rough events. 

Liu [2], defined a rough variable  by a measurable function from a rough space (μ, ∆, Λ, π) to the 

set of real numbers, that is for any Borel set B of R, Λ hold – Based on the thrust 

theory, Liu and Jiuping Xu, bin Liu, Desheng Wu [2,3], studied some rough programming models 

with variables as parameters. The remainder of this paper is organized as follows. 

In section 2 we want to bring some concepts about measurable space, Rough space and trust measure. 

 

In section 3 we present the Additive Rough DEA (ARDEA) model, section 4 provides an application 

example to illustrate the efficiency of the ARDEA model. Finally, concluding remarks are outlined in 

section 5.  

 

2   Background 
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This section recalls several concepts of rough variable theory to characterize the rough uncertainty.  

 

Definition 2.1[2]: Let μ be a nonempty sets, a collection Λ is called a – algebra of subsets of μ if is 

satisfied in the following conditions: 

(a) μ  Λ 

(b) If A Λ, then Ac  Λ 

(c) If Ai  Λ, for i = 1… then  

Definition 2.2[2]: Let μ be a nonempty set, and Λ a – algebra of subsets of μ, then (μ, Λ) is culled 

a measurable space and the elements in Λ are called measurable sets furthermore, if π is measure 

defined on (μ, Λ), then triplet (π, Λ, π) is called measure space. 

 

Definition 2.3[2]: Let μ be a nonempty set, Λ a  – algebra of subsets of μ, ∆ an element in Λ, and π 

a set function on Λ, then (μ, ∆, Λ, π) is called rough space, furthermore, the triplet (μ, Λ, π) is a 

measure space. 

 

Definition 2.4[2]: Uncertain variables: An uncertain variable is a measurable function from an 

uncertainty space (μ, Λ, π) to the set of real numbers, i.e., for any Borel set B of real numbers, the set 

 is an event. 

 

Example [1]: Random variables, fuzzy variables and hybrid variable are instance of uncertain 

variable. 

 

Definition 2.5[2]: Uncertain vector: An n-dimensional uncertain vector is a measurable function from 

an uncertainly space (μ, A, π) to the set of n-dimensional real vectors, i.e., for any Borel set B of Rn, 

the  is an event. 

 

Definition 2.6[2]: Let (μ, ∆, A, π) be a rough space then the upper trust of event A  A is defined by

. 

The lower trust of the event A is defined by  and the trust of the event A is defined 

by Tr{A} = ½ ( + ). 

 

Definition 2.7[2]: Let  be a rough variable, and α  (0, 1], then  

is called the α – optimistic value to  and  is called the α – 

pessimistic value to . 

 

It is important to have focus that  be a rough variable with  then the 

α – optimistic value of  is  

 

     

And the α – pessimistic value of  is  
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Theorem 1. [2]. Let  and  be the α-pessimistic and α-optimistic values of the rough 

variable , respectively – then we have 

(a)  And  

(b)  is an increasing and left-continuous function of α; 

(c)  is a decreasing ad left-continuous function of α; 

(d) If 0 < α ≤ 1, then  =  (1-α), and =  

(e) If 0 < α ≤ 0.5, then  ≤ ; 

(f) If 0.5 < α ≤ 1, then  ≤ ; 

                                                                                                                                                                                                                            

Definition 2.7[3]: Dmuo is rough DEA efficient if its best possible upper bound efficiency (ɵ*) inf (α) 

Is equal to One; otherwise, it is said to be rough DEA inefficient if (ɵ*) inf (α) <1. 

 

3   Additive rough DEA 

  

   Let there are n DMUs and each DMU has m inputs and s outputs, the input and output vectors of 

DMUj are rough vectors i.e. 

 

 

According to the Additive DEA model (the following model), we can formulate a DEA model with 

rough. 

 

 

 

Max  

 

                                                   (1) 

          S-≥,  S+≥0  

 

Generally, to deal with the rough uncertainty discussed above , Liu [2], proposed the rough expected 

value model(EVM) and α – optimistic value and α – pessimistic value operator of rough variable to 

transfer rough programming in to determinate one. 
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In this paper we suppose 0.5 < α ≤1, according to the theorem, α –value of the rough variable  are 

 and  and , it is denoted by . 

 

3.1  Transfer rough model into deterministic model  

 

   Jiuping Xu,bin Liu,Desheng Wu[3],transferred the rough variables in model (1) into an interval 

programming under trust level α, therefore rough variables 0 and 

0 can be transformed to  and . 

And with assumption 0.5<α≤1 we have  Now RDEA model (1) can be transformed 

in to following program: 

Max  

    

              

                 . 

 

In order to transform the interval programming (2) in to deterministic linear programming with α trust 

level we assume: 

  DMUo                    max         output 

  DMUj                    min         output            j  o 

Now interval programming (2) can be transformed in to programming (3) as following 

 

 

 

 

 

 

             

 

             Si
- ≥0 i=1,…,m ,  Sr

+≥0 r=1,…,s ,  j=1,…., n. 

 

The variables in the model (3) are not rough, i.e. they are deterministic, and the model (3) is a linear 

program. In model (3) DMUo is ARDEA-efficient if and only if S-* =0 and S+*=0. 
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4   Practical application  

 

   In this section, we will evaluate the operation performance of the six DMUs with two inputs and one 

output (see Table 1) using the proposed ARDEA model. 

 

Table 1. Input and output data of 6 DMUs 

                           X1                                    X2 Y 

DMU1        ([1650, 1775], [1545, 1867])                              ([520,560], [450,600])                                                  6790 

DMU2        ([2040, 2240], [1915, 2460])                           ([560,600], [500,650])                                                  8000                                                                                                                                                                                          

DMU3         ([1980, 2080], [1700, 2180])                             ([620,720], [560,780])                                                  6550                                                                                                               

DMU4          ([1760, 1840], [1650, 1900])                            ([710,730], [680,760])                                                  5250                                                       

DMU5           ([2120, 2210], [1920, 2300])                           ([565,585], [470.620])                                                 8260 

DMU6           ([1940, 2010], [1880, 2100])                           ([620,685], [560,720])                                                 6280 

 

 

4.2   Performance evaluation 

    

Using the transformation technique described in the previous section, we transform the rough 

variables in Table 1 into certain variables. Suppose the trust level α=0.9, the corresponding 

programming model’s solutions of DMUs are summarized in table2: 

 

 

Table 2. The result for ARDEA model 

 

DMU     DMU1 DMU2   DMU3   DMU4 DMU5 DMU6 

ARDEA model               0.00                432.88             0.00               0.00               788.10 0.00 
 

In Table 2, DMU1, DMU3, DMU4 and DMU6 are ARDEA-efficient, i.e. the summations of their 

slacks are zero. 

5. Conclusion 

   In this paper, we have developed an ARDEA model with rough parameters. This model can be used 

to evaluate the performance of DMUs when they want to change their inputs and outputs non-redially. 

In the process of solving the ARDEA model, we used the α–optimistic value and α–pessimistic value 

of rough variable to transfer the rough model into deterministic liner programming. Finally we 

illustrate the proposed method by an example. 
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