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Abstract 
Data envelopment analysis (DEA), firstly, checks whether decision making units (DMUs) are 
efficient or inefficient and then it introduces a benchmark for inefficient DMUs. This benchmark 

is of significant importance for managers and decision-makers. There are different methods for 

benchmarking one of which is the gradient line method. This method has a major problem which 

is that the benchmark introduced by this method is not always Pareto efficient. Having given an 

example, this problem is commented on in this article. On the other hand, the application of 

gradient line is effective on gradual improvement of efficiency because the introduced equation is 

in such a way that for reducing a certain amount of inputs, the largest expansion is given to outputs. 

Finally, we demonstrated that by using gradient line in gradual improvement method, there is no 

need any more to ask the managers for improvement bounds of inputs and outputs in any level and 

it is enough for the manager to state the highest efficiency improvement amount he expects in each 

step. 
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1. Introduction  
Data envelopment analysis (DEA) is a 

non-parametric mathematical 

programming approach which is applied 

for evaluating the relative efficiency of the 
homogeneous DMUs which consist of 

multiple inputs for producing multiple 

outputs. In 1957, Farrell suggested a 
method for measuring the efficiency of the 

DMUs including one input and one output. 

Charnes, Cooper and Rhodes (1978), 

Banker et al. (1984) developed the 
Farrell’s view and presented a model 

which was able to measure the efficiency 

of the DMUs including multiple inputs and 
outputs. This technique is called Data 

Envelopment Analysis (DEA). Charnes, 

Cooper and Rhodes proposed model 
known as the CCR which has led to many 

articles with different models including 

non-radial ones such as additive and SBM. 

Benchmark is achieved by projecting the 
evaluated DMU on the efficient frontier. In 

the radial models which are input-oriented, 

we can achieve the benchmark by reducing 
just the inputs. This is functional when the 

policy of decision makers is to reduce the 

inputs such as resources, work force etc. 
When the focus is on expanding the 

outputs, for example, increasing the 

production, the model is called output-

oriented. If you reduce the inputs and 
expand the outputs simultaneously, non-

radial models such as the additive and 

SBM models will be used. The benchmark 
introduced by the radial model may be on 

the strong or weak frontier, but the 

benchmark introduced by the non-radial 

models will be on the frontier of the strong 
efficient. Different studies for finding 

suitable benchmarks have been studied. 

Such as: Navabakhsh et al. (2007), 
Hosseinzadeh Lotfi et al. (2007), 

Mohammadi et al. (2009), Jahanshahloo et 

al.(2012a), Jahanshahloo et al.(2012b), 
Payan et al. (2014) [1-6]. 

Sometimes, there is a big difference 

between the evaluated DMU and the 

introduced benchmark; furthermore, 

occasionally, achieving the target in one 
step is out of reach for managers. To fix 

the problem, it was proposed to project the 

evaluated DMU as close as possible to the 

frontier Frei and Harker (1999), González 
and Álvarez (2001), Silva Portela et al. 

(2003), Aparicio et al. (2007), 

Jahanshahloo et al. (2012), Jahanshahloo 
et al. (2013). Lozano et al. (2005) 

suggested that the inefficient DMUs 

achieve the efficiency frontier in a 

sequence of steps. This method is known 
as the gradual improvement [7-12]. 

Maital et al. (1999) introduced a path 

equation for improving the efficiency of 
the evaluated DMUs. They defined the 

path equation of the objective function so 

that the objective function maximizes 
locally; therefore, they increased the 

efficiency locally by moving the DMUs 

along the gradient line (without having to 

introduce any benchmark in advance). 
They claimed that the suggested path for 

the objective function which is an equation 

of ellipse is optimal for improving the 
efficiency. The gradient method is also 

able to introduce a DMU whose efficiency 

is better than before in a certain percentage 
[13]. 

The benchmark produced by Maital et al. 

proposed model will be on the efficient 

frontier of CCR. One of the issues 
addressed in this paper is that this 

benchmark is not necessarily a strong 

efficient DMU; since all the inputs are 
reduced in a same parameter and all the 

outputs are expanded in a same proportion. 

Therefore, it is possible to have an input 

(output) which is able to reduce (expand) 
more than the mentioned proportion. So, 

the suggested benchmark by gradient will 

not be necessarily a strong efficient DMU. 
Then, applying the gradual improvement 

method provided by Lozano and Villa, 

weak efficient DMUs are gradually 
projected on the strong frontier [13].  

In the next section, we try to use the 

equation of ellipse suggested in the 

gradient line approach in the gradual 
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improvement method. This means that, 
instead of asking all inputs bounds and the 

output bounds from the managers like 

what happens in Lozano and Villa method, 

just input bounds will be determined by 
managers and then the output bounds will 

achieve by applying the ellipse equation 

presented by Maital et al. As the gradient 
line method gives the highest possible 

expansion to outputs for reducing a certain 

amount of inputs, it is expected that the 
gradual improvement method using ellipse 

equation would suggest a better 

benchmark than before, in each step. Also, 

this trend has been done for the combined 
oriented and the benchmark produced by 

the gradual improvement method the 

combined oriented and the equation of 
ellipse has been compared in the first step. 

Other advantage of using gradient line in 

gradual improvement is that instead of 
asking inputs and outputs bounds from the 

manager in each step, all you have to ask 

from the manager is the amount of 

efficiency improvement expected in each 
step [13]. 

This paper is divided as follows: in the 

second section a brief overview of data 
envelopment analysis, gradient line 

method for finding a benchmark, as well as 

the gradual improvement method are 

expressed. Gradient line weakness 
accompanied by an example and also 

using gradient line method in the gradual 

improvement are discussed in the third. 
Finally, conclusions are mentioned in the 

fourth section. 

 

2. The Gradient line and gradual 

improvement methods in DEA 

 

2.1. Data Envelopment Analysis 

If there are n DMUs, m inputs and s 

outputs; their possible production set 

(PPS) with Constant Returns to Scale is as 
below: 

1 1

( , ) : , ,

0, 1,...,

n n

j j j j

j jCCR
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Input-oriented tries to reduce the value of 
inputs as much as possible so as to keep 

DMUs in possible production set. So, 

regarding PPS, the CCR model of the input 
oriented would be: 
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Having the optimal value of the objective 

function equal to one is a necessary 

condition for Pareto efficiency of 
evaluated DMU, but it is not a sufficient 

condition because it is possible to have the 

evaluated DMU on the weak frontier, 
which means that some inputs (outputs) 

may still reduce (expand). 

Fig (1) Tc and Tv regions 

Fig (1) shows efficient frontier of 

production possibility set with Variable 
and also Constant Returns to Scale (VRS 

and CRS) for DMUs with one input and 

one output. 
In the combined-oriented, the inputs and 

the outputs are improved in the same ratio 

in order to achieve the frontier. 

Efficient 

frontier 

Efficient 

frontier 

(CRS) 
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The non-radial models both reduce the 
inputs and expand the outputs to achieve 

the frontier. For example, the weighted 

additive model is as below: 
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2.2. The gradient line in DEA 

Maital et al. (1999), to improve 

inefficiency, presented a method which 
does not need to specify other DMUs. 

Calculating the partial derivation of the 

efficiency function, they tried to put the 
evaluated DMU along an ellipse path. 

Moving in this direction, the efficiency is 

improved locally. The presented path 

equation of ellipse is independent of the 
orientation of the model. Also each DMU 

has its own equation curve path. In a 

practical sense, slope approximation 
provides the chance to decide how much 

change may be made in the inputs or 

outputs so that we can improve on 
efficiency for a certain percentage [13]. 

First, 
oP  of the two-dimensional space is 

considered as 

 ( , ) : ,o o oP X Y X X Y Y     Then 

the gradient of the objective function is 

calculated:  

( , , , )
i rX Ygrad E E E i r  

 
Then, the calculated partial derivation is 

projected onto the 
oP  plane. The equation 

which moving can improve the efficiency 
of the evaluated DMU is presented as 

below. This equation represents an ellipse 

directed along size coordinate axes with 

half-axes equal to k  and k  

correspondingly. 
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The α and β values which help achieve the 

benchmark on the frontier are produced by 

the following equations: 
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Gradient line method has the potentiality 

to introduce the point whose efficiency 

value can be increased to a certain 

percentage comparing to the evaluated 
DMU’s efficiency. For example, if we 

would like to increase the evaluated 

DMU’s efficiency to 5%, we can put 

K= 0.05 in the formula 
1

1
oE

k



 and gain 

the values of corresponding α and β and 

introduce a benchmark which has 

improved 5% in efficiency compared with 
the previous status. This has conducted for 

the data in the table (1) that shows the 

coordinates of eleven DMUs with two 

inputs and two outputs. To achieve the 5% 

improvement, we put 
1

0.95
1 0.05

oE  


  

and found the α and β values using (8) and 
(9). See table (2). 
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Table (1) Data of observed DMUs 

DMU.No 1 2 3 4 5 6 7 8 9 10 11 

I1 2 2 5 10 10 3.5 5 9 12 8 3 

I2 12 8 9 4 6 6.5 3 5 9 3 4 

O1 4 3 2 2 2 1 2 8 5 3 8 

O2 6 5 2 3 8 12 8 7 3 8 9 

 

 Table (2) α and β values for 5% improvement in efficiency for the monitored data 

 DMU1 DMU2 DMU3 DMU4 DMU5 DMU6 DMU7 DMU8 DMU9 DMU10 DMU11 

α 0.99 1 1 0.99 0.98 0.96 0.97 0.97 0.99 0.98 0.96 

β 1.04 1 1 1.04 1.03 1.01 1.02 1.02 1.04 1.02 1.01 

 

2.3. Gradual improvement in efficiency 

Sometimes, the target points or 

benchmarks which are determined by the 
DEA models are significantly different 

from the evaluated DMU. Therefore, 

inputs (outputs) generally have to reduce 
(expand) to a large degree in order to reach 

the efficient frontier. In such a case, as the 

DMUs need significant changes to reach 

the introduced benchmark, they are faced 
with many problems. 

Regarding this, Lozano and Villa (2005) 

presented TEIP model that is used for 
inefficient DMUs. This model gradually 

takes the evaluated DMU to the frontier 

and it reduces (expands) input (output) a 
little at every step. To do this, the additive 

model Tv has been applied that the 

achieved benchmark by this method is 

strongly efficient [11]. 

io 
: The determined bound for the value 

reduction of the ith input in the DMUO 

ro 
: The determined bound for the value 

expansion of the rth output in the DMUO 
Whenever t reflects the intermediate target 

points and is
denotes the amount of 

reduction of inputs i and rs
 shows 

increase amount of output r, the model 

TEIP is expressed as below: 
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The optimal solution for the above model, 

calculates the intermediate target point of 
the next level as below: 
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 (11) 

The optimal value of the objective 

function mentioned above is equal to zero 

at the final step. The model TEIP produces 
a limited sequence of levels in a way that 

the introduced DMU at each level 

overcomes the preceding one. Therefore, 
the efficiency necessarily improves at each 

level and gradually approaches the frontier 

until the final solution reaches the 
efficiency frontier. 
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Lozano and Villa (2005) presented a 
method to put the DMUs, which are 

efficient but are not in most productive 

scale size (MPSS), in MPSS frontier. The 

concept of MPSS was first discussed by 
banker (1984). The strategy of model is 

also based on the gradual changes and it is 

known as SEIP. The algorithm of this 
method is as follows. First, an MPSS 

DMU is considered as the final target. To 

do this, the additive models for both Tv and 

Tc technologies are solved. If the optimal 
objective function of problems equals to 

zero, the evaluated DMU lies on the MPSS 

frontier. There are different criteria for 
choosing an MPSS out of the achieved 

MPSS DMUs. Lozano and Villa applied 

the criteria below to choose the final target 
point [10,15]: 

 

' arg min

io ij

i io

j j MPSS
ro rj

r ro
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x
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 (12) 

After selecting the DMU 'O  as the final 

target point, a sequence of points on a line 

that connects the point O to the point 'O is 

determined by the SEIP. To this end, the 

following bounds are required. 

io 
: The determined bound for the value 

expansion of the ith input in the DMUO 

ro 
: The determined bound for the value 

reduction of the rth output in the DMUO 

Whenever t represents the level of running 

the model, SEIP model is presented as 
follows: 
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Changes in inputs and outputs will not 

exceed the determined bound. As the value 

of ot  is reduced in each level, 

intermediate points gradually grow distant 

from the 
ODMU  and approach the 

'O
DMU

.Finally, they are projected onto the 

'O
DMU  in an MPSS frontier. 

 

3. Applying the gradient line method in 

the process of gradual improvement.  

In this section first the weakness of 
gradient line method is discussed next 

applying it to gradual improvement 

method is proposed. 

 

3.1. Gradient line method weakness in 

finding the benchmark 

As noted earlier, gradient line method uses 
an equation of ellipse to introduce a 

benchmark. The target point is presented 

as ( , )p pX Y   in which all the inputs have 

changed by the parameter α and all the 

outputs by the parameter β [14]. 

The CCR efficiency and Slack Based 
Measure (SBM) (Tone 2001) efficiency 

values of data of table (1) are displayed in 

the table (3). The equation of ellipse and 

also α and β value for each DMU were 
calculated separately in accordance with 

the method of gradient line. The α and β 

values are displayed in the second and 
third rows of the table (4) and the resulting 
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projection point in the fourth to seventh 
rows. The CCR efficiency value of these 

projection points which are displayed in 

the eighth row of the table (4) are all equal 

to one but the SBM efficiency value of 
projection points for the DMUs 1, 2, 3, 4, 

8 and 9 is less than one and that means that 
these benchmarks are not strongly 

efficient. Thus, the presented projection 

points by gradient line method are on the 

CCR efficient frontier but they are not 
necessarily strongly efficient. 

 

Table (3) the CCR and SBM efficiency values of the observed data 

DMU.No 1 2 3 4 5 6 7 8 9 10 11 

CCR 0.966 0.796 0.15 0.311 0.5 1 1 0.8 0.278 1 1 

SBM 0.52 0.45 0.12 0.19 0.19 1 1 0.5 0.15 1 1 

 
Table (4) the efficiency value of the projection points produced by gradient line model 

DMU.No 1 2 3 4 5 6 7 8 9 10 11 

*α 0.99 0.92 0.5 0.72 0.71 1 1 0.88 0.62 1 1 

*β 1.03 1.15 3.31 2.31 1.41 1 1 1.1 2.25 1 1 

I1 1.98 1.83 2.48 7.18 7.07 3.5 5 7.92 7.49 8 3 

I2 11.89 7.33 4.47 2.87 4.24 6.5 3 4.4 5.61 3 4 

O1 4.1 3.45 6.63 4.62 2.83 1 2 8.8 11.23 3 8 

O2 6.16 5.75 6.63 6.93 11.3 12 8 7.7 6.74 8 9 

CCR 
efficiency value of 

benchmark presented 

by gradient line 

method 

1 1 1 1 1 1 1 1 1 1 1 

SBM 0.622 0.688 0.819 0.8 1 1 1 0.62 0.544 1 1 

 
Table (5) The benchmark obtained by the CCR method and it’s SBM efficiency values 

DMU.No 1 2 3 4 5 6 7 8 9 10 11 

I1 1.93 1.59 1 3 5 3.5 5 7.2 3.33 8 3 

I2 11.59 6.37 1 1 3 6.5 3 4 2.5 3 4 

O1 4 3 2 2 2 1 2 8 5 3 8 

O2 6 5 2 3 8 12 8 7 3 8 9 

SBM 

efficiency 

value 

0.622 0.69 0.8192 0.8 1 1 1 0.6198 0.5435 1 1 

 
We see that the projection points produced 

for the DMUs 1, 2, 3, 4, 8 and 9 using 

gradient line method are not on the strong 
efficient frontier. 

The reason for this is that all inputs are 

reduced by the parameter α and all outputs 

are expanded by the parameter β in the 

gradient line method, so there may be an 

input (output) which can be reduced 

(expanded) more than the mentioned ratio, 
in other words, there may be positive slack 

variables. In other words, the ellipse path 

equation is not flexible. Therefore, the 

presented benchmark by gradient line 
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model is not necessarily a strongly 
efficient DMU. 

The first four rows in the table (5) shows 

the benchmark produced by the CCR 

method and their corresponding SBM 
efficiency value is in the last row. These 

benchmarks can be compared with the 

benchmarks produced by the gradient line 
method which are presented in the fourth 

to seventh rows in the table (4) and their 

SBM efficiency score is in the last row. 

Regarding the tables (4) and (5), it seems 
that benchmarks produced by both the 

CCR model and gradient line method have 

equal SBM efficiency values and that is 
because of the positive slack variables 

which cannot be removed by any of these 

two models. 

 

3.2. Gradual improvement for 

inefficient DMUs by using the gradient 

line. 
In Lozano and Villa (2009) gradual 

improvement method which was 

mentioned in section (2.3), the parameters 
α and β are stated by the manager in order 

to find maximum input reduction and 

maximum output expansion. Regarding 
the two advantages of gradient lines 

method which are [11]: 

1- Moving on the ellipse path, for reducing 

a certain amount of inputs, the highest 
amount of output expansion is obtained. 

2- By just being aware of the amount of the 

efficiency increase, considered by the 
manager, the amounts of the parameters α 

and β can be calculated using the equations 

(8) and (9). 

It is suggested that, in each step of gradual 
improvement, input reduction and output 

expansion bounds are determined by 

gradient lines. Applying ellipse path in 
gradual improvement has two advantages:  

1- For reducing a certain amount of inputs, 

a bound with maximum possible 
expansion is obtained for the output. 

2- In the cases where stating α and β 
parameters, that is input and output 

reduction and expansion bound amount, is 

not possible for the manager; it is enough 

for the decision maker to just state 
efficiency improvement amount 

considered for each step in gradual 

improvement method.  
The second advantage is important in 

terms of management and application 

because if the Decision Maker wants the 

evaluated-DMU efficiency to be increased 
in a certain amount, the proposed 

algorithm helps them to consider to what 

extent the inputs and outputs should be 
changed at most. Consequently, the 

Decision Maker does not need to introduce 

α and β parameters. Therefore, the gradual 
improvement, and as a result the 

benchmark, is introduced regarding 

efficiency increase percentage considered 

by the Decision Maker. 
The disadvantage, however, is that the 

introduced benchmark in gradual 

improvement method with gradient lines is 
not necessarily Pareto efficient and this 

drawback is due to the efficiency score 

stated in gradient lines method which is 
not necessarily Pareto efficient. 

In this section, first we are going to once 

calculate the values of α and β in the 

gradual improvement method by using the 
gradient line method; then, compare the 

produced results with the α and β produced 

by using combined oriented in which α = 
β. As gradient line method proposes the 

highest output expansion for reduction of 

a certain values of inputs, it is predicted 

that the gradual improvement method 
using the α and β produced by gradient line 

method presents a better benchmark in 

each step comparing to the other methods 
such as combined oriented. Thus, this is 

discussed by providing an example. 
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Table (6) the results produced by the gradual improvement model, calculating β (for α = 0.2) using 

the ellipse path equation of gradient line method 
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1 1.10 0.92 1.14 0.82 1.20 0.75 1.29 0.68 1.43 0.63 1.64 0.57 1.93 0.52 1 

1 - 1.00 - 1.00 1.11 0.90 1.15 0.81 1.22 0.73 1.32 0.67 1.71 0.45 2 

1 - 1.00 - 1.00 - 1.00 1.09 0.96 1.12 0.86 1.29 0.53 3.70 0.12 3 

1 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 1.29 0.63 3.09 0.19 4 

1 - 1.00 - 1.00 - 1.00 1.18 0.92 1.19 0.80 1.20 0.73 1.71 0.19 5 

1 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 6 

1 - 1.00 - 1.00  1.00 - 1.00 - 1.00 - 1.00 - 1.00 7 

1 - 1.00 - 1.00 - 1.00 - 1.00 1.12 0.90 1.20 0.65 1.38 0.5 8 

1 - 1.00 - 1.00 - 1.00 1.11 0.83 1.17 0.60 1.40 0.43 2.71 0.15 9 

1 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 10 

1 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 11 

 
Regarding the manager’s idea, considered 

α = 0.2 and β is calculated using the 

equation of ellipse in the gradient line 
method. (kα and kβ are parameters, α is a 

certain value, so β is achieved by the 

formula (5)). Then, we put β-1 as the β 

related to the gradual model. It means that 
we calculated the expansion range of Y in 

the gradual model regarding the gradient 

model. In other words, the output slack 
constraint in each level is as follows: 

( 1) pS Y   . 

We ran the model for eleven DMUs with 

two inputs and two outputs. Putting

0.2  , the reduction range of inputs 

would be 0.2 Xp at most and the expansion 

range in each step is achieved by the path 

equation of ellipse: 

2

2
1k

k





                               (14) 

All the DMUs were projected onto the 

strong efficient frontier in at most seven 

steps. As it is seen in the table (6), the SBM 
efficiency value is expanding on each 

iteration until a strong efficient target is 

proposed for each DMU. 

Table (7) the results produced by the 
gradual improvement model (10), 

calculating 0.2    using the path 

equation of combined oriented. 

In gradual improvement method, the 
bounds related to inputs and outputs are 
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determined in each step based on the 
manager preference. In this section, the 

manager has been asked just for the inputs 

bounds and the maximum output bound 
amount has been obtained according to the 

gradient lines method.  
Table (7) the results produced by (10) the gradual improvement model, calculating using the path  

 

equation of combined oriented   α =β = 0.2 
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1 0.52 0.57 0.63 0.68 0.75 0.82 0.92 1.00 

2 0.45 0.67 0.74 0.82 0.92 1.00 1.00 1.00 

3 0.12 0.18 0.26 0.39 0.58 0.86 0.97 1.00 

4 0.19 0.27 0.39 0.54 1.00 1.00 1.00 1.00 

5 0.19 0.28 1.00 1.00 1.00 1.00 1.00 1.00 

6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

8 0.50 0.61 0.75 1.00 1.00 1.00 1.00 1.00 

9 0.15 0.21 0.30 0.43 0.62 0.78 1.00 1.00 

10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 
Table (8) the number of steps for evaluated DMUs in gradual improvement method to reach strong 

efficient frontier. 

DMU.No 
obtained from ellipse   Using

equation of gradient line 
,   Using path equation of combined oriented 

DMU1 7 7 

DMU2 5 5 

DMU3 4 7 

DMU4 2 4 

DMU5 4 2 

DMU6 1 1 

DMU7 1 1 

DMU8 3 3 

DMU9 4 6 

DMU10 1 1 

DMU11 1 1 
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In the gradual improvement method, α = 
0.2 (regarding manager’s idea) was put in 

the constraints ,p pS X S Y     and 

β was calculated by using the equation of 
ellipse in the gradient line method. The 

results for the eleven observed DMUs 

showed that they reached the efficiency 
frontier in at most seven steps. Then, we 

calculated α and β of the gradual 

improvement method by using the path 

equation of combined oriented. As the 
input reduction and output expansion are 

in the same ratio in the combined oriented, 

which means   , we put 0.2    

to compare it with the previous method. 
Then, the gradual improvement method 

was run for this α and β and as it is seen in 

the table (7) the DMUs finally reached the 
efficiency frontier in at most seven steps. 

In the table (8), the number of steps each 

DMU has taken in each strategy to reach 

the frontier has been displayed. When we 
used gradient line method, the DMUs 3, 4 

and 9 were projected onto the strongly 
efficient frontier in less step numbers; 

however, the DMU 5 was not like this. 

The fourth column in the table (6) and the 

third column in the table (7), respectively, 
show the SBM efficiency value of the 

benchmarks in the first step of the gradual 

improvement method using gradient line 
and combined oriented. As you see, the 

efficiency values in the fourth column of 

the table (6) are greater than or equal to the 
values in the third column of table (7). It 

means in the first step of the gradient 

method, for a certain amount of input 

reduction, the outputs have expanded more 
in comparison to the combined oriented 

method. Not that the next steps, as the 

presented projection points of the two 
methods are different, they cannot be 

compared. 

Therefore, in the first step of the gradual 
improvement, the gradient line method is 

preferred since it introduces the highest 

possible amount for outputs.  
 

 
Fig (2) improving the efficiency of evaluated DMUs by two different methods 

 

 

In Fig (2) the P-G6 path advances the 

gradual improvement by α and β produced 

by the combined oriented model. In other 
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words, inputs and outputs improve to the 
extent not to exceed the bounds 

p pY and X   in each step which 

α = β. In the P-P3 curve path, to improve 
the evaluated DMU gradually, we used 

gradient line method that the input bounds 

were considered  α = 0.8 (regarding the 

manager’s decision) and the maximum 

output value pY  was achieved by 

equation (14). This process was repeated 

in each level.  

As mentioned above in Fig (2) G1 and P1 
are proposed benchmark in the first step of 

gradual improvement that bounds of 

improvement of inputs and outputs are 
achieved by combined oriented method 

and gradient line method respectively. 

Which by reducing inputs at most 
pX , 

the outputs of gradient line method 

(point P1) have expanded more. 
As mentioned before, one of the 

advantages of applying elliptic path in 

gradual improvement method is that 
instead of asking Decision Maker for all 

the input and output bounds in each step of 

gradual improvement method, it is enough 
to ask for the percentage of efficiency 

increase considered by each DMU in each 

step; then, input and output reduction 

bounds can be determined by applying 
gradient lines method, as well as, formulas 

(8) and (9). Therefor in gradual 

improvement method if the Decision 
Makers’ point of view is based on 

efficiency changes or if they don’t have 

enough information about the change 

bounds of inputs and outputs in each step, 
using this technique seems to be more 

logical. 

For example, for the data in table (1), if the 
Decision Maker wants %5 increase in 

efficiency score in the first step, inputs and 

outputs bound amount in gradual 
improvement method can be calculated 

based on what was mentioned in section 

(2.2). So improving efficiency score to 

5%, based on table (2) the input and output 

bounds equals to ( ) pS X   and 

( 1) pS Y   . 

To sum up, since Introducing the bounds 
in each step may be difficult or impossible 

for the manager, so the bounds in gradual 

improvement method can be obtained in 

each step by just being informed of 
maximum efficiency amount 

improvement considered by the manager. 

Therefore, the gradual improvement is 
totally followed based on the manager’s 

will. 

As is clear, in Gradual improvement 

method the aim is to reach the evaluated 
DMU to the efficient frontier in a few steps 

and the manager determines the bounds of 

input reduction and output expansion in 
each step (call it A procedure). On the 

other hand, in this paper we discussed 

about finding these bounds by using 
gradient line method and considering 

managers’ (call it B procedure). We 

suggest using both point of view. Which 

means to find the minimum of the bounds 
obtained by procure A and B and consider 

them as the bounds of input reduction and 

output expansion in each step of gradual 
line method. So the managers’ will about 

the efficiency advancement in each step 

for each DMU is achieved. 
According to the Lozano and Villa’s 

method (2010), we do the same to help the 

efficient DMUs to reach the MPSS. First, 

the evaluated DMU is projected onto the 
frontier using the gradual improvement 

model which bounds of inputs and outputs 

are obtained by gradient line method. 
Then, the MPSS DMUs are identified. As 

you see, the DMUs 6, 7, 10 and 11 which 

are displayed in the last column in the table 

(9) are MPSS. Then, using gradual 
improvement and the SEIP model and 

putting optionally  0.2ro ro     

0.2io io     we solve the model (13). As 

it is seen in the table (9), the DMUs 3, 4 

and 5 has reached MPSS in two steps. 
However, the DMUs 1, 2 and 9 has 
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reached MPSS in six steps. The second 
column in the table (10) displays the 

proposed benchmark by formula (12) for 
inefficient DMUs. 

 

Table (9) Most Productive Scale Size (MPSS) DMUs 

 SBM efficiency value in Tv SBM efficiency value in Tc  

 0 10.67 DMU1 

 0 867 DMU2 

 20 26.67 DMU3 

 19 19 DMU4 

 16 21 DMU5 

MPSS 0 0 DMU6 

MPSS 0 0 DMU7 

 9 11.5 DMU8 

 23 35.5 DMU9 

MPSS 0 0 DMU10 

MPSS 0 0 DMU11 

 

Table (10) Projecting inefficient DMUs to their benchmarks. 

Optimal value of the objective function of model (13)  

The argument for 

the corresponding 

inefficient DMU 

 

Inefficient 

DMUs 
6th 

Step 

5th 

step 

4th 

step 

3th 

step 

2th 

step 

1th 

step 

0 0.3 0. 16 0. 33 0. 54 
0.79 DMU11 DMU1 

0 0.11 0.23 0.39 0.60 0.82 DMU6 DMU2 

- - - - 0 
0.44 DMU11 DMU3 

- - - - 0 
0.43 DMU10 DMU4 

- - - - 0 0.32 DMU10 DMU5 

- 0 0.05 0.21 0.42 0.68 DMU11 DMU8 

0 0.08 0.19 0.33 0.51 0.73 DMU10 DMU9 

 

4. Conclusion 
Maital et al. (1999) proposed a method for 

finding the projection point by using 

gradient line. The evaluated DMU projects 

on the CCR frontier by introducing a path 
which uses equation of ellipse. Using the 

provided example, we discussed that this 

projection is not necessarily strongly 
efficient. 

In Gradual improvement method which is 

proposed by Lozano and Villa (2005), the 

manager determines the bounds of input 
reduction and output expansion in each 

step.  In this paper we suggested using the 

gradient line method provided by Maital et 

al. (1999) as tool to introduce the bounds 
of gradual improvement method. As the 

method of gradient line proposes the 

highest output expansion per certain 
amount of input reduction, therefore, we 

expected that this method proposes the 

best path for gradual movement toward the 
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frontier. What we expected was achieved 
in the first step and the efficiency value of 

newly proposed benchmark compared to 

the prior gradual improvement method 

was either better or the same as the 
previous value, in the first step. However, 

as the starting point in the next steps of the 

models are not the same (each method 
proposes a distinct benchmark) the results 

are not comparable in the next steps. In the 

same way, we used the radial orientation 

in the gradual improvement once again to 
move toward the efficient frontier; 

comparing its results with moving in the 

elliptic path indicates, again, that the 
gradual improvement in the path equation 

of ellipse in the first step introduces a 

better benchmark.  
Using gradient line method in gradual 

improvement method has two main 

advantages. First of all, in gradual 

improvement method, determining the 
bounds in each step may be difficult or 

even impossible. Moreover, when the 

manager is looking for a special 
percentage of efficiency improvement and 

the amount of he/she cares about the 

maximum improvement in each step the 
suggested method is useful. 

Then the DMU which had reached the 

frontier gradually by gradient line 

direction was taken to the MPSS by the 
proposed method by Lozano and villas. 
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