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Abstract 
Endogeneity and its impact on estimating economic models can be seen in many economic 

studies. Data envelopment analysis is one of the most common non-parametric methods in 

which different axioms are used to estimate the production function (efficient frontier). 

However, the issue of endogeneity and its impact on estimating the efficient frontier is less 
considered. Cordero et al (2016) indicated that standard models of data envelopment analysis 

do not perform well in the presence of positive and high endogeneity. In this article, a model 

based on relaxing convexity axiom is presented in which the Cobb-Douglas function is 
considered as a real production function. Then, the efficiency of the proposed model is 

compared with the standard models of the data envelopment analysis and Cobb-Douglas 

function under positive and high endogeneity. The results show that the proposed model 
outperforms the counterparts. In addition, by comparing the models in different modes of 

return to scale, it is observed that the type of return to scale is also effective in determining 

the efficiency and efficiency of the proposed model compared to its economic counterpart. 
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1. Introduction  
Efficiency measurement is one of the 

important issues in organizations that is 

used to improve their productivity and 

efficiency. The concept and method of 
measuring efficiency based on the 

production function is the maximum 

amount of output obtained from a certain 
amount of input. Thus, we need a 

production function, which is not 

available, to measure efficiency. 

Therefore, we are always looking for 
methods to estimate the production 

function. Estimation of the production 

function has been considered in 
economics significantly [1]. In 

economics, functions such as Cobb-

Douglas, translog, etc. are considered as 
production functions, which the 

parameters of these functions are 

determined by observations and methods 

such as regression. Data Envelopment 
Analysis ( DEA) is one of the non-

parametric methods that uses standard 

models such as BCC  (Bunker et al. [2]), 

CCR  (Charnes et al. [3]) etc. to estimate 

the production function. In these models, 

a coverage curve that encompasses all 

true observations is constructed and then 

is used as a benchmark for calculating 
efficiency. In other words, the frontier 

created by the DEA models is an 

estimate for the production function. 

Choosing the Appropriate input and 
output can be effective in evaluating the 

correct measure of efficiency (Nataraja et 

al. [4] and Gattoufi et al. [5]). Numerous 
articles have also estimated the frontier of 

the production function, (Carlos et al. [6] 

and Sashuti et al. [7]). On the other hand, 

there is another important issue called 
endogeneity in the production process, 

the effects of which on the production 

function have been extensively studied in 
economics. Various factors such as 

measurement error and loss of a number 

of variables can cause endogeneity. In the 
statistical context, endogeneity occurs 

when there is no assumption that there is 

no correlation coefficient between inputs 
or variables [8]. Although, DEAis one of 

the most widely used nonparametric 

methods in estimating the production 

function, the study of endogeneity impact 

has received less attention from the users 
of DEA. In the scope of technical 

measurement of efficiency using non-

parametric methods, the concept of 

endogeneity means the dependence 
between input and efficiency (Peyrach 

Vokli [8]). Cordero et al (2016) [9] 

examined the effect of endogeneity factor 
on production functions estimated by 

DEAand showed that the BCC model 

does not act accurately under positive and 

high endogeneity. They assumed the 

Cobb-Douglas and Translog economic 
functions as real functions and showed 

that the measure of efficiency obtained by 

the CCR and BCC  models under 

endogeneity is not exact. Therefore, 

proposing an appropriate model in the 

framework DEA to reduce the impact of 
such factors in estimating the appropriate 

production function is important.  

However, an important point to consider 

in implementing this non-parametric 
technique is the assumption that the 

measure of efficiency is independent of 

inputs and outputs. According to studies 
conducted by Ruggiero [10,11], Bifolco 

and Bretschneider [12,13], Cordero et al. 

[9] found that the existence of 
endogeneity between efficiency and one 

of the inputs can affect the estimates

DEA. Mayston [14] proposed a potential 

method for correcting estimates under 

endogeneity between input and output. 
Wilson [15] showed that in large units, 

because there is access to better 

management (more efficiency) than 
smaller units, they produce more output 

by consuming more input, thus there is a 

dependency between technical and 
artificial efficiency of the inputs. 

Schlotter et al. [16-17] also showed that 

the education section is a good example 

of endogeneity. Santin et al. [18] 
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presented a method for determining the 
correlation coefficient and endogeneity 

between input and efficiency measure. 

They also reduced the effect of 

endogeneity on estimating the production 
function by replacing the endogeneity 

input with a combination of exogenous 

inputs. In nonparametric technique DEA, 

different frontiers are defined based on 
different axioms. In other words, by 

manipulating axioms, different models 

with different frontiers are made. The 
convexity axiom is one of the axioms that 

various models have been presented by 

relaxing it. Maleki et al. [19] presented a 
model by relaxing the convexity axiom in 

which the obtained efficiency is closer to 

the real efficiency (assuming the Cobb-

Douglas function is considered a real 
function) and under positive and high 

endogeneity conditions compared to the 

standard BCC  the proposed model 

outperform the counterparts. Return to 
scale is another economic concept related 

to efficiency of DEAthat determining the 

type and reviewing it has been highly 

regarded by researchers. Qianzhi et al. 
[20] first considered return to scale in cost 

allocation issues then investigated its 

effect. Considering the endogeneity 
impacts in the economic production 

process, and the inaccurate efficiency of 

nonparametric DEA models, in this 

paper, by relaxing the convexity axiom 
and considering the Cobb-Douglas 

function as a real function, a model for 

estimating the production function is 

presented that is closer to the real frontier 

(Cobb-Douglas frontier) than the BCC

model. Then, the efficiency of  

Cobb-Douglas function in two modes of 
efficiency on a constant and variable 

return to scale is compared with the 

efficiency of standard models and the 

proposed model in the form of a practical 
example. The article is organized as 

follows. Section two reviews the basic 

concepts. In the third section, the 
proposed model (two-stage model) for 

measuring efficiency is discussed. In the 

fourth section, the efficiency of the 

proposed model is examined by providing 
numerical examples, and also the effect of 

the type of efficiency on a scale on the 

efficiency measurement of the models 
and its comparison with the Cobb-

Douglas efficiency measurement is 

examined. The results section is the last 
section of the article. 

 
2. Review of basic concepts 

2.1. Standard DEA  models 
Many scientific activities have been done 

in order to evaluate the efficiency of units 

and sections. Certainly, the relationship 

between efficiency and influencing factors 
is a function as   in which input produces 

output. The production function is a 

function that gives the maximum output 
for each combination of inputs. This 

function is very important in economics. 

Since it can be determined whether a unit 

is acting well or not. The production 
function is not available due to the 

complexity of the production process, 

changes in production technology and 
multiple quantities. The Cobb-Douglas 

function is one of the well-known 

economic functions used in many articles. 
The general form of the Cobb-Douglas 

function with three inputs and one output 

is as follows: 

i 1 1i 2 2i 3 3iln y lnx lnx lnx      (1) 

Where iy is the ith output and 1 2 3, ,i i ix x x  

are the observed input values and 1 , 
2  

, 3  are the weights of the inputs 

(parameters). In this function, for 1i   

it is constant  return to scale and for

1i  , it is variable return to scale. In 

parametric methods, it is tried to estimate 

this function using a series of observations 

and data. The curve fitting process is used 
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for this purpose. However, obtaining the 
production function using this process has 

its drawbacks, including:  

1) The relationships between inputs and 

outputs are considered arbitrary. In 
economics, for example, the relation 

1

1 ... nxx

nQ x A A is considered for the 

production function, in which 1,..., nA A

are the inputs, Q  is output, and 
1,..., nx x  

are parameters of the function that should 
be determined.  

2) If the output vector dimension is more 

than one, this method cannot be used for 
problems that have only one output. 

 3) The obtained curve has a central 

inclination and it should be eliminated. 
 The above drawbacks are among the most 

basic drawbacks of the parametric method. 

In 1957, Farrell [21] introduced a non-

parametric method that was considered the 
base of the work of Charnes et al. [3] and 

Bunker et al. [4]. In the non-parametric 

method, a set of possible activities or the 
production possibility set is stated as 

follows: 

{( , ) :m nT x y R   The output vector 

y 0 can be generated by the input vector

0x  }                                                    (2) 

Constructing production possibility set 
(PPS) is obtaining a frontier to estimate the 

production function, which gives the 

relative efficiency of the set of 

observations. Standard DEA models each 
depend on a set of unique production 

possibilities, and the production possibility 

set is uniquely constructed by a set of 

certain assumptions and axioms. 

Assuming we have an n observation as 

j(x , )( 1,..., )jy j n that the input vector 

0 , x 0j jx   produces the output 

vector 0, y 0j jy   . A T set is 

satisfying in the following axioms: 
Axiom 1: (subject to observations): All of 

the observed activities belong to T. In 

other words: 

( , )        ,        1,...,j jx y T j n   

Axiom 2: Convexity 

(x,y) , (x,y) , [ ,1] : 

[(x,y) , (x , y) T

(x,y) (1- )(x , y) T]   



 

  

 

 

 

Axiom 3: (Infinity of radiation or 

efficiency at a constant scale). 

 
(x,y) , : 

[(x,y) T ( , y) T]x



 

  

  
 

Axiom 4: Possibility 

 
(x,y) T , x , y :

[(x,y) T ,  x x , y y (x,y) ]T

  

    
 

Axiom 5: Extrapolation minimum: T is the 

smallest set that is true in the first to fourth 
axioms.  

The set that applies to the above axioms is 

denoted by
CT  or CCRT as follows:  

1

1

&

(x, y)

, 0, 1,...,

n

j j

j

C n

j j j

j

x x

T

y y j n



 





 
 

 
  
   
 
 





    (3) 

Using the above PPS and to evaluate the 

relative efficiency of homogeneous 

decision-making unit (DMU) that 
produces the input vector using the output 

vector, a model called   was introduced by 

Charnes et al. in 1978 [3]: 

n

j ip

j 1

n

j

j 1

Min      

s t:       , i 1,...,m

             , r 1,...,s

            0          ,  j 1,...,n

ij

rj rp

j

x x

y y



 









  

 

 




    (4) 

In this model, parameter  is the minimum 

value that ( x , )o oy  will be on the 
CT  

frontier. That is, the goal is to reduce the 

input level by a ratio  so that at least the 

same output can be produced. The above 

model is called in input oriented and if 

1*  , the unit is evaluated for efficiency, 

otherwise; it is considered inefficient. 
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Model (1) is also called a model with a 
constant return to scale. By accepting the 

axioms of inclusion of observations, 

convexity, possibility, and the minimum of 

interpolation, a set is constructed that is 

capable of production of VT  or BCCT . 

The only difference between this set with 

CT  is addition of a constraint 1
1




n

j

j . 

Based on this technology, Bunker et al. [2] 

proposed a model called BCC  model. The 

envelopment form of this model is 
following linear programming model in 

the nature of input:  

B

n

j ij B iP

j 1

n

j rj rP

j 1

n

j

j 1

j

Min  θ

s.t.   λ θ  ,    i 1,...,m

       λ y y  ,  r 1,...,s 

      λ 1

        λ 0     ,          j 1 , ,n

x x






 

 



 







     (5) 

It can be seen that this model is the same 

as the form of the CCR  model  to which the 

constraint 



n

1j

j 1  has been added. This 

model is also always possible and has a 
finite optimal answer. We always have 

*0 1   in optimality. The assumption 

of variable return to scale is also 

considered in this model. 

1

n

V j

1 j 1

( , ) , 

T  , 1 , 

,  j 1,...,n

n

j j

j

n

j j

j

j

x y x x

y y



 





 

 
 

 
 

   
 
  
 
 



         (6) 

 
2.2. Relaxing the convexity axiom 

The BCC  model is presented on the basis 

of the assumption of variable return to 

scale, which makes a very accurate 
analysis by calculating the technical 

efficiency in terms of the values of 

efficiency due to scale and efficiency 

resulted from management. The BCC  

model can be expanded by relaxing the 

convexity axiom 1
1




n

j

j  as

1

n

j

j

L U


  . Where L(0 L 1)   and 

U(U 1)  are the lower and upper bounds 

of the sets, respectively. It is noteworthy 

that L 0  and U  corresponds to the 

CCR  model and 1U  L  corresponds to 

the BCC  model. Given that the axiom of 

convexity is one of the basic assumptions 

in estimating the efficiency frontier, 

changing or extending the axiom of 
convexity can lead to the creation of 

different models. Maleki et al. [19] 

examined this issue with a two-step 

method for evaluating the efficiency of a 
unit based on the proposed efficiency 

frontier. In other words, instead of using a 

relation 1
1




n

j

j  in the BCC  model, it is 

considered as an interval with variable 
frontiers. Without losing the whole issue, 

the lower and upper bounds can be defined 

as    [ 1 , 1 ]   . So the relationship

1
1




n

j

j  is written as 

n

j

j 1

1 1  


    . Where we have 





n

1j

j 1  by 0  . The main goal of this 

work is to find the best value of  . To 

achieve this goal, a two-step method is 

proposed. In the first stage, the 

programming model is presented in the 
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form of model (7) by adding a condition 
n

j

j 1

1 1  


     to the standard 

BCC  model and with a different objective 
function. 

n

j ij io

j 1

n

j rj ro

j 1

n

j

j 1

Min    θ

s.t.    x  x   ,   i 1,...,m

        y  y   ,  r 1,...,s

      1- 1 , 0



 



   









 

 

   







   (7) 

It is easily proved that model (7) is always 

possible and finite. Assuming that the 
optimal answer of model (7) is 

( 1,..., )j j n  . By defining 

min{ , 1,..., }j j n     we have the 

following model in the second step: 

n

j ij io

j 1

n

j rj ro

j 1

n

j

j 1

Min    θ

s.t.   ,  i 1,...,m

      y y  ,  r 1,...,s

     1- 1 ,  0

x x 



   







 

 

    







         (8) 

The proposed frontier in model (8) is 

located between the two standard and 

known frontiers of standard CCR and

BCC models .The proposed two-stage 

model can differentiate more accurately 

than the standard variable return to scale 

model or BCC .  

 
3. The proposed model 

By performing BCC  and CCR  models 

for random data with positive and 

negative endogeneity, Cordero et al. 
(2016) concluded that the frontier 

estimated by the BCC  model under 

positive and high endogeneity has a 

distance with the real frontier (in 

Cordero's paper, Cobb-Douglas and 
Translog economic functions are 

considered real frontier) and the CCR   

model that has constant return to scale 

performs better than the BCC  model [9]. 

In this section, a model is presented by 

modifying the BCC  model in order to 

bring the estimated frontier to the 

economic frontier and reduce the 
difference between economic efficiency 

and the BCC  model under positive and 

high endogeneity. The proposed model 
consists of two steps in which the Cobb-

Douglas function is assumed to be the real 

frontier. It is based on the method 
proposed by Maleki et al. [19]. 

Step 1: In the first step, the constraint 

COB   is added to model (7) and the 

new model will be as follows:  

n

j io

j 1

n

j

j 1

n

j

j 1

COB

Min    -

s.t.     , i 1,...,m

          ,  r 1,...,s

        1- 1

        

, 0

ij

rj ro

x x

y y

 

 



  

 

 







 

 

  











        (9) 

The added constraint COB   gives the 

lowest value  in such a way that the 

Cobb-Douglas  COB  efficiency is less 

than the shrinkage coefficient  . In other 

words, the Cobb-Douglas frontier is high 

or tangential to the frontier defined in 

Model (6). The smaller the distance, the 
better the efficiency of the model. The 

objective function is also obtained in this 

maximum value   for each unit. By 

obtaining optimal answers of model (9) 

and determining the minimum value 

: 1,...,j j n   or 
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j{ : 1,...,  , 0}jMin j n       we 

go to the second stage. 

Second stage: with 

j{ : 1,...,  , 0}jMin j n       from 

the first stage, the proposed model of the 

second stage will be as follows: 

j

j 1

j

j 1

j

1

j

Min   

s.t.    ,  i 1,...,m

        ,    r 1,...,s

      1 1

          0              j 1,...,n

n

ij io

n

rj ro

n

j

x x

y y



 



  









 

 

    

 







     (10)  

It is observed that this model is the same 

as model (8). It is proved that this model 
is always possible and the amount of 

efficiency obtained from this model is 

always less than or equal to the amount of 

efficiency obtained from the BCC  

model [21].  

Theorem: The new frontier is the best 
linear frontier that is close to the Cobb-

Douglas function. This is equivalent to 

saying that   which we found is the best 
one, according to which the new frontier 

has the shortest distance from the Cobb-
Douglas frontier.  

Proof: Assume that k k( , , )k    
 is an 

optimal solution for model (9) for each  

kDMU  and k

 is maximum value of 

that holds for the problem kDMU .  

a) Suppose that k     exists that is 

satisfies in the conditions of model (9) in 

this case: 

1

1 1
n

j

j

  


      

Since
 k , we have: 

1

1

1 1

1 1

n

j k

j

n

j k

j

  

  









   

   




 

Since S  is feasible region with and S 

is feasible region in model (9) according 

to


k , we have: 

SS   
It means that the feasible region is 

reduced and the answer is not being 

optimal.  

b) Suppose 
 k  is existed that is 

hold in the problem condition, in this 
case: 

  


11
1

n

j

j
 

Since,
 k  we have: 

  



 11
1

k

n

j

j
 

  



 11
1

k

n

j

j
 

If S  is the feasible region of the problem 

with   and S is the feasible region of 

model (9) based on 


k we have: 

SS   

That is, the feasible region is increased 
and the optimal value is not worsen: 


  ks 

 
And this contradicts being optimal



k . 

In the next section, we examine the 

efficiency of the proposed model by 

implementing it on 30 DMU and 
considering the Cobb-Douglas function 

as a real function under positive and high 

endogeneity. Also, considering that return 
to scale is one of the important axioms in 

DEA models (which is different in 

different models, for example, standard 

models BCC and CCR are defined by 

variable and constant return to scale, 
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respectively) and the Cobb-Douglas 
function is defined by the variable or 

constant return to scale based on the 

considered parameters. With a numerical 

example, we examine the effect of the 
type of return to scale on the efficiency of 

models. 

 
3.1. Evaluation of the efficiency of the 

proposed model under high and 

positive endogeneity conditions 
 In order to evaluate the efficiency of the 

proposed model under high endogeneity 

conditions, the Cobb-Douglas function of 
Eq. (1) is considered as a real function. 

Where iy  is the ith output obtained by 

replacing the inputs of Table 1 with 

1 2 3, ,i i ix x x . Here, the assigned input 

weight 1 0 / 3  , 2 0 / 35  and 

3 0 / 35   respectively, assuming a 

constant return to scale, and accordingly 
30 DMU are obtained with three inputs 

and one output and endogeneity 0.65. 

Although this form of operation is 

commonly used in economics and 
operational research, the assumption of 

constant input and output tensions is 

likely to be a significant constraint on 
real-world estimates, meaning that the 

marginal effects of inputs on outputs are 

the same regardless of production scale. 

Table 1 shows the data for 30 DMU.  

Table 1. Data related to 30 decision-making units 

o1 i1 i2 i3 DMU 

8.47062 34.42154 9.117443 6.594056 D01 

16.99164 38.71092 23.23919 7.279092 D02 

12.48751 31.24336 9.718081 7.977206 D03 

15.27609 38.30145 10.05278 10.12688 D04 

13.62349 15.56721 40.29926 10.12769 D05 

18.13896 38.07309 18.12066 15.27945 D06 

20.20783 48.67693 32.159 15.33655 D07 

24.22406 44.01186 48.39902 15.36346 D08 

13.34721 8.880554 24.46182 17.39441 D09 

23.15318 21.48965 36.26385 17.68191 D10 

19.421 21.61395 39.11447 18.99152 D11 

18.0572 35.82628 24.4689 19.6544 D12 

27.36067 31.90737 34.49741 19.8591 D13 

16.81166 40.52138 9.938977 23.34786 D14 

19.88782 21.54438 47.01919 24.99487 D15 

13.75144 14.27125 13.43574 25.17925 D16 

16.39591 8.899995 16.97805 25.97908 D17 

27.91087 39.73703 40.90236 28.12167 D18 

21.02067 14.25535 26.94217 31.09482 D19 

19.9722 22.47222 39.60312 31.99456 D20 

24.53788 29.83003 22.8203 32.14203 D21 

19.90583 15.3029 17.28225 32.14834 D22 

13.31615 33.88733 6.675559 33.35923 D23 

23.02412 26.80162 35.29827 34.33987 D24 

17.40338 11.83305 24.3304 39.01614 D25 

31.89034 40.18694 25.32827 40.24697 D26 

24.15679 9.527285 32.44357 43.18685 D27 
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15.28041 18.23299 7.673148 44.60298 D28 

17.45992 15.68179 19.21151 45.05163 D29 

29.96419 28.88925 39.7725 49.03537 D30 

 

Table 2. Efficiency size obtained from the implementation of models 

COB
 NEW

 BCC
 CCR

 
DMU  

0.705389 0.96 1 0.78 D01 

0.975226 1 1 1 D02 

0.975707 0.99 1 0.98 D03 

0.985745 1 1 1 D04 

0.760039 0.99 1 0.97 D05 

0.854772 0.89 0.9 0.89 D06 

0.735206 0.77 0.78 0.77 D07 

0.796457 0.96 1 0.92 D08 

0.841756 1 1 0.99 D09 

0.981407 1 1 1 D10 

0.78064 0.83 0.85 0.82 D11 

0.71535 0.77 0.77 0.76 D12 

0.99852 1 1 1 D13 

0.802088 1 1 1 D14 

0.679635 0.76 0.77 0.76 D15 

0.791716 0.95 1 0.86 D16 

0.997235 1 1 1 D17 

0.793633 0.81 0.82 0.81 D18 

0.894321 0.95 0.96 0.93 D19 

0.648231 0.68 0.68 0.68 D20 

0.871145 0.95 0.95 0.95 D21 

0.943617 1 1 1 D22 

0.664828 1 1 1 D23 

0.715896 0.76 0.77 0.75 D24 

0.742103 0.77 0.77 0.77 D25 

0.919351 1 1 1 D26 

0.964614 1 1 1 D27 

0.786915 1 1 1 D28 

0.698673 0.81 0.81 0.81 D29 

0.765811 0.91 1 0.81 D30 

0.8262 0.917 0.92767 0.90033 AVE 

0.01225 0.01006 0.01035 0.0108 VAR 

0.1107 0.10031 0.10174 0.10391 STDEV 
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According to the results of Table 2, the 

efficiency of the proposed model  NEW  

is closer to that of Cobb-Douglas. The 

D30, D16, D08, D01, D03, and D05 units 

identified in the efficient BCC  model 

are inefficient in the proposed  and Cobb-

Douglas models. Also, according to the 

results, it is observed that the efficiency of 

the proposed BCC  model is less than or 

equal to the efficiency of the BCC  

model and is greater than or equal to the 

efficiency of the model, and the efficiency 
of the Cobb-Douglas function is smaller 

than all of them. The production frontier 

of the proposed model is between or 

tangential BCC and CCR frontiers.  

Finally, the results of the models are 
analyzed statistically. The last three rows 

of Table 2, show the mean, variance and 

standard deviation, respectively. The 
average efficiency of the proposed model 

is less than the BCC model and larger 

than the CCR  model. That is, this mean 

is inserted between the mean of the two 
known models. In fact, it can be claimed 

that the proposed model is able to 

distribute efficiency. The variance of the 

proposed model is smaller than the 

variance of the BCC  model. Also, both 

are smaller than the amount of CCR

variance. In addition, the standard 

deviation of the proposed model is very 
small. It claims that the amount of 

efficiency obtained by the proposed 

model is close to the average. In practice, 
the dispersion of the efficiency measure 

in the proposed model is much less than 

the CCR  model. In other words, the low 

standard deviation indicates that the 
efficiency size is spread over a more 

limited range. The results also confirm 

that the proposed model, increases the 

discriminatory power of models with 
variable return to scale. 

 

4. Evaluation of return to scale on the 

efficiency of models 

 In this section, the effect of the type of 

return to scale in determining the measure 

of efficiency is examined with a 
numerical example, in which the 

efficiency of the proposed model is 

compared with BCC and CCR  models 

in two modes of Cobb-Douglas function 

with constant and variable  return to scale. 
For this purpose, the Cobb-Douglas 

function (1) is considered. In the case of 

constant return to scale, it is sufficient

1
1




n

j

j , and in the case of variable 

return to scale, it is 1
1




n

j

j . First, the 

input weights are assumed to be constant 
return to scale, and then the input weights

1 0 /1   ,
2 1/ 45  ,

3 0 / 35    

and then by assuming variable return to 

scale, the input weights 1 0 / 6  ,

2 1/ 9   and 3 0 /1  , for 25 bank 

branches with considered  three input 1x , 

2x and 3x  the output of 25 branches are 

calculated. The results of 

 implementing the models are given in 

Table 3.  

Table 3. Efficiency measure obtained from the implementation of models in the case of efficiency in 

different scales 

BCC  NEW VRS   
COB VRS 

 CCR  NEW CRS   
COB CRS 

 DMU  

0.68 0.65 0.102085 0.26 0.41 0.149113 D01 

0.73 0.69 0.109752 0.26 0.41 0.144913 D02 

1 0.94 0.061643 0.14 0.48 0.076016 D03 

1 0.96 0.089941 0.47 0.64 0.118607 D04 

1 1 0.071071 1 1 0.096599 D05 
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0.61 0.57 0.037149 0.1 0.27 0.048911 D06 

0.87 0.84 0.211211 0.54 0.62 0.309817 D07 

0.66 0.62 0.05472 0.15 0.32 0.075694 D08 

0.59 0.58 0.191019 0.52 0.54 0.283771 D09 

0.44 0.43 0.117784 0.33 0.35 0.166141 D10 

1 0.99 0.335681 0.88 0.89 0.4184 D11 

1 0.98 0.331603 0.8 0.87 0.455247 D12 

0.48 0.47 0.131756 0.42 0.42 0.184709 D13 

1 0.95 0.156374 0.35 0.61 0.20525 D14 

1 1 0.334897 1 1 0.476078 D15 

0.49 0.46 0.020081 0.06 0.22 0.027255 D16 

0.24 0.24 0.055321 0.22 0.22 0.087086 D17 

0.61 0.58 0.096968 0.4 0.43 0.128666 D18 

0.52 0.5 0.141425 0.38 0.41 0.196873 D19 

0.46 0.43 0.01975 0.1 0.21 0.026909 D20 

0.68 0.64 0.058062 0.22 0.36 0.077832 D21 

0.56 0.52 0.050921 0.13 0.26 0.068402 D22 

0.57 0.53 0.010738 0.06 0.25 0.014124 D23 

0.52 0.48 0.05327 0.12 0.25 0.061433 D24 

0.9 0.89 0.307677 0.84 0.85 0.420018 D25 

 

The efficiency measurements of the 

Cobb-Douglas function are given in Table 
3 for constant and variable return to scale 

CRSCOB and VRSCOB respectively. Also, 

the results obtained from the 

implementation of the proposed model for 
Cobb-Douglas function modes with 

variable and constant return to scale are 

recorded as VRSNEW  , CRSNEW 

respectively. And CCR , BCC are the 

measures of the efficiency of the CCR

and BCC  models, respectively. Figure 1 

shows the results of BCC  model 

implementation, the proposed model, and 

the Cobb-Douglas function in the variable 
return to scale efficiency mode. 

 
 

Figure 1: Results of model implementation in variable return to scale efficiency mode 

According to Fig. 1, in the case of 

variable return to scale, efficiency 

obtained from the proposed model 

 NEW VRS   is closed of efficiency of

BCC . In other words, the BCC  model 

performs well compared to the Cobb-
Douglas function (which is considered the 

real production function). Also, units 
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D03, D04, D11, D12 and D14, which 

were identified in the efficient BCC  

model, are inefficient in the proposed 
model. These units are also inefficient 

Cobb-Douglas. In general, in the case of 

variable return to scale, the results of the 

model implantation have a shorter 

distance to efficiency BCC , and this 

distance is somewhat greater than Cobb-

Douglas efficiency. Fig. 2 shows the 
results of the model implementation, the 

proposed model and the Cobb-Douglas 

function in the constant return to scale 

efficiency mode. 

 
 Figure 2: Results of model implementation in constant return to scale efficiency mode 

According to Fig. 2, in the case of 
constant return to scale, units D05 and 

D15 have been found to be efficient in 

both CCR model and the proposed 

model. In these two models, the 

efficiency measurements of units D09, 

D10, D11, D12, D18, D19 and D25 are 
slightly different from each other, and 

units D13 and D17 have the same 

efficiency measurement in both models. 
In general, when the efficiency is constant 

return to scale, the results of the model 

implementation have a greater distance to 

CCR  efficiency, and this distance is 

somewhat smaller than the Cobb-Douglas 
efficiency. 

  
5. Conclusion  
Since the estimated frontiers are 

constructed by DEA models based on 

observations and the axioms of a 
particular theme, real production frontiers 

(economic frontiers such as Cobb-

Douglas, which are considered real 

frontiers) are always above or tangential 
to them. It is very important to bring the 

estimated frontier closer to the real 

frontier. Considering the importance of 
endogeneity and its effect in estimation

DEA model, in this research, by relaxing 

the convexity axiom and considering the 
Cobb-Douglas function as a real 

production function, a two-stage model 
for estimating the production function 

was presented. The results of numerical 

examples and Theorems show that the 

proposed model performs better than the 
variable return to scale efficiency model 

under endogeneity, and The estimated 

frontier by the proposed approach is 
closer to the real production function, 

hence the evaluated efficiency is more 

accurate. What's more, in presence of 
different return to scale axioms, the 

comparison of estimated frontier via 

proposed model, standard DEA models 

and Cobb Douglas method reveals that 
return to scale axioms will affect the 

model performance. 
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