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Abstract 
Data envelopment analysis (DEA) is a well-known approach for measuring performance of 

units in the presence of multiple input and output variables. Statistical control charts, on the 

other hand, have been developed for monitoring performance over the time and for 
distinguishing between in-control and out-control states. Using advantages of these 

approaches in this paper, an integrated model is proposed for measuring and controlling 

performance of unit(s) over the time. A real maintenance unit and its data are used as a case 
study for better understanding of the proposed model. 
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1. Introduction  
Measuring efficiency is one of the most 

important topics in the field of 

management, mainly used to identify 

efficient units. Data envelopment analysis 
(DEA) has been proposed in 1978 by [1] 

and extended by [2] in 1984 for measuring 

efficiency of decision-making units 
(DMUs).  DEA is a non-parametric 

approach based on linear programming to 

compare the relative efficiency of DMUs 

in the presence of multiple inputs and 
outputs variables. DEA is utilized to solve 

many managerial problems such as DMUs 

ranking, targeting, and benchmarking [3-
15].   

Statistical process control (SPC), on the 

other hand, is a set of tools used for 
monitoring and improving quality of a 

process. Control chart, introduced by 

Walter Shewhart, is one of these tools, 

which is applied for controlling the 
process stability and identifying abnormal 

causes in the process variation [16]. In 

fact, Control charts are well-known tools 
for checking changes or variations in the 

processes [17].  

There have been attempts in the literature 
to consider both SPC and DEA. As stated 

by [18-19], there is a conceptual link 

between performance assessment and 

control charts. They show that these two 
approaches can be used in a 

complementary manner. [20] used DEA to 

determine the parameters of  �̅� control 
charts. [21] applied DEA to solve a multi-

objective model presented for designing 

�̅� control charts. [22] proposed a multi-

objective economic-statistical design of np 
control chart. This method is applied to 

find the pareto optimal solution and then a 

combined method based on DEA is 
developed to determine the most efficient 

design parameters. [23] illustrated a multi-

objective model for the economic-

statistical design of the C-control charts. 
This model consists of DEA and an 

improved version of the non-dominated 

sorting genetic algorithm. [24] considers 

an X-bar control chart design problem 
with multiple and often conflicting 

objectives. An integrated multi-objective 

algorithm is proposed for optimizing 

economical control chart design and two 
different multiple criteria decision making 

(MCDM) methods, including data 

envelopment analysis (DEA) and the 
technique for order of preference by 

similarity to ideal solution (TOPSIS), are 

used to reduce the number of Pareto 

optimal solutions to a manageable size. 
 

2. PROPOSED MODEL 

The proposed model integrates DEA and 
control charts to visualize DEA results. 

Clearly, this can help decision makers to 

detect abnormal states more quickly and 
more easily. The block diagram of the 

model is shown in Figure 1, which 

consists of two parts, phase I and phase II. 

In phase I, data are collected and the 
efficiencies of each DMU in a desired 

period are measured and are stabilized 

using a proper control chart. The needed 
parameters are also estimated in this 

phase. In phase II and based on the 

estimated parameters, another control 
chart is designed to detect abnormal 

states. The details of these two phases are 

as follows: 

 

Phase I: 

Step 1: Collecting Data 

In DEA, a DMU is regarded as an entity 
responsible for converting inputs into 

outputs and whose performance has to be 

evaluated [25]. Therefore, for 𝑗𝑡ℎDMU, a 

historical data set of input and output 
variables should be collected over the 

time. That is, for m   input variables and s  

output variables, the data set would be: 

 
1,..., ,

,
r 1,...,s, 1,...,it rt
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Figure 1. The block diagram of the model 
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where, 
it

jx  is 
thi input of thj DMU at 

tht  

period of time and 
rt

jy is thr output of thj

DMU at 
tht period of time. 

 

Step 2: Measuring efficiencies 

Basic DEA models are categorized into 
two main categories: efficiency models 

and ranking models. In this step and in 

order to discriminant the performances 

over the time more efficient, the ranking 
models are utilized. Therefore, supper 

efficiency DEA model is used for 𝑗𝑡ℎDMU 

over the time ( 1,...,t T ) [26]: 

 

1

1

 1
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s t y y r s
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



 



  






 

where, 
o

j

t is super efficiency score for 

𝑗𝑡ℎDMU at 
th

ot  period of time. 

 

Step 3: Designing control chart  

As there is one DEA score for each DMU 

in each period of time, it is better to use I-

MR control chart [16]. This control chart 
composes of a Shewhart X-chart to detect 

shifts in the process mean and a Shewhart 

moving range (MR)-chart to detect 
changes in the process variability [27]. The 

MR statistic is defined as: 

   
22 2 1 1 6

2
j

tZ

t
  



         
   

The control limits for the X chart is:  
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where, 
1

1 T
j j

t

tT
 



  ,
 

1
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t

j jMR MR
T







  

and 
j

j

MR

MR
S

H
 , where 1.128H   is 

Hartley’s constant used to convert mean 

moving range to a standard deviation [27]. 

There is only an upper limit for the 

moving range chart as:  

 3 4
j

jUCL MR   

Note that, Shewart control chart will not 

work well, if the quality characteristic does 

not follow normal distribution. In addition, 
this control chart will give misleading 

results in the form of too many false 

alarms, if there are correlations between 
data [16].  

In order to deal with the non-normal data 

set, the original data set should be 
transformed to approximately normal data 

set and then the control charts are 

computed for this new data set. Moreover, 

to deal with auto correlated data set, the 
time series model has to be used to remove 

the autocorrelation, and then the control 

charts are computed for the residuals [16]. 

 

Step 4: Stabilizing the process  

Each control chart displays a graphical 
view of the process stability or its 

instability. There are two types of 

variations in every process: special cause 

variations and common cause variations 
[30]. The control chart is developed to 

determine the existence of the special 

causes [27]. When special causes are not 
present in the process, the process is 

considered ‘stable’ otherwise it is 

classified as ‘unstable’ or ‘out of statistical 

control’ [31].  

Thus, in this step, DEA scores,
j

t , that are 

outside the control chart limits are 

examined for potential special causes. 

These special causes are then eliminated 

and new control chart are evaluated. If 
these special causes could not be 

eliminated, they are considered as 

common causes.  
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In sum, during this step, the special causes 
are detected are eliminated and then the 

control limits are updated. Therefore, the 

process is stabilized and a clean data set 

representing in-control performances is 
obtained. The mean and variance 

parameters are also estimated based on this 

new data set. These parameters are used in 
phase II [16].  

 

Phase II: Designing control chart  
As the main purpose of designing control 

chart in phase II is detecting any special 

causes in the performance quickly, in this 

step the exponentially weighted moving 
average (EWMA) control chart is 

developed based on DEA scores. The 

EWMA control chart was introduced by 
[31] and its statistic is defined as [16]: 

   
1

1 5
t

jj j

t tZ Z 


     

where 0 1   is a constant and 

0

j jZ  .  

Note that, the EWMA statistic can be 

viewed as a weighted average of all past 
and current scores, so it is insensitive to the 

non-normality assumption in data. In 

addition, it is an ideal control chart to 

monitor the individual scores. If 
j

t s are 

independent variables with variance
2  , 

then the variance of 
j

tZ  will be [16]:  

   
22 2 1 1 6

2
j

tZ

t
  



         
 

Therefore, the EWMA control chart limits 

would be as follows: 

 
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

          

 

where, L is the width of control limits and 

is usually obtained by Monte Carlo 

simulation.   is a design parameter 

specified by the user? While small value of 

  increases the charts sensitivity to small 

shifts in the performance mean, large value 

of   increase the chart sensitivity to large 

shifts ([31-33]).  

In order to examine the ability of the 
proposed model, in the next section a 

maintenance unit is selected and its 

performance over time are evaluated 
using the proposed model. 

 

 3. CASE STUDY 

Nowadays, one of the foundations in 
industries and production units is to utilize 

machineries and equipment efficiently. 

For increasing productivity and efficiency, 
companies should pay special attention to 

efficiency, maintenance costs and 

machinery failures. Evaluating the 

performance of maintenance units using 
DEA has been done by some researchers 

such as [32-34]. 

In this section, a real maintenance unit is 
used for better understanding of the 

proposed model and its main features. In 

this case, the efficiency of this unit over 
time (months) is evaluated and controlled. 

According to experts’ knowledge and 

historical data, the two inputs are the 

number of used pieces per month (
1

1

t
x ) and 

working hours per month (
2

1

t
x ). Three 

outputs, 
1 1 1

1 2 3,  ,  t t ty y y  are number of 

emergency activities per month (
1

1t
y ), 

number of preventive activities per month 

(
1

2 t
y ) and number of workers per month 

 (
1

3 t
y ). 

As aforementioned, in phase I of the 
proposed model, data are collected and the 

efficiencies of DMU in desired period of 

time are measured and stabilized using I-

MR chart. The needed parameters are also 
estimated in this phase. In phase II and 

based on the estimated parameters, 
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EWMA control chart is designed to detect 
abnormal states. For this DMU, these two 

phases are as follows:  

 

Phase I: 

Step 1: Collecting data 

The input and output data set,
 

  1 1 1, 1, 2, r 1,...,3, 1,...,36
it rt

S x y i t     

have been collected for 36 months  

( 1,...,36t  ). The summary of these data 

is presented in Table 1. 

Table 1: Summary of data collected in phase I 

Statistic 
  

   

Max 968 96 2.585 0.755 0.076 

Min 142 50 0.324 0.279 0.014 

Mean 705 63 0.983 0.543 0.029 

 
Table 2: Efficiency scores for 36 months in phase I 

Efficiency 

scores 
Month 

Efficiency 

scores 
Month 

1.32 19 0.99 1 

0.80 20 0.64 2 

0.77 21 0.70 3 

0.43 22 0.68 4 

0.37 23 0.45 5 

0.36 24 0.57 6 

2.52 25 0.44 7 

0.87 26 0.47 8 

0.45 27 0.86 9 

0.56 28 0.51 10 

0.79 29 0.46 11 

0.98 30 0.52 12 

0.29 31 0.96 13 

0.65 32 0.55 14 

0.67 33 0.85 15 

1.28 34 1.31 16 

0.65 35 0.71 17 

1.60 36 0.70 18 

 

Step 2: Measuring efficiencies 
In this step and to measure performances 

over time, the ranking model (model 1) are 

applied on 
1S  and the obtained efficiency 

scores for 36 months are reported in Table 

2.  

 

Step 3: Designing control chart  

In this step, the I-MR control chart is 

designed for stabilizing the process. 
However, the normality and 

autocorrelation assumption must be 

checked before handed.   Figure 2 is 

depicted to show the autocorrelation 
function between the efficiencies in Table 

2.  Clearly, these data are independent. The 

normality assumption is checked using 
normal probability plot (Figure 3) and the 

result shows that the efficiency scores do 

not follow the normal distribution. Several 
transformation methods are used to 

normalize these data and based on the 

results, Box-Cox transformation method 

(Eq.8) is selected for normalization. 
 

 

1

1

t
x

2

1

t
x 1

1ty 1

2 ty 1

3 ty
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Figure 2. The autocorrelation function for efficiency scores in phase I 

 

 
Figure 3. Normal probability plot for efficiency scores  

 

 
Figure 4. Box-Cox transformation 

 

 

 

 

 



Izadbakhsh et al./ IJDEA Vol.10, No.2, (2022), 13-30 

 

20 

  
 

1
,

 1  

 

0

8

Lambda
j

t
j

t Lambda
Lambda G

Lambda













 

where, G  is Geometric mean of all the 

data. The optimum value of Lambda  is 

calculated via Minitab software, as it is 

shown in Figure 4. Using the optimum 

value of Lambda , 0.5Lambda   , the 

normalized efficiency scores for phase I 

are obtained (Table 3). Figure 5 checks the 
normality assumption of the transformed 

data.  

Now, the I-MR control chart can be 

developed based on the normalized 
efficiency scores. This control chart is 

depicted in Figure 6. As it is shown in this 

figure, there is one out of control situation, 
which is going to be analyzed in the next 

step.  

 

 

 
Figure 5. Normal probability plot for the normalized efficiency scores   

 

 
Figure 6. I-MR control chart for normalized efficiency scores of phase I 
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Table 3: Normalized efficiency scores  
Normalized 

Efficiency 

scores 
Month 

Normalized 

Efficiency 

scores 

Month 

0.87039 19 1.00504 1 

1.11803 20 1.25000 2 

1.13961 21 1.19523 3 

1.52499 22 1.21268 4 

1.64399 23 1.49071 5 

1.66667 24 1.32453 6 

0.62994 25 1.50756 7 

1.07211 26 1.45865 8 

1.49071 27 1.07833 9 

1.33631 28 1.40028 10 

1.12509 29 1.47442 11 

1.01015 30 1.34840 12 

1.85695 31 1.02062 13 

1.24035 32 1.34840 14 

1.22169 33 1.08465 15 

0.88388 34 0.87370 16 

1.24035 35 1.18678 17 

0.79057 36 1.19523 18 

 

Step 4: Stabilizing the process  
As mentioned before, in this step the out of 

control statuses are examined for the 

potential especial causes. As it is shown in 
Figure 6, the 25th month is out of control. 

The analyses mainly show that the 

corresponding efficiency scores could be 

eliminated because of existing special 
cause. The control limits are then updated 

and the new I-MR chart is plotted in Figure 

7. In this new chart, it is observed that 
there is another out of control situation in 

31st month. Similarly, the analyses show 

that the corresponding efficiency scores 
could be eliminated because of existing 

especial cause.  The new I-MR chart is 

updated and is plotted in Figure 8. As it is 

shown in this figure, there is no out of 
control situation and the process could be 

considered as stable. 

Once the I-MR control chart is in control, 
the mean and standard variation of 

efficiency scores could be estimated. 

These values are 
1 1.23   and 

ˆ 0.19  .  

In the next phase, the EWMA control chart 
is developed to detect abnormal states, 

more efficient. 

Phase II: 
As the main purpose of designing control 

chart in phase II is detecting any special 

causes quickly, in this step the EWMA 

control chart is developed based on DEA 
scores. Hence, a new set of data for 36 

months is collected for developing and 

accessing this control chart. A summary of 
these data are shown in Table 4. Efficiency 

scores for these months (DMUs) are also 

presented in Table 5. 
Before developing EWMA control chart, 

the normality and autocorrelation 

assumption must be checked. Figure 9 is 

depicted to show the autocorrelation 
function between the efficiencies in Table 

5.  Clearly, these data are independent. The 

normality assumption is checked using 
normal probability plot (Figure 10). The 

result shows that the efficiency scores do 

not follow the normal distribution. Using 

Box-Cox, the optimum value of transfer 
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parameter (Lambda) is -0.5 (Figure 11). 
The normalized efficiency scores for phase 

II using this parameter is shown in Table 

6. Figure 12 shows that these new 
efficiency scores have normal distribution. 

 

Table 4: Summary of data collected in phase II 

Statistic 
  

   

Max 1001 104 2.2 1 0.1 

Min 206 32 0.15 0.309 0.004 

Mean 658 78 0.698 0.669 0.1 

 
Table 5: Efficiency scores of DMUs in phase II 

Efficiency 

scores 

Month Efficiency 

scores 
Month 

0.45 19 0.95 1 

0.52 20 0.85 2 

0.66 21 0.95 3 

0.52 22 0.40 4 

1.40 23 0.50 5 

0.30 24 1.05 6 

1.06 25 0.78 7 

0.42 26 1.46 8 

0.37 27 0.98 9 

3.56 28 0.66 10 

0.42 29 1.10 11 

1.11 30 0.64 12 

 

 

 
Figure 7. I-MR control chart 
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Figure 8. I-MR control chart 

 

 
Figure 9. The autocorrelation function for efficiency scores in phase II 

 

 
Figure 10. Normal probability plot of efficiency scores of phase II. 
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 Figure 11. Box-Cox transformation 

 

 
Figure 12. Normal probability plot of normalized efficiency scores in phase II 

 

 
Figure 13. EWMA control chart for normalized efficiency scores of phase II 
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Table 6: Normalized efficiency scores of phases II 
Normalized 

Efficiency 

scores 

Month 
Normalized 

Efficiency 

scores 

Month 

1.49071 19 1.02598 1 

1.38675 20 1.08465 2 

1.23091 21 1.02598 3 

1.38675 22 1.58114 4 

0.84515 23 1.41421 5 

1.82574 24 0.97590 6 

0.97129 25 1.13228 7 

1.54303 26 0.82761 8 

1.64399 27 1.01015 9 

0.53000 28 1.23091 10 

1.54303 29 0.95346 11 

1.94916 30 1.25000 12 

1.37361 31 1.31306 13 

1.20386 32 1.02598 14 

1.42857 33 1.08465 15 

0.42857 34 1.02598 16 

1.05409 35 1.58114 17 

1.09109 36 1.41421 18 

 

Using the estimated parameters in phase I, 
1 1.23   and ˆ 0.19  , the EWMA 

control chart settings are as follows:  

 
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 
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t
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CL

LCL L










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



   


       

       

 

where, 3L   and 0.2  .  

Figure 13 shows the EWMA control chart 

based on these data. As it is shown in this 
figure, 15th, 17th, and 27th months are 

found as out of control state.  

 

4. CONCLUSION 
Nowadays, evaluating the performance 

has an important role in improving the 

efficiency and productivity organizations. 
Therefore, this paper presents an 

integrated model based on DEA and 

control charts for evaluating and 
controlling performance. This is done in 

two phases. In phase I, the performance of 

unit(s) over time is stabilized and in phase 

II, abnormal states are detected quickly. 
The I-MR control chart along with EWMA 

control chart is used in these two phases. 

A real case study consists of the 
performance values of a maintenance unit 

over time are used to evaluate the proposed 

model. This paper has some potential 

future work: Different control charts could 
be used and has to be studied on DEA 

results. Proposed methodology can be also 

developed for other organizations. Multi-
stage control charts can be integrated with 

network DEA models, as well. Non-

parametric control charts can also be used 
and results can be compared with the 

proposed model.   

In sum, this paper integrates DEA, a well-

known approach in performance 

assessment and SPC, a set of tools for 

controlling and improving. The 

advantages of this integration are DEA 

results could be monitored through control 

limits, applications of SPC could be 
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extended by this integration especially in 

the DEA applications and this integration 

is an attractive area for future research.  
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