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Abstract 

Data envelopment analysis is an efficiency evaluation method for assessing DMUs. In this 

context, ranking efficient DMUs is very important. So far, various models have been provided 
for this purpose. According to the results of these methods, it could be seen that the ranks 

obtained for each DMU will vary. Due to this issue, we cannot provide a specific method to 

specify ranking method to DM. In order to solve this problem, this paper employs the Rough 
Set theory to determine the compatibility or incompatibility of these methods together and 

thus provide the appropriate ranking among the existing methods. 
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1. Introduction  
It is often necessary in real performance 

assessment practice to rank a group of 

decision making units (DMUs) in terms of 

their efficiencies. Data envelopment 
analysis (DEA) developed by Charnes et 

al. [1] has been universally recognized as 

a useful tool of performance assessment, 
but very often more than one DMU is 

evaluated as DEA efficient, which makes 

DEA efficient units unable to be compared 

or ranked. 
To rank DEA efficient units, quite a lot of 

research has been done and many ranking 

methodologies have been suggested in the 
DEA literature. For example, Andersen 

and Petersen [2] proposed a procedure that 

was later referred to as the super-
efficiency method for ranking DEA 

efficient units. Super-efficiency refers to 

the DEA efficiency measured by 

excluding the DMU under evaluation from 
the constraints of DEA models and has 

been deeply researched in the literature [3, 

4, 5 and 6]. This paper employs the Rough 
Set theory to determine the compatibility 

or incompatibility of these methods 

together and thus provide the appropriate 
ranking among the existing methods. 

The following is organized as follows. In 

Section 2, we present a literature review on 

DEA ranking. In section 3 we introduce 
DEA and CCR model. In section4, we 

explain rough set theory. In section 5 we 

have proposed method. Finally, in section 
6 we have conclusion. 

 

2. Literature review 

Jahanshahloo et al. [7] proposed a ranking 
system to rank DEA efficient units in 

terms of their influences on DEA 

inefficient units. The influence of a DEA 
efficient unit on DEA inefficient units is 

measured by the efficiency change of DEA 

inefficient units before and after the DEA 
efficient unit is excluded from their 

reference set. The DEA efficient unit that 

can cause the biggest efficiency change of 

DEA inefficient units when it is removed 

from their reference set is deemed as the 
most important DMU.  

 In the first stage, DEA was performed to 

distinguish between DEA efficient and 

inefficient units. In the second stage, the 
discriminant analysis was performed to 

provide a score function for the two sets, 

efficient and inefficient, based on the 
linear combination of all inputs and 

outputs. 

Friedman and Sinuany-Stern [8] utilized 

the canonical correlation analysis to 
provide a single weight vector for inputs 

and outputs, respectively, common to all 

DMUs. They first constructed a composite 
input variable as a linear combination of 

inputs and a composite output variable as 

a linear combination of outputs, and then 
maximized the coefficient of correlation 

between the composite input and the 

composite output to generate a common 

set of weights. 
The efficiencies of DMUs were defined 

with the obtained common weights as the 

ratio of the composite output to the 
composite input. Based upon the 

efficiencies defined with the common 

weights, all DMUs were ranked.  

 

3. CCR model  

Suppose that there are n DMUs to be 

evaluated in terms of m inputs and s 

outputs. Let 𝑥𝑖𝑗(𝑖 = 1, … , 𝑚) and 𝑦𝑟𝑗(𝑗 =

1, … , 𝑛) be the input and output values of 
DMUj ( j=1,…,n). Then the efficiency of 

DMUj can be defined as  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒    𝜃 

𝑠. 𝑡  ∑ 𝜆𝑗𝑥𝑖𝑗
𝑛
𝑗=1 ≤ Ɵ𝑥𝑖𝑜   ,  𝑖 = 1, … , 𝑚 

       ∑ 𝜆𝑗
𝑛
𝑗=1 𝑦𝑟𝑗 ≥ 𝑦𝑟𝑜 ,  𝑟 = 1, … , 𝑠   (1)     

       𝜆𝑗 ≥ 0      ,        𝑗 = 1, … , 𝑛      

 
The above model is introduced as input 

oriented CCR model. LP model (1) is 

solved n times in total, each time for one 
DMU. As a result, at least one DMU is 

evaluated as DEA efficient, but very often 

more than one DMU proves to be DEA 

efficient. How to distinguish between 
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DEA efficient units has long been a 
research topic and attracted considerable 

interest in the DEA literature. In the 

following section, we introduce Rough Set 

Theory (RST) combining whit DEA, thus 
provide the appropriate ranking among the 

existing methods. 

 

4. Rough Set Theory 

 4.1. Information system 

Formally, an information system IS (or an 

approximation space) could be seen as a 

system 𝐼𝑆(𝑈, 𝐴)[9, 10 and 11]. Where U is 

the universe (a finite set of objects, U= 

{𝑥1, 𝑥2, … , 𝑥𝑛}) and A is the set of 
attributes (features, variables). Each 

attribute 𝑎 ∈A (attribute a belonging to the 

considered set of attributes A. defines an 

information function 𝑈→𝑉𝑎, where 𝑉𝑎 is 
the set of values of a, called the domain 

attribute a. For example, measurements 

performed for 4 objects. The results can be 

organized in a matrix (4 × 3). 

 

2 1 3 

3 2 1 

2 1 3 

2 2 3 
 

Using the terminology of the rough sets 
theory, this data set can be considered as 

an information system IS= (U, A), where 

universe U and attributes A correspond to 
the set of objects and to the set of variables, 

respectively: 

                  𝑈 = {𝑥1, 𝑥2, 𝑥3 , 𝑥4} 

      𝐴 = {𝑎1, 𝑎2, 𝑎3}  
 

   The domains of the particular attributes 

are: 

      𝑉1 = {2,3} 
      𝑉2 = {1,2} 

      𝑉3 = {1,3}.  
 

i.e., the domain of each attribute is the set 

of values of this attribute. The information 

function 𝑓𝑎 for this system is presented in 

Table 1. 

 

 
           Table 1: Information system 

U 𝑎1 𝑎2 𝑎3 

𝑥1 2 1 3 

𝑥2 3 2 1 

𝑥3 2 1 3 

𝑥4 2 2 3 

 

4.2. Indiscernibility relation 

For every set of attributes 𝐵 ⊂ 𝐴, an 
indiscernibility relation Ind (B) is defined 

in the following way: 

Two objects, 𝑥1 and  𝑥2 , are indiscernible 

by the set of attributes B in A, if 𝑏(𝑥𝑖) =
𝑏(𝑥𝑗) for every 𝑏 ⊂ 𝐵. The equivalence 

class of Ind (B) is called elementary set in 
B because it represents the smallest 

discernible groups of objects. For any 

element 𝑥1 of U, the equivalence class of 

𝑥1 in relation Ind (B) is represented as 

[𝑥𝑖]𝐼𝑛𝑑(𝐵). The construction of elementary 

sets is the first step in classification with 

rough sets.  

  

4.3. Lower and upper approximations 
   Let X denote the subset of elements of 

the universe U(𝑋 ⊂ 𝑈). The lower 

approximation of X in   𝐵(𝐵 ⊆ 𝐴) denoted 

as 𝐵𝑋, is defined as the union of all these 

elementary sets which are contained in X. 
More formally: 

    𝐵𝑋 = {𝑥𝑖 ∈ 𝑈|[𝑥𝑖]𝐼𝑛𝑑(𝐵) ⊂ 𝑋} 

 

The above statement is to be read as: the 

lower approximation of the set X is a set of 

objects 𝑥𝑖, which belongs to the 

elementary sets contained in X (in the 

space B). 

   The upper approximation of the set X, 
denoted as BX, is the union of these 

elementary sets, which have a non-empty 

intersection with X: 

  𝐵𝑋 = {𝑥𝑖 ∈ 𝑈|[𝑥𝑖]𝐼𝑛𝑑(𝐵) ∩ 𝑋 ≠ ∅} 
 

For any object x of the lower 

approximation of X (i.e.,𝑥𝑖 ⊂ 𝐵𝑋), it is 

certain that it belongs to X. For any object 
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x of the upper approximation of X (i.e., 

𝑥𝑖 ⊂ 𝐵𝑋), we can only say that 𝑥𝑖 may 

belongs to X. The difference: 

 𝐵𝑁𝑋 = 𝐵𝑋 − 𝐵𝑋 

is called a boundary of X in U.  

   If the lower and upper approximation are 

identical (i.e.,𝐵𝑋 = 𝐵𝑋), then set X is 

definable, otherwise, set X is indefinable in 
U. There are four types of indefinable sets 

in U: 

1. If 𝐵𝑋 ≠ ∅ and BX≠U, X is called 

roughly definable in U; 

2. If 𝐵𝑋 ≠ ∅ and BX=U, X is called 

externally indefinable in U; 

3. If 𝐵𝑋 = ∅ and BX≠U, X is called 

internally indefinable in U; 

4. If 𝐵𝑋 = ∅  and BX=U, X is called 

totally indefinable in U, 

Where ∅ denotes an empty set. 
 

4.4. Independence of attributes 

In order to check, whether the set of 
attributes is independent or not, one checks 

for every attribute whether its removal 

increases the number of elementary sets in 

the IS or not. 

If Ind (A) =Ind (A-𝑎𝑖) then the attribute 𝑎𝑖 

is called superfluous. Otherwise, the 

attribute 𝑎𝑖 is in-dispensable in A. 
 

4.5. Core and reduct of attributes 

If the set of attributes is dependent, one can 

be interested in finding all possible 
minimal subsets of attributes, which lead 

to the same number of elementary sets as 

the whole set of attributes (reducts) and in 
finding the set of all indispensable 

attributes (core). 

The concepts of core and reduct are two 
fundamental concepts of the rough sets 

theory. The reduct is the essential part of 

an IS, which can discern all objects 

discernible by the original IS. The core is 
the common part of all reducts. To 

compute reducts and core, the 

discernibility matrix is used. The 
discernibility matrix has the dimension 

n×n, where n denotes the number of 

elementary sets and its elements are 
defined as the set of all attributes which 

discern elementary sets [𝑥]𝑖and [𝑥]𝑗 . 

 Boolean function, constructed in the 
following way: to each attribute from the 

set of attributes, which discern two 

elementary sets, (e.g.,{𝑎1, 𝑎2, 𝑎3}), we 
assign a Boolean variable ‘a’, and the 

resulting Boolean function attains the form 

(𝑎1 + 𝑎2 + 𝑎3) or it can be presented as 

(𝑎1ˬ𝑎2ˬ𝑎3) If the set of attributes is empty, 
we assign to it the Boolean constant 1.  

 

Table2: Discernibility matrix 
 Set1 Set2 Set3 Set

4 

Set

5 

Set

1 
     

Set

2 

a1,a2,a

3 

    

Set

3 

a2 a1,a3    

Set

4 

a1,a3 a1,a2,a

3 

a1,a2,a

3 

  

Set

5 

a1,a3 a1,a2,a

3 

a1,a2,a

3 

a3  

 

For the discernibility matrix presented in 

Table 2, the discernibility function has the 
following form: 
 

𝑓(𝐴) = (𝑎1 + 𝑎2 + 𝑎3)𝑎2(𝑎1 + 𝑎3)(𝑎1 + 𝑎3) 

                       × (𝑎1 + 𝑎3)(𝑎1 + 𝑎2 + 𝑎3)(𝑎1 + 𝑎2 + 𝑎3)            

                       × (𝑎1 + 𝑎2 + 𝑎3)(𝑎1 + 𝑎2 + 𝑎3)            

                       × 𝑎3          . 

To calculate the final form of f (A), the 

absorption law is applied. According to the 

absorption law, if the elementary set 1 

differs from the elementary set 2 due to the 

attributes 𝑎1, 𝑎2, 𝑎3 , and from the 

elementary set 3 due to the attribute 𝑎2 , it 

is enough to take into the account the 

attribute 𝑎2 only, which  discerns this set 

from both set 2 and set 3, i.e.: 

(𝑎1 + 𝑎2 + 𝑎3)𝑎2 = 𝑎2. 
 

One has to take into account the following 

sets of attributes: 
{𝑎2} , {𝑎1, 𝑎2, 𝑎3} , {𝑎1, 𝑎3} , {𝑎1, 𝑎3}  
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Then, the discernibility function attains the 

following form: 
(𝑎2)(𝑎1 + 𝑎2 + 𝑎3)(𝑎1 + 𝑎3)(𝑎1 + 𝑎3) =
𝑎2(𝑎1 + 𝑎3) = 𝑎2𝑎1 + 𝑎2𝑎3  
 
   Then reducts are as follows: 

                      {𝑎2, 𝑎1} 

                      {𝑎2, 𝑎3} 

It means that minimal sets of attributes 

contain: 𝑎2, 𝑎1   or     𝑎2, 𝑎3. 

And the core contains:   𝑎2. 
 

5. Proposed method 

In this method we have used five ranking 

methods for 50 DMUs using 3 inputs to 

produce 4 outputs. Ranking methods that 
we discuss contains AP, MAJ, LJK, Super 

SBM and 𝑙1 − 𝑛𝑜𝑟𝑚. These models are as 

follows: 
 

1) AP model: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒    𝜃 
𝑠. 𝑡    ∑ 𝜆𝑗

𝑛
𝑗=1
𝑗≠0

𝑥𝑖𝑗 ≤ 𝜃𝑥𝑖𝑜   ,   𝑖 = 1, … , 𝑚  

         ∑ 𝜆𝑗
𝑛
𝑗=1
𝑗≠0

𝑦𝑟𝑗 ≥ 𝑦𝑟𝑜    ,    𝑟 = 1, … , 𝑠      (1)     

          𝜆𝑗 ≥ 0  ,     𝑗 = 1, … , 𝑛     ,      𝑗 ≠ 0 

 

2) MAJ model: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒      1 + 𝑤0 
𝑠. 𝑡   ∑ 𝜆𝑗

𝑛
𝑗=1
𝑗≠0

𝑥𝑖𝑗 ≤ 𝑥𝑖𝑜 + 𝑤0   , 𝑖 = 1, … , 𝑚  

          ∑ 𝜆𝑗𝑦𝑟𝑗
𝑛
𝑗=1
𝑗≠0

≥ 𝑦𝑟𝑜   , 𝑟 = 1, … , 𝑠         (2)   

         𝜆𝑗 ≥ 0  , 𝑗 = 1, … , 𝑛   ,   𝑗 ≠ 0 

 

3) LJK model: 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒      1 +
1

𝑚
∑

𝑠𝑖2
+

𝑅𝑖
−

𝑚
𝑖=1   

 𝑠. 𝑡  ∑ 𝜆𝑗𝑥𝑖𝑗
𝑛
𝑗=1
𝑗≠0

≤ 𝑥𝑖𝑜 + 𝑆𝑖2
+   ,   𝑖 = 1, … , 𝑚  

          ∑ 𝜆𝑗𝑦𝑟𝑗
𝑛
𝑗=1
𝑗≠0

≥ 𝑦𝑟𝑜  ,    𝑟 = 1, … , 𝑠        (3) 

   𝜆𝑗, 𝑆𝑖2
+ ≥ 0    ,   𝑗 = 1, … , 𝑛 , 𝑗 ≠ 0   

 

4) Super SBM model: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒      
1

𝑚
∑

𝑥𝑖𝑜̅̅ ̅̅

𝑥𝑖𝑜

𝑚

𝑖=1

   

𝑠. 𝑡   ∑ 𝜆𝑗𝑋𝑗
𝑛
𝑗=1
𝑗≠0

≤ �̅�                        (4) 

         ∑ 𝜆𝑗𝑌𝑗
𝑛
𝑗=1
𝑗≠0

≥ �̅�  

         𝑋0 ≤ �̅�    𝑎𝑛𝑑    𝑌0=�̅� 
         λ≥0.     
                                      

5) 𝒍𝟏 − 𝒏𝒐𝒓𝒎 model: 

Minimize  Γc
0(X, Y) = ∑ xi

m

i=1

− ∑ yr

s

r=1

+ α 

𝑠. 𝑡  ∑ 𝜆𝑗𝑥𝑖𝑗
𝑛
𝑗=1
𝑗≠0

≤ 𝑥𝑖  , 𝑖 = 1, … , 𝑚     n 

         ∑ 𝜆𝑗𝑦𝑟𝑗 ≥ 𝑦𝑟𝑜  
𝑛
𝑗=1
𝑗≠0

 ,   𝑟 = 1, … , 𝑠        (5) 

       𝑥𝑖 ≥ 𝑥𝑖𝑜                     ,       𝑖 = 1, … , 𝑚 

      0 ≤ 𝑦𝑟 ≤ 𝑦𝑟𝑜            ,       𝑟 = 1, … , 𝑠 

         𝜆𝑗 ≥ 0          ,        𝑗 = 1, … , 𝑛  , 𝑗 ≠ 0   

 

Data are illustrated in table 3. Using inputs 

and outputs of table 3 for all DMUs to the 
ranking methods in the input oriented and 

linear forms, the results are illustrated in 

table 4. 
 

 
 

Table3: Inputs and outputs 

 𝑰𝟏 𝑰𝟐 𝑰𝟑 𝑶𝟏 𝑶𝟐 𝑶𝟑 𝑶𝟒 

𝑫𝑴𝑼𝟏 6.8176 73.3712 27.514 11.6299 40.112 131.481 72.962 

𝑫𝑴𝑼𝟐 6.4759 58.1469 25.9553 7.3154 64.4024 117.684 59.2133 

𝑫𝑴𝑼𝟑 7.0749 37.5742 18.2163 14.6737 77.4713 179.39 50.0939 

𝑫𝑴𝑼𝟒 9.6416 54.9204 23.1552 18.5383 37.3602 150.28 65.9272 

𝑫𝑴𝑼𝟓 5.1673 28.0567 19.9884 5.3657 89.1125 109.616 77.1309 

𝑫𝑴𝑼𝟔 7.9737 62.1998 29.7654 16.3677 77.056 153.742 86.5724 
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𝑫𝑴𝑼𝟕 9.1299 60.4314 15.4367 16.4505 72.9396 174.541 33.0599 

𝑫𝑴𝑼𝟖 9.0335 53.2831 18.4318 14.7432 34.2023 122.852 79.5042 

𝑫𝑴𝑼𝟗 7.9733 20.6806 11.7678 10.6197 41.0915 89.073 62.9989 

𝑫𝑴𝑼𝟏𝟎 10.4028 74.5141 27.2702 6.3051 42.2523 90.194 41.21 

𝑫𝑴𝑼𝟏𝟏 10.535 40.5029 15.175 18.1169 42.2251 202.929 22.1656 

𝑫𝑴𝑼𝟏𝟐 7.5216 78.951 20.0106 6.1621 65.3723 209.954 61.1574 

𝑫𝑴𝑼𝟏𝟑 10.2736 69.4222 16.6756 4.8153 56.614 67.067 21.223 

𝑫𝑴𝑼𝟏𝟒 5.4337 70.8021 20.5875 16.1399 80.1004 173.738 40.7647 

𝑫𝑴𝑼𝟏𝟓 5.5442 41.7202 21.0456 3.4914 65.7695 205.279 68.7887 

𝑫𝑴𝑼𝟏𝟔 11.5346 34.8871 24.418 15.6982 76.0163 69.049 31.9358 

𝑫𝑴𝑼𝟏𝟕 8.933 52.9791 21.6323 23.3369 54.541 138.702 38.92 

𝑫𝑴𝑼𝟏𝟖 7.4159 39.0299 15.9866 19.5988 44.7819 68.487 60.3163 

𝑫𝑴𝑼𝟏𝟗 9.0213 30.8964 26.7954 19.6459 60.7929 134.65 55.9545 

𝑫𝑴𝑼𝟐𝟎 8.8467 18.9441 7.5775 3.1479 76.7046 186.468 23.3778 

𝑫𝑴𝑼𝟐𝟏 7.3275 51.6098 18.4259 23.1998 58.5752 149.995 21.6579 

𝑫𝑴𝑼𝟐𝟐 10.325 74.2512 5.6157 9.4975 83.4719 84.576 22.4143 

𝑫𝑴𝑼𝟐𝟑 9.5811 32.9693 25.6034 5.2755 41.0002 104.01 39.4723 

𝑫𝑴𝑼𝟐𝟒 8.032 51.9184 6.3562 22.0525 66.9434 113.452 41.1571 

𝑫𝑴𝑼𝟐𝟓 7.4556 76.921 11.3744 5.3221 68.5176 155.559 81.0507 

𝑫𝑴𝑼𝟐𝟔 9.8495 51.2309 12.1209 15.4141 36.4931 103.63 74.5299 

𝑫𝑴𝑼𝟐𝟕 7.3196 35.4983 11.3819 6.3377 73.7703 104.143 83.5581 

𝑫𝑴𝑼𝟐𝟖 7.6452 54.2627 11.4367 8.4409 59.7899 189.691 69.9514 

𝑫𝑴𝑼𝟐𝟗 9.676 27.3091 20.3611 11.618 76.1819 178.174 34.5995 

𝑫𝑴𝑼𝟑𝟎 9.0625 23.1278 16.393 19.1899 87.4956 146.727 61.6551 

𝑫𝑴𝑼𝟑𝟏 8.6929 74.421 15.2862 23.9441 38.5084 134.786 46.5696 

𝑫𝑴𝑼𝟑𝟐 7.3124 53.2943 7.2791 18.9503 43.6247 101.13 60.5453 

𝑫𝑴𝑼𝟑𝟑 9.7168 27.9953 17.0014 4.5951 60.9729 125.273 66.0234 

𝑫𝑴𝑼𝟑𝟒 7.8431 43.9414 20.2221 19.8725 58.922 187.581 78.1689 

𝑫𝑴𝑼𝟑𝟓 5.003 59.3118 11.6088 3.8512 83.8574 155.887 28.5481 

𝑫𝑴𝑼𝟑𝟔 6.9213 31.869 12.2079 4.6227 45.8385 156.968 51.5049 

𝑫𝑴𝑼𝟑𝟕 8.0415 46.3159 11.65 14.0104 79.3883 136.409 57.0493 

𝑫𝑴𝑼𝟑𝟖 10.6827 59.8838 5.601 23.0456 43.3045 91.963 22.8577 

𝑫𝑴𝑼𝟑𝟗 5.9878 67.3408 23.15 4.803 85.8556 144.941 59.8431 

𝑫𝑴𝑼𝟒𝟎 8.9922 79.2689 16.2452 16.9509 41.2918 144.971 33.9221 

𝑫𝑴𝑼𝟒𝟏 6.0944 71.5173 19.6405 7.3298 56.5796 172.643 42.2892 

𝑫𝑴𝑼𝟒𝟐 8.9529 17.0637 24.825 7.3806 45.0912 194.714 77.228 

𝑫𝑴𝑼𝟒𝟑 4.9999 54.8167 14.5489 19.4217 51.442 95.339 39.5136 

𝑫𝑴𝑼𝟒𝟒 7.7706 62.1049 17.7911 23.4604 37.3905 117.852 21.63 

𝑫𝑴𝑼𝟒𝟓 12.2963 62.3651 12.2726 21.9064 60.0036 128.66 39.4824 

𝑫𝑴𝑼𝟒𝟔 8.4139 15.9147 8.7871 9.5354 49.1705 173.095 86.3274 

𝑫𝑴𝑼𝟒𝟕 8.6348 21.5584 6.9205 23.6945 74.6365 154.293 51.2345 

𝑫𝑴𝑼𝟒𝟖 7.7384 26.3013 13.6584 10.2546 61.2353 130.634 39.7003 

𝑫𝑴𝑼𝟒𝟗 10.3548 48.7574 27.7103 17.812 79.1982 87.971 83.4978 

𝑫𝑴𝑼𝟓𝟎 10.2744 77.9046 8.2335 21.9547 39.4692 110.23 79.6506 
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   We used Rough Set Theory for scores of 

ranking methods as attributes and DMUs 

as objectives. 

 Table 4 illustrates scores of ranking 
methods for these DMUs. We used these 

methods for all efficient and inefficient 

DMUs. 

 

 

 

 
 

Table 4: Results 

 AP MAJ LJK SUPER 

SBM 

𝑳𝟏 

𝑫𝑴𝑼𝟏 0.87 1 1 1 0 

𝑫𝑴𝑼𝟐 0.72 1 1 1 0 

𝑫𝑴𝑼𝟑 1.01 1.09 1 1 0.09 

𝑫𝑴𝑼𝟒 0.73 1 1 1 0 

𝑫𝑴𝑼𝟓 1.56 4.83 1.12 1.28 4.37 

𝑫𝑴𝑼𝟔 0.92 1 1 1 0 

𝑫𝑴𝑼𝟕 0.81 1 1 1 0 

𝑫𝑴𝑼𝟖 0.83 1 1 1 0 

𝑫𝑴𝑼𝟗 0.82 1 1 1 0 

𝑫𝑴𝑼𝟏𝟎 0.36 1 1 1 0 

𝑫𝑴𝑼𝟏𝟏 0.86 1 1 1 0 

𝑫𝑴𝑼𝟏𝟐 0.89 1 1 1 0 

𝑫𝑴𝑼𝟏𝟑 0.44 1 1 1 0 

𝑫𝑴𝑼𝟏𝟒 1.23 2.23 1.03 1.08 1.23 

𝑫𝑴𝑼𝟏𝟓 1.4 3.71 1.08 1.17 2.83 

𝑫𝑴𝑼𝟏𝟔 0.62 1 1 1 0 

𝑫𝑴𝑼𝟏𝟕 0.83 1 1 1 0 

𝑫𝑴𝑼𝟏𝟖 0.96 1 1 1 0 

𝑫𝑴𝑼𝟏𝟗 0.84 1 1 1 0 

𝑫𝑴𝑼𝟐𝟎 1.2 4.57 1.06 1.16 6.16 

𝑫𝑴𝑼𝟐𝟏 1 1 1 1 0 

𝑫𝑴𝑼𝟐𝟐 1.38 3.12 1.02 1.13 2.12 

𝑫𝑴𝑼𝟐𝟑 0.47 1 1 1 0 

𝑫𝑴𝑼𝟐𝟒 1.01 1.06 1 1 0.09 

𝑫𝑴𝑼𝟐𝟓 1.04 1.31 1.01 1.02 0.39 

𝑫𝑴𝑼𝟐𝟔 0.8 1 1 1 0 

𝑫𝑴𝑼𝟐𝟕 1.11 2.02 1.03 1.07 1.63 

𝑫𝑴𝑼𝟐𝟖 1.03 1.26 1.01 1.01 0.33 

𝑫𝑴𝑼𝟐𝟗 0.87 1 1 1 0 

𝑫𝑴𝑼𝟑𝟎 1.08 2.5 1.01 1.03 2.28 

𝑫𝑴𝑼𝟑𝟏 0.84 1 1 1 0 

𝑫𝑴𝑼𝟑𝟐 1.1 1.72 1.02 1.04 0.87 
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𝑫𝑴𝑼𝟑𝟑 0.67 1 1 1 0 

𝑫𝑴𝑼𝟑𝟒 1.1 1.88 1.02 1.04 0.91 

𝑫𝑴𝑼𝟑𝟓 1.35 3.23 1.08 1.2 3.06 

𝑫𝑴𝑼𝟑𝟔 0.88 1 1 1 0 

𝑫𝑴𝑼𝟑𝟕 0.91 1 1 1 0 

𝑫𝑴𝑼𝟑𝟖 1.19 2.04 1.01 1.06 1.04 

𝑫𝑴𝑼𝟑𝟗 0.89 1 1 1 0 

𝑫𝑴𝑼𝟒𝟎 0.7 1 1 1 0 

𝑫𝑴𝑼𝟒𝟏 0.85 1 1 1 0 

𝑫𝑴𝑼𝟒𝟐 1.06 1.84 1.01 1.04 1.35 

𝑫𝑴𝑼𝟒𝟑 1.3 2.63 1.05 1.11 1.69 

𝑫𝑴𝑼𝟒𝟒 0.87 1 1 1 0 

𝑫𝑴𝑼𝟒𝟓 0.62 1 1 1 0 

𝑫𝑴𝑼𝟒𝟔 1.85 12 1.18 1.63 23 

𝑫𝑴𝑼𝟒𝟕 1.96 12 1.19 1.62 14 

𝑫𝑴𝑼𝟒𝟖 0.79 1 1 1 0 

𝑫𝑴𝑼𝟒𝟗 0.79 1 1 1 0 

𝑫𝑴𝑼𝟓𝟎 1.13 2.07 1.01 1.04 1.07 

 

Using rough set theory for this information 
system we obtained reduct as bellow: 

Reduct: {𝐴𝑃, 𝑀𝐴𝐽} 

 
It means that we can reduce set of 

attributes (ranking methods) and the reduct 

demonstrates minimal set of ranking 

methods. So AP and MAJ method are 
incompatible with each other so we can 

give to DM these two methods for ranking 

instead of all five methods. For this 
situation core and reducts are the same, 

since we have just one reduct. 

 

  6. Conclusion  
This paper employed the Rough Set theory 

to determine the compatibility or 

incompatibility of some of ranking 
methods together and thus provided the 

appropriate ranking among the existing 

methods.  We reduced set of attributes 
(ranking methods). So we demonstrated 

that AP and MAJ method are incompatible 

with each other so we can give to DM 

these two methods for ranking instead of 
all five methods. For this situation core 

and reducts are the same, since we have 

just one reduct. 
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