
 
Available online at http://ijdea.srbiau.ac.ir 

 
Int. J. Data Envelopment Analysis (ISSN 2345-458X) 

 

Vol.8, No.1, Year 2020 Article ID IJDEA-00422, 10 pages 
Research Article 

 

 

 
 

 

Ranking Decision Making Units with the Ideal 

and Anti-Ideal Points 
 

 

 

M. Khanmohammadi
*
 

 

 
Department of Mathematics, Islamic Azad University, Islamshahr branch, Tehran, Iran. 

 

 

 
Received 14 November 2019, Accepted 5 March 2020 

 

Abstract 

This paper introduces two virtual Decision Making Units (DMUs) called ideal point and anti-
ideal point, then calculates distances of each DMU to the ideal and anti-ideal point. The two 

distinctive distances are combined to form a comprehensive index called the relative closeness 

(RC) just like the TOPSIS approach. The RC index is used as an overall ranking for all the 
DMUs. Then, this method compares with AP [1], Wang et al. [2], and Wu [3] methods. The 

proposed method is more simple and better than other methods and also it doesn’t have 

drawbacks of the previous ranking methods. 
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1. Introduction 
Data Envelopment Analysis (DEA) 

proposed by Charnes et al. [4] (CCR 

model) and developed by Banker et al. [5] 

(BCC model) is an approach for evaluating 
the efficiencies of Decision Making Unit 

(DMU). The results of DEA models are an 

efficiency score equal to one to efficient 
DMUs and less than one to inefficient 

DMUs. 

DEA efficient DMUs are always believed 

to perform better than DEA inefficient 
DMUs. If a DEA efficient DMU, however, 

also has a poorer relative efficiency than a 

DEA inefficient DMU when they are both 
evaluated from the position of the worst 

possible relative efficiency, can we still 

say that the DEA efficient DMU performs 
better than the DEA inefficient DMU? In 

this situation, the conclusion is clearly 

uncertain. Therefore, there is a clear need 

to combine the best and the worst possible 
relative efficiencies to give a global 

evaluation of each DMU. 

Entani et al. [6] considered DEA 
efficiencies from both the optimistic and 

the pessimistic viewpoints. In their DEA 

models, the worst and the best possible 
relative efficiencies were utilized to 

constitute an interval. Their model for the 

computation of the worst possible relative 

efficiency, however, has a deadly 
drawback that it lost some information on 

inputs and outputs because only one input 

and one output data of the DMU under 
evaluation were effectively utilized and all 

the other input and output data did not 

work. 

Doyle et al. [7] and Entani et al. [6] 
considered DEA efficiencies from both the 

optimistic and the pessimistic points of 

view. Their models have similar structures 
and the computation of the worst possible 

relative efficiency have some significant 

drawbacks. Wang et al. [2] reconsider their 
models and have been found three main 

drawbacks. They conclude that the upper 

bound model of Doyle et al. [7] and Entani 

et al. [6] cannot reasonably measure the 

worst relative efficiencies of DMUs and 
cannot determine the inefficiency frontier. 

So, they developed a new DEA model with 

the constraint of the upper and lower 

bounds on efficiency. Their Bounded DEA 
model measures the performances of 

DMUs within the range of an interval and 

thus can effectively make the most of all 
the input and output data to measure both 

the best and the worst relative efficiencies 

of DMUs. It can therefore identify both the 

efficiency and inefficiency frontiers. 
Wang et al. [8] evaluated DEA efficiency 

problems by a different way. They 

introduced two virtual DMUs, the ideal 
DMU (IDMU) and the anti-ideal DMU 

(ADMU) into DEA model. The two virtual 

DMUs are used to create two DEA models 
for the calculation of the best possible and 

the worst possible relative efficiencies. 

The two distinctive efficiencies are 

integrated using the well-known TOPSIS 
approach in multiple attribute decision 

making (MADM) to generate a composite 

index called the relative closeness (RC) to 
the IDMU. The RC index will be used as 

the overall assessment of each DMU, 

based on which a complete ranking for all 
the DMUs can be produced very simply.  

Wu [3] focused on the efficiencies and 

ranking method of Wang and Luo [8]. 

Then, he discovered that their method is 
problematic in employing the negative 

ideal point (NIP) for DEA computation. 

TOPSIS is based on the idea that 
alternatives should be selected that have 

the shortest distance from the positive 

ideal solution (PIS) and the farthest 

distance from the negative ideal solution 
(NIS). The PIS has the best measures over 

all points, while the NIS has the worst 

measures over all points. Wang and Luo 
[8] used the TOPSIS idea for a full ranking 

of DMUs. But the two DEA models using 

the positive ideal point (PIP) and the 
negative ideal point (NIP) are logically 

conflicted because the PIP measures rely 

on an input orientation while the NIP 

measures rely on an output orientation. 
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Hence, this is logically inconsistent if two 
different efficiency results are aggregated 

into the relative closeness for ranking, as 

proposed in [8]. Recognizing this problem, 

Wu [3] slightly revised the approach to 
determine the worst efficiency of the NIP 

so that it was logically acceptable for using 

both the PIP and the NIP. 
In this paper, two virtual DMUs, IDMU 

(an ideal DMU) and ADMU (an anti-ideal 

DMU) will be introduced into our model, 
and then we will propose a ranking method 

for all DMUs by IDMU, ADMU and 

TOPSIS approach. We try that the 

proposed ranking technique doesn’t have 
problems from the above articles’ 

drawbacks.    

We begin in the following section with an 
explanation about how to measure the best 

and worst performance of each DMU. 

Section 3 provides a proposed ranking 
method. Section 4 gives an example for 

compare our method with AP [8], Wang et 

al. [6] and Wu [7] methods. Finally, our 

conclusion is presented in Section 5. 

 
2. Background 

Presume that there are n  𝐷𝑀𝑈𝑠 to be 

evaluated, indexed by𝑗 = 1, . . . , 𝑛 and 

each 𝐷𝑀𝑈is assumed to produce s 

different outputs from m different inputs. 
Let the observed input and output vectors 

of 𝐷𝑀𝑈𝑜  be 𝑋𝑜 = (𝑥1𝑜 , . . . , 𝑥𝑚𝑜) and 

𝑌𝑜 = (𝑦1𝑜, . . . , 𝑦𝑠𝑜), respectively, provided 

that all components of vectors 𝑋𝑜 and 𝑌𝑜 
for all DMUs are non-negative and each 

DMU has at least one strictly positive 

input and output. The efficiency of 𝐷𝑀𝑈𝑜 

i.e., 𝐷𝑀𝑈 under consideration, and one 

comparative set of weights of inputs and 

outputs, can be calculated by the following 

𝐶𝐶𝑅 model associated to constant return to 
scale: 

𝛩𝑜
∗ = 𝑚𝑎𝑥 ∑ 𝑢𝑟𝑦𝑟𝑜

𝑠

𝑟=1

 

𝑠. 𝑡  ∑ 𝑣𝑖𝑥𝑖𝑜

𝑚

𝑖=1

= 1,               (1) 

∑ 𝑢𝑟𝑦𝑟𝑗

𝑠

𝑟=1

− ∑ 𝑣𝑖𝑥𝑖𝑗

𝑚

𝑖=1

≤ 0,  𝑗 = 1, … , 𝑛, 

𝑣𝑖 ≥ 𝜀 > 0,   𝑖 = 1, … , 𝑚, 
𝑢𝑟 ≥ 𝜀 > 0,   𝑟 = 1, . . . , 𝑠, 
 

where the symbol   is a positive 

Archimedean infinitesimal constant, 

which is employed to prevent the 
appearance of zero weights. 

𝐷𝑀𝑈𝑜 is 𝐷𝐸𝐴 efficient in the model (1) iff 

𝛩𝑜
∗ = 1, otherwise (𝛩𝑜

∗ < 1), it is non-

DEA efficient. DEA efficient DMUs are 
usually thought to perform better than non-

DEA efficient DMUs. 

As mentioned before, efficiency is a 
relative measure. It can be measured 

within different ranges. If the efficiencies 

of DMUs are measured within the range of 

greater than or equal to one, then the 
following linear programming model can 

be constructed to measure the worst 

performance of each DMU [9]: 

𝛷𝑜
∗ = 𝑚𝑖𝑛  ∑ 𝑢𝑟𝑦𝑟𝑜

𝑠

𝑟=1

 

𝑠. 𝑡  ∑ 𝑣𝑖𝑥𝑖𝑜

𝑚

𝑖=1

= 1,               (2) 

∑ 𝑢𝑟𝑦𝑟𝑗

𝑠

𝑟=1

− ∑ 𝑣𝑖𝑥𝑖𝑗

𝑚

𝑖=1

≥ 0,  𝑗 = 1, . . . , 𝑛, 

𝑣𝑖 ≥ 𝜀 > 0,   𝑖 = 1, . . . , 𝑚, 
𝑢𝑟 ≥ 𝜀 > 0,   𝑟 = 1, . . . , 𝑠, 
 

𝐷𝑀𝑈𝑜 is DEA inefficient in the model  
 

(1) if 𝛷𝑜
∗ = 1, otherwise (𝛷𝑜

∗ > 1), it is 

non-DEA inefficient. DEA inefficient 
DMUs are usually thought to perform 

worse than non-DEA inefficient DMUs. 

From the above analyses we can see that 
efficiency is a relative measure. It can be 

measured either within the range of less 

than or equal to one, or within the range of 

greater than or equal to one. When 
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measured within different ranges, it has 
different meanings. The resultant 

assessment conclusions are usually 

different. Any assessment using only one 

type of efficiency is obviously one-sided. 
Ideally, both types of efficiencies should 

be used at the same time to assess the 

performances of DMUs. 
In this article, we are going to propose a 

method for ranking DMUs that uses both 

type of efficiencies at the same time and 

doesn’t have drawbacks of previous 
methods.  

 

3. A proposed ranking method 
In this section we want to rank all of 

DMUs (efficient DMUs and non-efficient 

DMUs) by using two virtual DMUs (an 
ideal DMU and an anti-ideal DMU) and 

TOPSIS criteria.  Therefore, first we add 

two virtual points to set of DMUs. They 

are an ideal DMU and an anti-ideal DMU 
that are defined as following: 

 

Definition 3.1: The ideal point is a virtual 
point, which can use the least inputs to 

generate the most outputs, i.e., if we show 

the ideal point with 𝐷𝑀𝑈  =  (𝑋, 𝑌 ) then 

𝑥𝑖 = 𝑚𝑖𝑛{𝑥𝑖𝑗|𝑗 = 1, . . . , 𝑛} , (𝑖 =

1, . . . , 𝑚), and 𝑦
𝑟

= 𝑚𝑎𝑥{𝑦𝑟𝑗|𝑗 =

1, . . . , 𝑛} , (𝑟 = 1, . . . , 𝑠). 

 
Definition 3.2: The negative ideal point is 

a virtual point which consumes the most 

inputs only to produce the least outputs. 

That is if we show the positive ideal point 

with 𝐷𝑀�̃� = (�̃�, �̃�) then �̃�𝑖 =

𝑚𝑎𝑥{𝑥𝑖𝑗|𝑗 = 1, . . . , 𝑛} , (𝑖 = 1, . . . , 𝑚), 

and �̃�𝑟= 𝑚𝑖𝑛{𝑦𝑟𝑗|𝑗 = 1, . . . , 𝑛} , (𝑟 =

1, . . . , 𝑠). 
Note that the ideal DMU may not exist in 

practical production activity at least at the 

current technical level, whereas some anti-
ideal DMU may exist in practical 

production activity since theoretically 

waste of resources in production has 
always been a permissible possibility set. 

Then, for ranking DMUs we should do the 

following three stages: 
I.We calculate a distance of each DMU 

(𝐷𝑀𝑈𝑗, 𝑗 = 1, . . . , 𝑛)
 

to the ideal point 

(𝑑𝑗
+, 𝑗 = 1, . . . , 𝑛). 

II.We calculate a distance of each DMU 

(𝐷𝑀𝑈𝑗, 𝑗 = 1, . . . , 𝑛)
 

to the anti-ideal 

point (𝑑𝑗
−, 𝑗 = 1, . . . , 𝑛). 

III.We calculate a TOPSIS criteria of each 

DMU (𝑅𝐶𝑗 , 𝑗 = 1, . . . , 𝑛). 

We will explain in detail how to calculate 
each stage. 

 

 
 

Figure 1: Gap analysis showing point below the virtual benchmark line 
Stage I: In Fig.1 the vertical and horizontal axes are 

set to be the virtual output (weighted sum 
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of s outputs) and virtual input (weighted 

sum of m inputs), respectively. By the 

definition of the efficiency score, the 
common benchmark level is one straight 

line that passes through the origin, with 

slope 1.0 in the coordinate. If one set of 

weights 𝑣𝑖
′ (𝑖 = 1, . . . , 𝑚) and 𝑢𝑟

′ (𝑟 =
1, . . . , 𝑠) are given such that a coordinate of 

the ideal DMU would be the best DMU i.e. 

𝐷𝑀𝑈 = (∑ 𝑣𝑖
′𝑥𝑖

𝑚
𝑖=1 , ∑ 𝑢𝑟

′ 𝑦
𝑟

𝑠
𝑟=1 ) and it 

locates on the benchmark line, also a 

coordinate of the anti-ideal DMU would 

be the worst DMU i.e. 𝐷𝑀�̃� =
(∑ 𝑣𝑖

′ �̃�𝑖
𝑚
𝑖=1 , ∑ 𝑢𝑟

′ �̃�𝑟
𝑠
𝑟=1 ), therefore, a 

coordinate of all DMUs are on or under the 
benchmark line in Fig.1.  

For example, we are going to measure the 

distance of 𝐷𝑀𝑈𝑜, (𝑜 ∈ {1, . . . , 𝑛}) to the 

ideal point. So, we should determine an 

optimal set of weights 𝑈 ∗ and 𝑉 ∗, such 

that the ideal point is the best point and be 

on the benchmark line, and also the anti-
ideal point is the worst point and all DMUs 

be on or under the benchmark line and 

above all, the distance of 𝐷𝑀𝑈𝑜, (𝑜 ∈
{1, . . . , 𝑛}) to the positive point (𝑑𝑜

+) is the 

shortest. The distance of 𝐷𝑀𝑈𝑜, (𝑜 ∈
{1, . . . , 𝑛}) to the positive point is 

calculated by using L1 – norm. In fact, we 
consider the following model: 

𝑑𝑜
+ ∗= 𝑚𝑖𝑛  𝑑𝑜

+ 

𝑠. 𝑡  
𝑈𝑌

𝑉𝑋
= 1,                         (3) 

𝑈𝑌𝑗

𝑉𝑋𝑗
≤ 1,  𝑗 = 1, … , 𝑛, 

|𝑈𝑌 − 𝑈𝑌𝑜| + |𝑉𝑋 − 𝑉𝑋𝑜| = 𝑑𝑜
+ , 

𝑉𝑋 ≤ 𝑉𝑋𝑜,           𝑈𝑌 ≥ 𝑈𝑌𝑜 , 

∑ 𝑢𝑟

𝑠

𝑟=1

+ ∑ 𝑣𝑖

𝑚

𝑖=1

= 1, 

𝑣𝑖 ≥ 𝜀 > 0,   𝑖 = 1, . . . , 𝑚, 
𝑢𝑟 ≥ 𝜀 > 0,   𝑟 = 1, . . . , 𝑠. 
 

Here, the constraint ∑ 𝑢𝑟
𝑠
𝑟=1 + ∑ 𝑣𝑖

𝑚
𝑖=1 =

1 is added for normalization purpose. It is 

obvious that model (3) is non-linear, but 
this model converts to a linear model 

easily, because 𝑈𝑌 ≥ 𝑈𝑌𝑜 and 𝑉𝑋 ≤ 𝑉𝑋𝑜, 
so we have: 

𝑑𝑜
+ = |𝑈𝑌 − 𝑈𝑌𝑜| + |𝑉𝑋 − 𝑉𝑋𝑜|

= 𝑈𝑌 − 𝑈𝑌 + 𝑉𝑋𝑜 − 𝑉𝑋 
 
Therefore, we will have: 

𝑑𝑜
+ ∗= 𝑚𝑖𝑛  𝑑𝑜

+ 

𝑠. 𝑡  𝑈𝑌 − 𝑉𝑋 = 0,               (4) 
𝑈𝑌𝑗 − 𝑉𝑋𝑗 ≤ 0,  𝑗 = 1, . . . , 𝑛, 

𝑈𝑌 − 𝑈𝑌 + 𝑉𝑋𝑜 − 𝑉𝑋 = 𝑑𝑜
+, 

∑ 𝑢𝑟

𝑠

𝑟=1

+ ∑ 𝑣𝑖

𝑚

𝑖=1

= 1, 

𝑣𝑖 ≥ 𝜀 > 0,   𝑖 = 1, . . . , 𝑚, 
𝑢𝑟 ≥ 𝜀 > 0,   𝑟 = 1, . . . , 𝑠. 
 

Stage II: 

In this stage, we are going to measure the 
distance of each DMU to the anti-ideal 

point. As we see in Fig.1, for example we 

want to measure the distance of 

𝐷𝑀𝑈𝑜, (𝑜 ∈ {1, . . . , 𝑛}) to the anti-ideal 

point. So, we should determine an optimal 

set of weights 𝑈 ∗ and 𝑉 ∗, such that the 

ideal point is the best point and be on the 
benchmark line, and also the anti-ideal 

point is the worst point and all DMUs be 

on or under the benchmark line and above 

all, the distance of 𝐷𝑀𝑈𝑜, (𝑜 ∈ {1, . . . , 𝑛}) 

to the anti-point (𝑑𝑜
−) is the furthest. The 

distance of 𝐷𝑀𝑈𝑜, (𝑜 ∈ {1, . . . , 𝑛}) to the 

anti-point is calculated by using L1 – 
norm. In fact, we consider the following 

model:  

𝑑𝑜
− ∗= 𝑚𝑖𝑛  𝑑𝑜

− 

𝑠. 𝑡  
𝑈𝑌

𝑉𝑋
= 1,                      (5) 

𝑈𝑌𝑗

𝑉𝑋𝑗
≤ 1,  𝑗 = 1, . . . , 𝑛, 

|𝑈�̃� − 𝑈𝑌𝑜| + |𝑉�̃� − 𝑉𝑋𝑜| = 𝑑𝑜
−, 

𝑉�̃� ≥ 𝑉𝑋𝑜,        
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𝑈�̃� ≤ 𝑈𝑌𝑜 , ∑ 𝑢𝑟

𝑠

𝑟=1

+ ∑ 𝑣𝑖

𝑚

𝑖=1

= 1 

𝑣𝑖 ≥ 𝜀 > 0,   𝑖 = 1, . . . , 𝑚, 
𝑢𝑟 ≥ 𝜀 > 0,   𝑟 = 1, . . . , 𝑠.  
 

Here, the constraint ∑ 𝑢𝑟
𝑠
𝑟=1 + ∑ 𝑣𝑖

𝑚
𝑖=1 =

1 is added for normalization purpose. It is 

obvious that model (5) is non-linear, but 

this model converts to a linear model 

easily, because 𝑈�̃� ≤ 𝑈𝑌𝑜 and 𝑉�̃� ≥ 𝑉𝑋𝑜, 

so we have: 

𝑑𝑜
− = |𝑈�̃� − 𝑈𝑌𝑜| + |𝑉�̃� − 𝑉𝑋𝑜|

= 𝑈𝑌𝑜 − 𝑈�̃� + 𝑉�̃�
− 𝑉𝑋𝑜 

 

Therefore, we will have: 

𝑑𝑜
− ∗= 𝑚𝑖𝑛  𝑑𝑜

− 

𝑠. 𝑡  𝑈𝑌 − 𝑉𝑋 = 0,              (6) 
𝑈𝑌𝑗 − 𝑉𝑋𝑗 ≤ 0,  𝑗 = 1, . . . , 𝑛, 

𝑈𝑌𝑜 − 𝑈�̃� + 𝑉�̃� − 𝑉𝑋𝑜 = 𝑑𝑜
− , 

∑ 𝑢𝑟

𝑠

𝑟=1

+ ∑ 𝑣𝑖

𝑚

𝑖=1

= 1, 

𝑣𝑖 ≥ 𝜀 > 0,   𝑖 = 1, . . . , 𝑚, 
𝑢𝑟 ≥ 𝜀 > 0,   𝑟 = 1, . . . , 𝑠. 
 
Stage III: 

In the last stage we are going to calculate 
TOPSIS criteria of each DMU. An overall 

performance index for each DMU 

(𝐷𝑀𝑈𝑗, 𝑗 = 1, . . . , 𝑛) is thus computed by 

𝑅𝐶𝑗 =
𝑑𝑗

−

𝑑𝑗
− + 𝑑𝑗

+ ,  𝑗 = 1, . . . , 𝑛. 

 

Since 𝑑𝑗
− ≥ 0 and 𝑑𝑗

+ ≥ 0, then clearly 

𝑅𝐶𝑗 ∈ [0,1] and the larger the index value, 

the better the DMU performance. 

To elaborate on our proposed ranking 
method, we present the following simple 

example. We consider 5 DMUs with two 

inputs and one output. The data of the 
DMUs are shown in Table 1. According to 

Figure 2, 𝐷𝑀𝑈1,  𝐷𝑀𝑈2,  𝐷𝑀𝑈3and 

𝐷𝑀𝑈4 are efficient and 𝐷𝑀𝑈5 is non-

efficient. The CCR efficiency scores of 
them are given in the fourth column of 

Table 1. Therefore, 𝐷𝑀𝑈5 has the latest 

rank in most ranking method. Now, we are 
going to rank DMUs by our proposed 

method. As stated in method, in stage I, we 

obtain the ideal and the anti- ideal points 

with the following coordinates:  

𝐷𝑀𝑈 = (1,1,1) and 𝐷𝑀�̃� = (8,6,1). 

 

 
Figure 2: The CCR frontier of five DMUs 

 



IJDEA Vol.4, No.2, (2016).737-749  

M. Khanmohammadi / IJDEA Vol.8, No.1, (2020), 11-20 
 

17 
 

After obtaining 𝑑𝑗
−,𝑑𝑗

+ , (𝑗 = 1, . . . ,5), we 

calculate 𝑅𝐶 of five 𝐷𝑀𝑈𝑠. Then we rank 

𝐷𝑀𝑈𝑠 by the 𝑅𝐶 scores. The results of 

them are given in the two last columns. As 

we see, in the proposed method, 𝐷𝑀𝑈5 has 

a third rank. I n the other words, 𝐷𝑀𝑈5’s 
performance is better than the performance 

of 𝐷𝑀𝑈2, and 𝐷𝑀𝑈3. This result is closer 

to reality.   

 

Table 1: Input and Output and ranking DMUs by proposed method 

DMU Input 1 Input Output CCR efficiency RC Ranking 

1 
2 

3 

4 

5 

8 
5 

2 

1 

7.5 

1 
2 

4 

6 

1.5 

1 
1 

1 

1 

1 

1 
1 

1 

1 

0.9166 

0.9997 
0.7999 

0.8571 

1 

0.8975 

2 
5 

4 

1 

3 

    

4. Example 

In this section, we are going to compare 
the ranking results of our proposed method 

with the ranking results of AP model [1], 

Wang et al. [8] method and Wu [3] 
method. Therefore, we consider a DEA 

efficiency evaluation problem with five 

DMUs, each DMU with two inputs and 
one output. The data set is taken from 

Andersen and Petersen [1] and is shown in 

Table 2. The CCR efficiency of each DMU 
is presented in the last column of Table 2. 

 

Table 2: Data for five DMUs with two inputs and one output 
DMU Input 1 Input 2 Output CCR efficiency 

1 
2 

3 

4 

5 

IDMU 

ADMU 

2 
2 

5 

10 

10 

2 

10 

12 
8 

5 

4 

6 

4 

12 

1 
1 

1 

1 

1 

1 

1 

1 
1 

1 

1 

0.75 

 

As can be seen from the rating results of 
Table 2 that the conventional CCR model 

identifies 𝐷𝑀𝑈1 through 𝐷𝑀𝑈4 as DEA 

efficient units, but in fact, the performance 

of 𝐷𝑀𝑈2 is better than 𝐷𝑀𝑈1 because 

𝐷𝑀𝑈2 consumes less resource of input 2 

to generate the same output as 𝐷𝑀𝑈1. In 

order to rank the four DEA efficient units, 
Andersen and Petersen [1] suggested a 

ranking approach that compares the DMU 

under evaluation with a linear combination 

of all the other DMUs, i.e., the DMU itself 
is excluded. Based on their approach, the 

following ranking order was obtained: 

𝐷𝑀𝑈2 ≻ 𝐷𝑀𝑈4 ≻ 𝐷𝑀𝑈3 ≻ 𝐷𝑀𝑈1 ≻
𝐷𝑀𝑈5, where the symbol ‘‘ ≻ ’’ means 

‘‘performs better than’’. This ranking 

model considers only the best possible 
relative efficiency of each DMU. 

Therefore, it is somewhat one-sided. 

Wang et al. [8] proposed DEA models 

with IDMU and ADMU to reconsider 
these five DMUs. The virtual IDMU and 

ADMU are defined in the last two rows of 

Table 2. The final overall ranking was 

gained: 𝐷𝑀𝑈3 ≻ 𝐷𝑀𝑈2 ≻ 𝐷𝑀𝑈4 ≻
𝐷𝑀𝑈1 ≻ 𝐷𝑀𝑈5. This ranking achieved 

by using the systematic RC index. Their 

resulting of ranking are presented in Table 
3. 

Wang et al. [2] believed that the ranking 

results are different from the ranking 
obtained by Andersen and Petersen [1] 

because the overall ranking considers both 
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the best and the worst possible relative 
efficiencies of each DMU. 

Wu [3] focused on the Wang et al. [2] of 

method. He showed the method of Wang 

et al. [6] has some mistakes. He elaborated 

these mistakes by the above example. 𝜃𝑃𝐼𝑃
∗  

and 𝜑𝑁𝐼𝑃
∗  denote the maximal efficiency of 

the PIP (the IDMU) and the minimal 

efficiency of the NIP (the ADMU) 
respectively. One of the important 

mistakes of their method was: 𝜃𝑃𝐼𝑃
∗  

measures rely on an input orientation 

while the 𝜑𝑁𝐼𝑃
∗  measures rely on an output 

orientation. Wu [3] believed that the 

method of Wang et al. [2] isn’t convincing 

since their overall ranking considers both 
the best and the worst possible relative 

efficiencies of each DMU. This is not true 

since they employ conflicted efficiency 
concepts in their method and due to this 

reason; their result is almost completely 

different from that by Andersen and 
Petersen [1]. Then he proposed a model for 

computing the worst possible relative 

efficiency
*

NIP . After that he performed 

his method by Andersen and Petersen [8] 

example. The result earned: 𝐷𝑀𝑈2 ≻
𝐷𝑀𝑈1 ≻ 𝐷𝑀𝑈3 ≻ 𝐷𝑀𝑈4 ≻ 𝐷𝑀𝑈5. 

2DMU  and 𝐷𝑀𝑈5 are selected as the best 

and worst performers respectively, which 
is consistent with result of Andersen and 

Petersen [1]. 

Now, we use the proposed DEA models 
with IDMU and ADMU to reevaluate 

these five DMUs. The RC values and the 

ranking results are presented in the last two 
columns of Table 3. 

As we see, our results are similar to the 

ranking results of Wu [3], but our 

proposed method is better than the 
proposed method of Wu [3], because we 

can rank DMUs by two LP and the RC 

relation but his ranking method need to 
calculate four LP and the RC relation. This 

demonstrates the simplicity and 

superiority of our method to Wu's method.  
 

 

Table 3: The results of AP method, Wang method, Wu method and the proposed method 

DMU AP method Wang method Wu method RC Ranking 

1 

2 

3 
4 

5 

4 

1 

3 
2 

5 

4 

2 

1 
3 

5 

2 

1 

3 
4 

5 

0.9997 

0.9998 

0.8927 
0.9995 

0.7496 

2 

1 

4 
3 

5 

 

 

5. Conclusion 

In this paper we have proposed one 

ranking method, which is based on two 
virtual points (the ideal and anti-ideal 

points). First, we have computed the 

distance of each DMU to the ideal point 
and then calculated the distance of DMUs 

to the anti-ideal point; The two distinctive 

distances are integrated using a relative 

closeness index, which can thus be used as 
the basis of ranking the DMUs. We have 

compared this ranking method with the 

existing DEA ranking methods as AP [1] 
method, Wang et al. [2] method and Wu 

[3] method. As we have seen our method 

is more simple and better than other 

methods. Also, it doesn’t have drawbacks 

of the previous ranking methods.   
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