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Abstract

Financial returns exhibit stylized facts such as leptokurtosis, skewness and heavy-tailness.
Regarding this behavior, in this paper, we apply multivariate generalized hyperbolic (mGH)
distribution for portfolio modeling and performance evaluation, using conditional value at
risk (CVaR) as a risk measure and allocating best weights for portfolio selection. Moreover,
a robust portfolio optimization and performance evaluation modeling in mGH framework
are developed, using worst case CVaR (WCVaR) as a risk measure. Due to the fact that
expected returns can take negative values, the introduced model is inspired by Range
Directional Measure model. Finally, real data in Iran stock market are given to illustrate the
effectiveness of the model.
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1. Introduction

Portfolio optimization and portfolio
management are the most important
problems from the past that have attracted
the attention of investors. To solve this
problem, Markowitz proposed his model
that was named mean-variance (MV)
model. He believed that all investors are
interested to get maximum return with
minimum risk in their investment. The
optimal portfolio selection problem is a
major issue in the financial field in which
distribution of returns is usually non-
Gaussian. In fact, financial returns have
skewness and excess kurtosis. In recent
years, several viable alternatives to the
Gaussian  distribution,  capable  of
capturing commonly observed empirical
features have been proposed for financial
modeling. For example, Madan and
Senata [10] suggested the Variance
Gamma distribution; Eberlieen and Keller
[6] advocated the use of the hyperbolic
distribution and Eberlien [5] applied the
generalized  hyperbolic  distribution.
Helmich and Kassberger [8] showed that
multivariate  generalized  hyperbolic
(mGH) as a class of non-Gaussian
distributions have a natural multivariate
structure and are well-fitted to a mean-
risk portfolio optimization problem.
Furthermore, they applied the Monte
Carlo simulation for portfolio selection.
Since portfolio is a collection of assets,
investors typically try to allocate their
capital appropriately to earn higher return
with risk management. These results help
to evaluate the portfolio performance.
One technique to consider the efficiency
of portfolio performance 1is Data
Envelopment Analysis (DEA) which
introduced by Charnes et al. [4]. Morey
and Morey [11] employed the mean-
variance framework of Markowitz theory
by considering a quadratic constrained
non-linear DEA approach. They assumed
that returns of assets are normally
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distributed but as noted by Fama [7], the
distributions of returns are asymmetric
and usually exhibit fat tail in practice.
Furthermore, many studies show that the
investors  prefer  positive  skewed
portfolios. So, Joro and Na [9] presented
a non-linear DEA-like model to evaluate
a portfolio efficiency which is based on
mean-variance-skewness framework.
Majority of DEA models cannot be used
for the case in which DMUs include both
negative and positive inputs/outputs.
Portela et al. [13] represented a DEA
model by name Range Directional
Measure (RDM) model which can be
used in cases where input/output data take
positive and negative values.
Banihashemi et al. [2] proposed a non-
linear mean-variance and modified mean-
variance-skewness based on RDM model
for portfolio performance evaluation.
They replaced variance by value at risk
and tried to decrease it in a mean-value at
risk model with negative data. Since,
value at risk (VaR) as a risk measure is
not always sub-additive nor convex,
Rockafeller and Uryasev [14] defined an
alternative risk measure named the
conditional VaR (CVaR). Pflug [12]
showed that the CVaR satisfies the
requirements of the so-called coherent
risk measures which is established by
Artzner et al. [1]. These measures have

four basic  properties:  translation
invariance, positive homogeneity,
subadditivity and monotonicity.
Rockafellar and Uryasev [15] transformed
mean-CVaR  portfolio  optimization
problem into linear programming

problem, based on generated scenarios.

In this paper, we consider the
distributions of return by mGH and
extend the mean-risk problem of the
mGH distribution and utilize DEA
technique into evaluating the portfolio
efficiency. In addition to measuring the
risk we use CVaR and WCVaR measures.
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We propose our mean-risk models by
mGH distribution. Also performance
evaluation models are proposed which are
based on RDM model. If the under
evaluation asset is not located on the
efficient frontier, we call it inefficient
asset, then the model shows maximal
proportionate reduction in risk and the
same proportional maximization in the
mean of return. The main advantage of
the introduced models is that the mGH
distribution that shows skewness and
kurtosis of the return distribution is
considered. Regarding to this model we
can allocate better weights to portfolio
and produce more accurate efficiency.
The rest of the paper is organized as
follows. In section 2, we present coherent
risk measures, CVaR, robust
optimization, WCVaR and mGH
distribution. In section 3, we propose our
models of efficiency measurement based
on mean-risk framework under mGH
framework. Section 4 is devoted to a real
application in Iran stock market. Finally,
the conclusion and some remarks is
presented in section 5.

2. Preliminary

In this section, we present
definitions which are needed
following sections.

some
in the

Definition 1. Assume (Q,F,p) to be the
probability space and 7(Q,F) to be the set
of random variables of one dimensional
on  the space. The function
p:I(Q,F)—> R is a coherent risk
measure whenever it satisfies following
axioms for all X,Y e 1(Q,F), X and Y
are random variables:

a) Monotonicity: If
pY)<S p(X);

b) Subadditivity: p(X +Y)< p(X)+p(Y);

X <Y, then
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¢) Translation Invariance: For all o <R,
pX+a)=p(X)-a;

d) Positive homogeneity: for all 1>0,
pP(AX)=Ap(X).

Value at Risk (VaR) is a benchmark
standard for firm-wide measures of risk.

Definition 2. For a given time horizon
and confidence level g e(0,1), the VaR

of a portfolio is the loss in the portfolio’s
market value over the horizon time that is
exceeded with probability 1 — g . In other

words, VaR is defined according to
X eI(Q,F) whose distribution is

continuous
VaR,(X)=inf {x e R|P(X <x)> B}.

An alternative risk measure to VaR is
Conditional Value at Risk (CVaR) which
is also known as expected shortfall.

Definition 3. For a given time horizon
and confidence level 8 € (0,1), CVaR is

the conditional expectation of the losses
exceeding VaR for the time horizon and
the confidence level B which is defined

as follows
CVaR,(X)=E[ X|X 2VaR,(X)].

CVaR can be reduced to a linear
programming problem. We consider

vector W=(W, W,..., W) which represents
the position of each of 7/ financial assets
in a portfolio. Y =(Y, Y*,...,Y") is the

vector of assets mean returns. The loss
function is defined as

fw.Y)=
—w Y 'rw Y P+ 4w Y )=

w’y

The CVaR is specified as
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CVaR (w )=

E[f o)l vy )=vaR o)),
CVaR,(x) =

VaR  (x) + E[(X—VaRB(X))+]

1-p
Then we  have the  following
approximation function
F s W ,x) =

Where (Z)" =max{Z, 0} and Q represents

the scenarios of assets log-return wY,..Y,

, where each elements ¥ (¢=1,2,..,0) is a
vector in R". Therefore, CVaR,(w) has
an equivalent definition as follows
minCVaR ;(w ) = r)pei?ﬁﬂ w,x).

Definition 4. A random variable T € R,
is said to have a Generalized Inverse
Gaussian  (GIG)  distribution  with
parameters A,y and 1, denoted by
T~GIG(A, x, ) if its density is given by
fGIG (y v/l’l’l//) =

) A -1
x " (xw) ymexp[_xy +t//y] 150
Zk/l(\/l’//) 2

0 A0

Where for x >0, k/l(x) is the

modified Bessel function of the third kind
with index A
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Definition 5. A random vector ¥ e R" is
said to follow a d-dimensional mGH
distribution with parameters A, y,y, u,y

and X denoted by
Y ~GH, (4, x,v,u,7,X) if

Y =u+Ty +T AZ

Where

1. pyeR' are deterministic.
2. Z~N,(0.1,)
dimensional normal distribution.

3. T ~GIG (A, xy) is a positive, scalar

follows a k-

random variable independent of Z.
4. A € R"" denotes a matrix n X k and
Y=AxA".

Definition 6. Robust optimization is a
field of optimization theory that deals
with optimization problems in which a
certain measure of robustness is sought
against uncertainty that can be
represented as deterministic variability in
the value of the parameters of the
problem itself and/or its solution.

Definition 7. Let pbe a class of
multivariate asset return distributions, let

Y ? be a random vector of asset returns
with distribution pep , and let W € ¥ be a

vector of portfolio weights. The WCVaR
of a portfolio with weights w at level

Be(0,1) is defined as
WCVaRf (w)=supCVaR (-w'Y ")

pep

Definition 8. Assume that
p={GH, (2, 2w, 1.7.2);(1,7,Z) €M}

is a family of mGH distributions with
A, x.y fixed. (u,7,Z) is assumed to be
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an element of a separable polyhedral
uncertainty set M =1, I, xI, With

I,={peRu, <p<p,|
I={yeR"y, <y<y,|

{EGR”X”;Z‘.L szszw}
I, =

Y positive definite

Compact intervals. All inequalities in the
set definitions are to be understood
component-wise. Since M is compact,
WCVaR in the mGH distribution
framework is as follows [6]

WCVaRy ( w ) =

supCVaR , ( -w'y ? ):

Pep

max CVaR (

T P
rep Y )
3. Proposed Models
distribution

Now, we present the return-risk model
under mGH distribution. The mean return
of asset and the risk measure of each asset
is CVaR or WCVaR that they are
computed by mGH  distribution
parameters, these items are simulated by
Monte Carlo method. First, we introduce
return-CVaR  model under mGH
distribution. By this model, we can obtain
best weights for potfolio selection.

The model determines as following

under mGH

min x+(1 ,B)QZ(W Y, —x)"

st EQ )z o
Yq NGH,;(A:Z:I//:/J:]/:Z)
ew =1

n
Where ¥y () :ZW Y /- For convenience,
j=l

T .
assume that Z,="W Yq —X. In this case,

the model is rewritten as following:

47

0

1
(—po ="

min x +

st.
T
ZqZ—W Yq —-x 2)

>
Zq_O

EY w ))27/}’
Y, ~GH, (A, x.v,1,7,%)

ew =1

The application of optimization methods
to real world problems is not only
dependent on numerical tractability, but
also due to its power to analyze real
problems. It should be noted that the
smallest changes in input data are affected
by optimization results. The main idea in
robust optimization problems is to
consider uncertainty sets in place of point
estimates of unknown parameters. In this
paper, we use the WCVaR in the mGH
distribution framework.

According to the calculations performed
for CVaR, the above equality can be
rewritten as follows

WCVaR? ( w ) =

max minF (w XA, l//,y,y,):) @)

(ﬂyZ)eMxelR
where
Fow . x4, 0w, p1,7,2) =

(l—ﬁ)QZ(_ -

Now, for the simplicity, the following
proposition is presented.

Proposition 1. Let X <R’ be a convex
set.
@ The F,(w,x;Ay,my.5) i

component-wise monotonically
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decreasing in i andY also component-
wise monotonically increasing in2. In
particular, for any (w,x) eRxX

(b) F,(w,x;2, 2,w,u,7,E) is convex in
(w,x) on RxX.

Proof: [8] Therefore, according to the
above proposition, we can rewrite the
relation (a) as following

WCVaRf (w)=

mlnFﬂ
xeR

(W aX;A’a%’l//’”Ln{L’ZU)

The robust model description is as
following:

min  x + (wTY -x)*
(1- ,’3)QZ
st.  EY w)zr, 3)
Yq NGHn(/Iﬁlil/liluLiyL’ZU)
ew =1
For convenience, assume that

z, =—w ig—X. In this case, the model is

rewritten as follows
0

mimm x + ﬂ)Q ;

St.

qu—wTYq—x @
ZqZO

EY w)2r,

Y, ~GH (A, W 1,752y )

ew =1

First, we estimate the mGH distribution
parameters by using the EM algorithm in
models (1) and (2) and find the uncertain
intervals for the parameters 4 ,y, X . Then

by using the Monte Carlo simulation for
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GH, (A,){,t//,ﬂL,yL,ZU) , We generate
Y, (1<¢<Q). So, by solving the model,

optimum weights are obtained.

Another purpose in this paper is
performance evaluation assets that can be
done by below models. In real
applications we deal with assets which
they may have negative mean return. So
we cannot utilize the conventional DEA
models in assessing a portfolio efficiency.
Then we apply the Range Directional
Measure (RDM) model in our proposed
models. In this section, we present our
models based on RDM model that they
are in DEA-like framework with mGH
distribution. Following Banihashemi et al.
[3]

g= (RE(Y”)’RCVaRﬂ(Y”)) (b)
e[O,+oo)x[O,+oo)

is a vector shows a direction in which
is going to be maximized. So, we have
this function

E:R? = (0,1] ©
«f(y)zsup{a:yu +ag eT|a ER+}

Such that y, =(E(Y"),CVaR,(Y")) is an
Based ongand
mentioned set of, , it is clear that the
purpose is to increase mean of return and

reduce CVaR as a risk measure of under
evaluation asset in direction of vector g,

under evaluation asset.

simultaneously. Vector of direction could
be chosen as

(max(E(Y’):

| FELemmEC =R, (d)
* 7l (cvar, (')~ min(CVaR, (Y'):
j=1,---,n))=RCVaR,3(Y”)

Definition 9. A specified direction
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g= (RE(Y")’RCVaRp(Y")) is considered and

an under evaluation financial instrument
is y, =(E(Y"),CVaR,(Y’)), in which
CVaR, 1s supposed as an input since it
should be decreased and mean of return

of a financial instrument is assumed as an
output because it should be increased. In

addition, we assume y () :iw y/ and
J
j=l

W~GH”(/1,;(,1//,,u,y,Z). So, we solve

following optimization model
max o

st. E(Yo)2E(Q°)+aR, .
CVaR(Y ()< CV aR,(¥*)-aR ,, . (5)

ew =1
w >0.

The process of calculating , in model
(5) is similar to RDM model. This model
maximizes proportional reduction in
CVaR as a risk measure, while it is
maximizing return in the same proportion.
This proportion is the inefficiency of
under evaluation financial instrument.

The vector w=W Ww,,.,w,) is of
decision variables, and g is a probability

level.

Also, According to the proposition 5 we
can formulate model (5) by using the
WCVaR as the new risk measure by

considering Y ~GH (A, 1,W,14;,7,,2,)-

Then, the robust portfolio optimization
model is as follows

max «a

st. E(Y(w))ZE(Y")+aRE(Yu)
WCVaR(Y w)) < (6)
wcCy aRﬂ(Y”)—aRWCVaRﬁ(YU)
ew =1
w >0.

Optimal objective value of the model
indicates different maximum
proportionally changes in mean return
and risk of the asset and tries to maximize
« 1n directions of mean return and risk
measure, separately. When an asset is
located on the efficient frontier we call it
efficient asset.

3. Numerical Example

In this section, we present a numerical
example, based on empirical data. We
collect the stock ‘s price of the 5 Iranian
stock companies, namely Irankhodro
(Khodro), Mallat Bank(Vabemellat),
Esfahan oil refining(Shapna), tamin
petroleum and Petrochemical investment
co(Tapico) and Dana insurance(Dana).
This dataset is selected from 2015/01/03
still 2019/01/03. According to Table 1,
we conclude that because the data have
skewness and kurtosis we can’t use
normal distribution for describing the
returns of financial assets.

Table 1: Mean, Skewness and Kurtosis of companies

mean return

skewness | Kurtosis

khodro -0.0013

0.5317 5.1683

vabmellat | 0.0005

-0.5538 9.5007

Shapna 0.0062

0.9529 4.2040

tapico -0.0015

-3.3425 37.8409

dana 0.0008

0.0617 4.1585
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We calibrate an mGH model to 156
weekly returns of these stocks observed,
Using the EM algorithm for calibration.
Estimated parameters are obtained for the
joint return distribution, where the order
of the elements in the following vectors
and matrices corresponds to the order in

the above  enumeration A=1.7,
¥ =3.3514,p = 6.5396
[-20.7418] 20.2789 ]
—7.5893 6.5168
p=107% -14.1292 |y =107 *| 18.6986
-0.7789 2.0916
| -16.5655 | | 14.4954 |
>=

(35073 019783 11073 03374 -0.70%5 |
01973 189659 64B 2118 1375
10°H 11073 6248 264B 494 6709
0334 21108 4D 2808 14077
075 1B 6T 147 B5H)

X follows an mGH distribution with the
above parameters. In this case, by using
the Monte Carlo simulation for

GH, (A, x.w,p,7,E), we  generate
{x,; 1<4 <1000} . Then

[—0.2560 |
—0.5965
E[X1=10"%*| 3.2731
2.6653
| -1.4370 |
ovX)=

(39569 04016 15121 —134%6 —165%6]
04016 2000 7545 2316 1627
10*4 15121 7575 079811 54967 8287
03406 23316 5497 35058 01341
| 1636 1627 8B -0134 LW

50

am(X)=
[ 1 00M3 -0 0030 00397 |
0043 1 0309 0’0 005
10*% 0083 03099 1 0163 02%
0030 000 QI63 1  -Q004
|-0B97 0054 02% -00B4 1

[ 0.130 ]
0.0340
0.0997 |,
~0.0470

| 0.3011 |

[3.2802]
3.7286
3.1375
3.2504

3.5418 |

skewness (X )=10"*

kurtosis (X ) =107 *

Apparently, the shapna features the
highest  expected  return  (0.3273
percentage points per week), while Dana
has the lowest expected return. The
volatility of Vabmellat is lowest and Dana
can be seen to be substantially more
volatile than the other stocks. Tapico
exhibits only moderate negative skewness
and all stocks excess kurtosis when
observed on a weekly basis.

Based on these parameters and g = 0.95,

we perform a mean-CVaR optimization.
We solve model (2) By inserting
x, (ISq SIOOO) in model, by using
the GAMS software. We considered 100

portfolio with optimal weights. Some of
them are shown in Table 2.
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Table 2: weights and CVaR and return of portfolio in classical case

Weightof | Weightof | Weightof | Weightof | Weightof | 9K | Return of
khodro vabMallat Shapna tapico tapico portfolio portfolio
(CVaR)
Portholio | 0 225 0.1818 0.1666 | 02147 | 02144 | 0.057690 Z'fg_sf
Portfolio | 0.2097 0.1877 0.1699 | 02212 | 02115 | 0.057698 Z'fé?f
Portolio | 0 2085 0.1824 0.1748 | 02233 | 02110 | 0.057729 3'53_346
Poriolio | 02185 0.0171 03728 | 03106 | 0.0811 | 0.0660 S'fg_lf
Portholio | 02152 0.0049 03836 | 03082 | 0.0881 | 0.0663 S'fg_zf
Porttolio | 02148 | 5.5033*107 | 03864 | 03123 | 0.0860 | 0.0666 S'fgi?z
Portfolio 10-16 10716 0.003222
08 0 £ 2.9998 09164 | 00836 | 5 999g | 01024 | [yp-s
Portfolio | 10731 10732 0.003247
o8 ‘1716 | +141a55 0.9582 | 0.0418 0 01056 | 70
Portfolio | 1078 1078 1077 10-8 0.003273
100 | +7.9617 | *3.8466 100001 11780 | «1.5876 | %1092 | M10-4

Figure 1 presents the compositions of the
efficient
Vabmellat and Dana have the lowest

Cumulative portfolio welghts

portfolios,

The

companies

contribution in the efficient portfolios,

while

the

maximum-return portfolio

consists solely of a position in Shapna.

T.5
Expected return{\WWee kly)

2

25

I -hodro
] vabmellat

Figure 1: Composition of efficient portfolio

51

a5
= 1073
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We assume that the uncertainty sets arise
from the classical-case parameters
presented above, with a shift of the latter
either up or down by 10%:

186676 182510
68303 58652
4 =p—01u=10"* -12.7163 |y, =y—0.1y=10"* 168287
07010 1.8%4
~149089 130459

3, =Z+0.15=
(385850 02170 —12180 —03712 —0.7805 |
02170 208552 68643 23219 14712
107*%| 12180 68643 287626 54179 73743
03712 23219 54179 361799 -1.5704

| 07805 14712 73743 -15704 479115

Let X follow an mGH distribution with
the above parameters, in this case, by
using the Monte Carlo simulation for

GH, (A, z.w.14,,7,,%,), We generate
x5 1< <1000} .
parameters and B =0.95, we perform a

mean-WCVaR optimization  under
minimum return constraints, i.e. we solve

model (4) By inserting x, (ISq < 1000)

in model, by using the GAMS software,
we obtained 100 portfolio with optimal
weights, some of them are shown in
Table 3.

We compare efficient frontiers of classic
model and robust model in figure 2. By
comparison of the efficient frontiers, we
conclude that efficient portfolios are
optimal and feasible in robust model.

Based on these

Table 3: weight, return and WCVaR of portfolio in worst case

Weight Weight of | Weightof |  Weight of Weight of RiSlf‘ ‘l’.f Return of

fkhodro vabmellat shapna tapico dana portfolio portfolio

o (WCVaR)
Portiolio | 0.1737 0.2790 0.1827 0.1967 0.1679 0.058317 151'3947 3
Portfolio 1 0.1790 0.2741 0.1927 0.1889 0.1652 0.058326 161'83? 8
Portfolio 1 0.17.36 0.2739 0.2014 0.1885 0.1626 0.058368 161'3(_9422
Portolio | 0.1797 | 0.6.77%1072 | 0.5110 0.1934 0.1159 0.0694 fi'gf}f K
Portholio | 0.1802 0 0.5226 0.1853 0.1118 0.0608 | *93383

* 10

Portiolio 10,1758 | 1.2817%107%% | 0.5315 0.1814 0.1113 0.0703 53'8_340 8
Porolio | 123*10723 | 1.15 10721 | 0.9764 0.0115 0.0120 0.1027 321'3-74
Por;;olio 0 4.13*310733 0.9868 2.0309*10732 0.0132 0.1035 33155)4
Poreolio | 3223751072 | 2.7773%10™° | 1.0000 | 2.8870*107° | 4.7938*1071° | 0.1044 331'8_64
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%)
T

Expected retum

cwvak

—— WCWVaR

L L
005 0.06 007 0.08

L L .
o1 011 .12 .13

CvaR(Weekly)

Figure 2: Efficien frontiers

Figure 1 presents the compositions of the
efficient portfolios in worst case,
comparing the compositions of classical-
case and worst-case efficient portfolios
(figures 1 and 3, respectively), one
recognizes that the weight of the khodro
and tapico has decreased throughout the
full spectrum of expected returns, while
the weight of the khodro, Dana and
shapna increased.

The software Matlab was wused to
calculate CVaR andWCVaR companies
by solving model (2) and model (4)

respectively. Also the software GAMS
was used to measure the relative
efficiency of companies and efficiency of
companies in worst case by solving model
(5) and model (6), respectively. In this
model a shows amount of inefficiency.
Therefore, when amount of afor company
equal to zero, means that the company is
efficient. According to table 4 the tapico
is efficiency in classic model, the khodro
and the tapico are efficiency in worst
case.

1.2
il

o L
:::En —
T pa I «hodro
=z B bmeliat
2 [ shapna
= 1] [ tapico
g 06 [ Jdana
[a5]
=
=
S 0.4
=
—
[}

0.2

(=} T a8 a

Expected return(Weekly) = 1073

Figure 3: Composition of efficient portfolio in worst case
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Table 4: risk,expected return and inefficiency of companies

Expected . . Worst case Worst case

CVaR Rf:turn inefficiency | WCVaR Expected Return inefficiency
khodro | 0.1288 0.0003 0.08 0.1382 0.0038 0.00
vabMellat | 0.0972 -0.0006 0.29 0.1000 -0.0021 0.40
Shapna | 0.2092 0.0033 0.29 0.1044 0.0046 0.40
Tapico | 0.1231 0.0027 0.00 0.1313 0.0025 0.00
Dana 0.1306 -0.0014 0.41 0.1480 -0.0052 0.59

4. Conclusion

The purpose of this paper is to utilize an
appropriate distribution for fitting the data
to it, applying appropriate risk measures
and improving the results of the portfolio
optimization. By  generalizing the
multivariate normal distribution (by
randomness mean and variance of
distribution), we obtain the family of
distributions called the Normal mean-
variance mixture. Then we use the mGH
distribution that is a specific group of
these distributions, to describe the data
and evaluate assets. Also, number of
efficient companies will increase in worst
case. The conclusion that can be derived
from this paper is that we need to describe
the distribution of return assets because
financial returns have skewness and
kurtosis.
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