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Abstract 
In many organizations and financial institutions, it is in many cases more cost and time 

efficient to access ratio data. Therefore, it is of great importance to evaluate the performance 

of decision-making units (DMUs) which only have access to ratios of inputs to outputs or 

vice versa (for instance, ratio of employees to students, ratio of assets to liabilities and ratio 
of doctors to patients). In this paper, we will propose two-stage network DEA-R model with 

multi-objective linear programming (MOLP) structures. Then, introducing a production 

possibility set (PPS) in each network stage, we will compare efficiency values in network 
DEA and DEA-R. In the end, through an applied study on 22 medical centers which treat 

special patients in three stages, we will suggest an output-oriented multi-stage network 

DEA-R model under assumption of CRS technology. The medical centers are evaluated in 

all three stages based on overall network efficiency. The results of the analysis are presented 
and a future research in this field is discussed in the final section of the paper. 
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1. Introduction 
Data envelopment analysis (DEA) is a 

non-parametric method for evaluating 

performance of a set of decision-making 

units (DMUs). Measuring efficiency, as 
an important factor in evaluation of 

a company or organization’s performance, 

has always been a topic of interest among 
researchers. In 1957, Farrell proposed the 

idea of an efficient piecewise linear 

frontier as an alternative to estimating 

production function. However, there was 
an apparent issue with the number of 

inputs and outputs in the DMUs (Farrell, 

1957). Charnes et al. (1978) extended 
Farrell’s non-parametric method for a 

multiple inputs and outputs system 

through mathematical programming. 
Their model came to be known as CCR 

models. Later on, several articles and 

models were presented in this area, out of 

which we can mention the infamous BCC 
model introduced by Banker et al. (1984) 

for variable returns to scale (VRS) 

production technology. 
Further developing the cone-ratio DEA 

model, Fare and Grosskopf (1996, 2000) 

presented network DEA models. Chen et 
al. (2006) introduced the DEA game 

model for measuring efficiency in supply 

chains. Kao and Hwang (2008) studied 

efficiency decomposition in two-stage 
processes for 24 non-life insurance 

companies in Taiwan. Their model is one 

of the most known two-stage DEA 
network models at all. Combining game 

approach with efficiency decomposition 

in two-stage DEA models, Liang et al. 

(2008) evaluated 30 commercial banks 
using centralized and non-cooperative 

models. Chen et al. (2009) studied the 

subject of additive efficiency in two-stage 
DEA under both constant and variable 

returns to scale assumptions (CRS / VRS) 

and rated the DMUs based on the results. 
Kao (2009) extended his previous paper 

and evaluated efficiency decomposition in 

network DEA for parallel and series 

systems using the same case (24 

insurance companies in Taiwan). Cook et 
al. (2010) presented three-stage and 

multi-stage network DEA models with 

parallel processes based on additive 

efficiency decomposition. Chen and Yan 
(2011) introduced three network DEA 

models for evaluating performance of 

supply chain while considering internal 
resource waste. They proposed production 

possibility sets for supply chain based on 

centralized, decentralized and mixed 

mechanisms. 
Chen et al. (2012) studied a new 

methodology for performance evaluation 

through two-stage network DEA in order 
to evaluate environmental conditions 

among 23 companies. Li et al. (2012) 

presented DEA models for extended two-
stage network structures with additional 

inputs in 3 regions in China. One of the 

advantages of their work was an 

extension of the model introduced in 
(Liang et al., 2008).  

Cook and Zhu (2014) published an 

extensive study on the internal structure 
of network DEA. Kao (2014a) studied 

efficiency decomposition for multi-stage 

systems in DEA and proposed the subject 
of shared resources. He also did in (Kao, 

2014b) a review on network DEA models 

based on two-stage, parallel, series, mixed 

and dynamic structures. Despotis et al. 
(2015) introduced a multi-objective 

programming approach to network DEA. 

A network DEA model with two-stage 
processes was studied using formulation 

of a bi-objective problem and finding its 

Pareto optimal solutions and overall 

efficiency in (Despotis et al., 2016a). A 
new approach to network DEA for multi-

stage processes using the composition 

paradigm was introduced in (Despotis et 
al., 2016b). They first presented a bi-

objective problem and then calculated the 

overall efficiency using a two-stage 
method. They also applied the “weak-

link” approach to network DEA for two-

stage processes and adjusted the network 

DEA process by defining a subsystem. 
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Guo et al. (2016) obtained overall 
efficiency by selecting suitable weights 

and applying them to a multi-objective 

programming problem within the 

framework of network DEA for two-
stage. 

One of the first ratio DEA models (DEA-

R) was introduced in (Despic et al., 
2007). The authors extended the subjects 

of arithmetic, geometric and harmonic 

efficiency to DEA, DEA-R and 
multiplicative models based on the 

relationships between arithmetic, 

geometric and harmonic means. 

Furthermore, they revealed the efficiency 
value in input-oriented DEA-R to be 

greater than or equal to efficiency value in 

DEA. Studying 21 medical centers, Wei 
et al. (2011a) proposed the subject of 

pseudo-inefficiency in DEA. In another 

study (Wei et al., 2011b), they evaluated 
the relationship between CCR models in 

DEA and DEA-R through comparing 

optimal weights in DEA and DEA-R. Wei 

et al. (2011c) presented output-oriented 
DEA-R models with weight restrictions 

and made a comparison between them 

and DEA-R models with harmonic. Liu et 
al. (2011) suggested DEA models without 

explicit inputs; they proposed the subject 

of ratio data and corresponding 

production possibility sets (PPS) under 
general conditions. Mozaffari et al. 

(2014a) analyzed the relationship between 

DEA models without explicit inputs and 
DEA-R models. A cost and revenue 

efficiency in DEA and DEA-R models is 

studied in (Mozaffari et al., 2014b). 
Olesen et al. (2015) proposed the subject 

of efficiency analysis based on ratio 

measure. They did a detailed study on 

production possibility set and dependence 
of inputs and outputs on ratio data under 

constant and variable returns to scale 

technology assumptions. This article 
differs from their study in terms of 

dependence of inputs and outputs - ratio 

data are available in this study and they 
are defined as independent. 

The rest of the paper is organized as 

follows. In Section 2, two-stage DEA 

models and basic concepts of DEA-R are 
introduced. Section 3 presents output-

oriented multi-stage DEA-R models along 

with their production possibility sets 
(PPS). A three-stage DEA-R model is 

formulated in Section 4.  A case study 

that demonstrates and compares stage 
efficiencies and overall efficiencies using 

the structure of multiple objective linear 

programming is presented in Section 5. 

Final section of the paper contains 
conclusions and suggestions for future 

research.  
 

2. Theoretical background 
In this section, selected two-stage serial 

DEA models are formulated to the extent 

necessary for further analysis, and basic 
ideas of DEA-R models are presented.   
 

2.1 Two-stage DEA models 

Let us consider a two-stage structure, 
where in the first stage, m inputs 

  mjjJ xxX ,...,1  produce b outputs 

  bjjJ zzZ ,...,1 . In the second stage, the 

outputs   bjjJ zzZ ,...,1  are turned into 

inputs, which in turn produce s final 

outputs   sjjJ yyY ,...,1 . The inputs, 

intermediate characteristics and the final 

outputs of the j-th DMU are Xj = (x1j,…, 

xmj), Zj = (z1j,…, zbj), and Yj = (y1j,…, ysj) 
respectively. A model for evaluation of 

the DMUo in the first stage based on the 

idea presented in (Despotis et al., 2016) is 
introduced as follows: 

Minimize 

fof

b

f

ioi

m

i

z

x

e










1=

1=
1

 

Subject to 0
1=1=

 fjf

b

f

iji

m

i

zx 

 
nj ,...,1                                              (1) 
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0
1=1=

 rjr

b

r

fjf

b

f

yz   nj ,...,1  

0;0;0  rfi v

srbfmi ,...,1;,...,1;,...,1   

 

A model that evaluates the efficiency of 

the DMUo in second stage is formulated 
in a similar way:  

Minimize 
=1

2

=1

b

f fo

f

b

r ro

r

z

e

y










 

Subject to 0
1=1=

 fjf

b

f

iji

m

i

zx 

nj ,...,1                                              (2) 

0
1=1=

 rjr

b

r

fjf

b

f

yz    nj ,...,1  

0;0;0  rfi v

srbfmi ,...,1;,...,1;,...,1   

 

Both models (1) and (2) have the same set 

of constraints. The weights i , f  and 

r  are assigned to inputs, intermediate 

characteristics and final outputs 

respectively. They are variables of models 

(1) and (2). Symbols 
1e  and 

2e  stand for 

efficiency scores in stages one and two, 

respectively. Based on the efficiency 

decomposition approach, overall 
efficiency is defined as the weighted 

average of stage efficiencies:  

  210 1 eee   ,  

10                                        (3) 

 
The following model is solved in order to 

obtain the overall efficiency score (3): 

Minimize      
=1=1

=1 =1

,

bm

f foi io
fi

b s

f fo r ro

f r

zx

h

z y



 

 
 
 

  
 
 
 



 
 

Subject to  0
1=1=

 fjf

b

f

iji

m

i

zx 

nj ,...,1                          (4) 

0
1=1=

 rjr

s

r

fjf

b

f

yz   nj ,...,1  

0;0;0  rfi v

srbfmi ,...,1;,...,1;,...,1   

 
Model (4) is a bi-objective fractional 

programming problem. It can be solved 

using various multiple objective 

techniques - weighted sum of particular 
objective functions, lexicographic 

approach, or bi-level method.  

 

2.2 Basic concepts of DEA-R models 

In this section, we present the relationship 

between DEA and DEA-R models under 
the assumption of constant returns to 

scale technology based on the ideas of 

Despic et al. (2007). Let us suppose the 

following formulation of DEA-R model:  

Maximize   vu,  
































s

r ro

rj

r

m

i io

ij

i

j
o

y

y
u

x

x
v

e

1

1
min  

Subject to 1
1=

 r

s

r

u                      (5) 

  1
1=

 i

m

i

v  

0;0  ir vu  misr ,...,1;,...,1   
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Of course the assumption of positive data 

is essential and all ratios 

io

ij

x

x
 and 

ro

rj

y

y
 

must be defined. Despic et al. (2007) 

presented their DEA-R efficiency model 
for evaluation of DMUo in constant 

returns to scale technology as follows:  

Maximize       
 






















m

i

s

r

ro

rj

io

ij

ir
j

o

y

y

x

x

we
1 1

minˆ  

Subject to 1
11




s

r

ir

m

i

w               (6) 

0irw   srmi ,..,1;,..,1   

 

Where wir is the weight of the ratio in the 

objective function (6). 
Wei et al. (2011a) proved the relationship 

between models (5) and (6) as ˆ
o oe e .  

 

3. Two-stage network DEA-R models 
Evaluating DMUs which possess ratio 

data such as 

j

j

X

Z  and 

j

j

Z

Y  requires models 

which firstly, possess the requirements of 

the respective production possibility set, 
and secondly, are able to calculate 

efficiency value of the units. In this 

section, we first suggest two-stage DEA-

R models and then introduce the 
production possibility set in each stage. In 

the second part, we will propose two-

stage DEA-R models using MOLP and 
present numerical expressions in the end. 

(Fig 1) 

 

3.1 Efficiency in two-stage DEA-R 

model 

Assume that we have ),,( jjj YZX  for 

DMUj where 

j

j

X

Z
 and 

j

j

Z

Y  ratios are 

available. Our aim is to evaluate the 

DMUs in a two-stage process using the 

defined ratios. Our proposed output-
oriented CRS model for the first stage is 

as follows: 

Minimize 11 E  

Subject to 1

11=




b

f

io

fo

ij

fj

if

m

i

x

z

x

z

w

nj ,...,1                          (7) 

1
11




b

f

if

m

i

w , 

0ifw  bfmi ,..,1;,..,1  . 

 

The output-oriented DEA-R envelopment 
model for evaluation of the DMUo can be 

The output-oriented DEA-R envelopment 

model for evaluation of the DMUo can be 
formulated as follows: 

Maximize  1  

Subject to 
1

1

1

n
j o

j

j j o

Z Z

X X
 



   
    

  
     (8) 

1 1

1

1, 0, 1,..., .
n

j j

j

j n 


    

 

 
Fig 1. A two-stage process. 
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Definition 1. DMUo is DEA-R efficient 
(output-oriented DEA-R efficient) if and 

only if the optimal objective function 

value of model (8) 
*

1 1  .  

In the second stage, our proposed output-

oriented DEA-R model is as follows: 

Minimize 22 E  

Subject to. 
2

11=




b

f

fo

ro

fj

rj

if

s

r

z

y

z

y

w

nj ,...,1                          (9) 

1
11




b

f

rf

s

r

v  

0rfv   bfsr ,..,1;,..,1   

 

The output-oriented envelopment model 

under CRS technology in stage 2 for 
evaluation of DMUo can be written as 

follows: 

Maximize  
2  

Subject to        2

2

1

n
j o

j

j j o

Y Y

Z Z
 



   
    

  
  

2

1

2

1,

0, 1,..., .

n

j

j

j j n









 


              (10) 

 

Definition 2. DMUo is DEA-R efficient 

(output-oriented DEA-R efficient) if and 
only if the optimal objective function 

value of model (10) 
*

2 1  . 

 

3.2 Two-stage Network DEA-R models 

based on MOLP  
In this section, we will propose two-stage 
network DEA models which use MOLP. 

First, a bi-objective linear programming 

model is suggested for measuring overall 

efficiency of 
ODMU  with ratio data 

defined as 

j

j

X

Z  and 

j

j

Z

Y  (CRS, output-

oriented), And finally, the bi-objective 
linear programming model is solved using 

the lexicographic and adaptive weighted 

sum approaches. Combining the 

restrictions of models (7) and (9), we 
suggest the bi-objective linear model (11) 

for measuring overall efficiency of the 

two-stage DEA-R process. Model (11) is 
proposed for output-oriented evaluation 

of DMUo under the assumption of 

constant returns to scale technology based 

on MOLP. 

Minimize  21,  

Subject to. 
 


m

i

b

f

io

fo

ij

fj

if

x

z

x

z

w
1 1

1

nj ,...,1                        (11) 


 


s

r

b

f

fo

ro

fj

rj

rf

z

y

z

y

v
1 1

2  nj ,...,1  

1
11=




b

f

rf

s

r

v   1
11=




b

f

if

m

i

w  

0;0  ifrf wv

mibfsr ,...,1;,...,1;,...,1   

 

We can solve the bi-objective model (11) 
using the weighted sum method. For this 

purpose, we need to define coefficients p1 

and p2 for the first and second objective 
functions, respectively, where p1 + p2 = 1, 

p1, p2 > 0. It is clear that solving the 

optimization with the aggregated 

objective function given as weighted sum 
of two particular objective functions with 

the same set of constraints results to the 

Pareto solution of the MOLP problem.  
Another possibility how to solve the 

model (11) is to use lexicographic 

approach. At first the model with the first 

objective function (1) is solved – the 

optimal objective function value is 1
*.  
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The second step, the set of constraints is 

extended by 1 = 1
* and the second 

objective function is optimized. Using 
this approach a Pareto efficient solution 

of the MOLP problem (11) is given. We 

propose an envelopment model for 
evaluating the overall efficiency of a two-

stage network DEA-R as follows: 

Maximize  21    

Subject to         
1

1

1

n
j o

j

j j o

Z Z

X X
 



   
    

  
   

2

2

1

n
j o

j

j j o

Y Y

Z Z
 



   
    

  
                    (12) 

1 2

1 2

1 1

1 2

, ,

0, 0, 1,..., .

n n

j j

j j

j j

P P

j n

 

 

 

 

  

 
  

 
Model (12) is a linear programming 

problem, in which 1p  and 2p  are 

parameters determining overall efficiency 

of the two-stage process.  The variable 
1

j  

and 
2

j  correspond to stage 1 and stage 2 

respectively. If 02

1




j

n

j

  then only stage 

1 process is considered. Similarly, if 

01

1




j

n

j

 , then we consider the process in 

stage 2 only. However, if we consider 

1

1

1

pj

n

j




  and 
2

2

1

pj

n

j




 , where p1+p2=1, 

p1, p2 > 0, the Pareto optimal solution of 
model (11) defines the overall efficiency 

of DMUo of the two-stage models with 

ratio data. 
 

3.3 Illustration  
The illustration presented in this section is 
given from (Kao and Hwang, 2008) 

where 24 non-life insurance companies 

have been analyzed. Despotis et al. (2016) 

and Guo et al. (2016) have previously 
used this data set in order to measure 

efficiency of two-stage processes and 

overall efficiency. We will use the same 
data set in order to evaluate the two-stage 

DEA-R process using presented MOLP 

techniques. The original data set is 
presented in Table 1. 

 
Table 1. Inputs, intermediate variables, and outputs of 24 DMUs 

DMU x1 x2 z1 z2 y1 y2 

1 1178744 673512 7451757 856735 984143 681687 

2 1381822 1352755 10020274 1812894 1228502 834754 

3 1177494 592790 4776548 560244 293613 658428 

4 601320 594259 3174851 371863 248709 177331 

5 6699063 3531614 37392862 1753794 7851229 3925272 

6 2627707 668363 9747908 952326 1713598 415058 

7 1942833 1443100 10685457 643412 2239593 439039 

8 3789001 1873530 17267266 1134600 3899530 622868 

9 1567746 950432 11473162 546337 1043778 264098 

10 1303249 1298470 8210389 504528 1697941 554806 

11 1962448 672414 7222378 643178 1486014 18259 

12 2592790 650952 9434406 1118489 1574191 909295 
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13 2609941 1368802 13921464 811343 3609236 223047 

14 1396002 988888 7396396 465509 1401200 332283 

15 2184944 651063 10422297 749893 3355197 555482 

16 1211716 415071 5606013 402881 854054 197947 

17 1453797 1085019 7695461 342489 3144484 371984 

18 757515 547997 3631484 995620 692731 163927 

19 159422 182338 1141951 483291 519121 46857 

20 145442 53518 316829 131920 355624 26537 

21 84171 26224 225888 40542 51950 6491 

22 15993 10502 52063 14574 82141 4181 

23 54693 28408 245910 49864 0.1 18980 

24 163297 235094 476419 644816 142370 16976 

 
 

Table 2. Efficiency scores obtained by models (1), (2), (7) and (9) 

DMU e1 E1 Difference e2 E2 Difference 

1 0.9926 0.9617 0.0309 0.7134 0.7152 -0.0018 

2 0.9985 0.9987 -0.0002 0.6449 0.6311 0.0138 

3 0.69 0.6618 0.0282 1 1 0 

4 0.7243 0.7243 0 0.4323 0.4347 -0.0024 

5 0.8375 0.8218 0.0157 1 1 0 

6 0.9637 0.9637 0 0.4057 0.4119 -0.0062 

7 0.7521 0.7521 0 0.5378 0.525 0.0128 

8 0.7256 0.7038 0.0218 0.5113 0.4911 0.0202 

9 1 1 0 0.292 0.2899 0.0021 

10 0.8615 0.8615 0 0.6736 0.6829 -0.0093 

11 0.7405 0.7246 0.0159 0.3267 0.2816 0.0451 

12 1 1 0 0.7596 0.7666 -0.007 
13 0.8107 0.7918 0.0189 0.5435 0.5023 0.0412 

14 0.7246 0.7246 0 0.5178 0.5135 0.0043 

15 1 1 0 0.7047 0.6806 0.0241 

16 0.9072 0.8881 0.0191 0.3847 0.3857 -0.001 

17 0.7233 0.7233 0 1 1 0 

18 0.7935 0.7685 0.025 0.3976 0.3737 0.0239 

19 1 1 0 0.4158 0.4158 0 

20 0.9332 0.9332 0 0.9014 0.9014 0 

21 0.7505 0.7505 0 0.2795 0.2906 -0.0111 

22 0.5895 0.5802 0.0093 1 1 0 

23 0.8501 0.8217 0.0284 0.5599 0.5599 0 
24 1 1 0 0.3351 0.3351 0 

 

 

This example consists of two inputs (x1, 

x2), two intermediate measures (z1, z2) and 
two outputs (y1, y2).  

All ratios 

1

1

x

z ,

2

1

x

z ,

1

2

x

z
,

2

2

x

z
, 

1

1

z

y
,

2

1

z

y
,

1

2

z

y , 

 

2

2

z

y  are known. That is why we can 

analyze the efficiency of the two-stage 
system using DEA and DEA-R models 

(1), (2), (7) and (9). (Table 2) 
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Table 3. Results obtained by MOLP models (11) and (12) with different parameters 

DMU 
),( 21 pp  ),( 21 pp  ),( 21 pp  ),( 21 pp  ),( 21 pp  ),( 21 pp  ),( 21 pp  

(1,0) (0,1) (0.5,0.5) (0.75,0.25) (0.25,0.75) (0.1,0.9) (0.9,0.1) 

1 0.9617 0.7152 0.8203 0.8854 0.7642 0.734 0.9296 

2 0.9987 0.6311 0.7734 0.8718 0.6951 0.6552 0.9437 

3 0.6618 1 0.7965 0.7229 0.8867 0.9514 0.6849 

4 0.7243 0.4347 0.5433 0.6209 0.483 0.4528 0.6791 

5 0.8218 1 0.9022 0.8601 0.9486 0.9788 0.8367 

6 0.9637 0.4119 0.5771 0.7219 0.4807 0.4369 0.8498 

7 0.7521 0.525 0.6184 0.6787 0.5679 0.5414 0.7209 

8 0.7038 0.4911 0.5785 0.6351 0.5312 0.5064 0.6746 

9 1 0.2899 0.4495 0.6202 0.3525 0.3120 0.8032 

10 0.8615 0.6829 0.7619 0.8087 0.7203 0.6974 0.8396 

11 0.7246 0.2816 0.4056 0.5201 0.3324 0.2999 0.6261 
12 1 0.7666 0.8679 0.9293 0.8141 0.7849 0.9705 

13 0.7918 0.5023 0.6147 0.6921 0.5529 0.5214 0.7486 

14 0.7246 0.5135 0.6011 0.6571 0.5539 0.5289 0.6960 

15 1 0.6806 0.8099 0.8950 0.7397 0.7031 0.9552 

16 0.8881 0.3857 0.5378 0.6699 0.4492 0.4088 0.7857 

17 0.7233 1 0.8394 0.7771 0.9127 0.9632 0.7439 

18 0.7685 0.3737 0.5028 0.6079 0.4287 0.3939 0.6951 

19 1 0.4158 0.5874 0.7400 0.4869 0.4416 0.8768 

20 0.9332 0.9014 0.9170 0.9250 0.9091 0.9045 0.9299 

21 0.7505 0.2906 0.4189 0.5377 0.3431 0.3095 0.6479 

22 0.5802 1 0.7343 0.6482 0.8468 0.9325 0.6056 
23 0.8217 0.5599 0.6660 0.7357 0.6084 0.5783 0.7850 

24 1 0.3351 0.5020 0.6684 0.4019 0.3590 0.8344 

 

The second and third column of Table 2 

presents the efficiency score obtained by 
models (1) and (7), i.e. models measuring 

the efficiency in the first stage of the 

production process using the output-
oriented DEA model (1) and DEA-R 

model under CRS technology (7) 

respectively. There is a very small 
difference between efficiency values of 

the first stage in DEA and DEA-R – in 

many cases the efficiency scores are 

identical. The units 9, 12, 15, 19 and 24 
are efficient at this stage. The last two 

columns of Table 2 present similar results 

for the second stage of the production 
process. They are calculated using models 

(2) and (9). The units 3, 5, 17 and 22 are 

efficient in the second stage measuring by 
both models.  

Table 3 contains the results obtained by 

MOLP models (11) and (12). The 

adaptive weighted sum method was used 

to solve the multi-objective model (11). 
By setting different values for parameters 

p1 and p2, p1 + p2 = 1, p1, p2 > 0, the model 

returns Pareto optimal solution of model 
(11). In the first two columns of Table 3, 

parameters p1 and p2 are considered as 

(1,0) and (0,1). In this case the results of 
the model (12) lead to the same 

conclusions as models (7) and (9) that 

measure efficiencies of both stages 

independently, i.e. the units 9, 12, 15, 19 
and 24 are efficient for (p1, p2) = (1, 0) 

and the units 3, 5, 17 and 22 are efficient 

for (p1, p2) = (0, 1). This corresponds to 
conclusions presented in Table 2. The last 

five columns of Table 3 contain 

efficiency scores computed using (12) 
with setting of different values of both 

parameters (0.5, 0.5), (0.75, 0.25), (0.25, 

0.75), (0.9, 0.1) and (0.1, 0.9). This 
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allows to decision makers analyzing the 
two-stage production process in more 

detail. 

 

4. Three-stage network DEA-R 

processes 

This section presents a three-stage 

network production process with inputs 
X1, X2

 and X3, and final outputs Y1, Y2 and 

Y3 for all three stages. Z1 are intermediate 

measures - the outputs of the first stage 

and the inputs of the second stage. Z2 are 
the outputs of the second stage entering 

the third stage as its inputs. Z3 are the 

outputs of the third stage.  
We propose a model for evaluation three-

stage network DEA-R processes under the 

following assumptions: 
a. The proposed model is output-oriented 

DEA-R envelopment model under the 

assumption of CRS technology. 

b. Our proposed model is a parametric 
linear model in a three-stage network 

process; this model aims to increase the 

outputs in every stage in order to evaluate 
units with ratio data. 

In all network stages, we consider the 

constraint ∑ 𝜆𝑗
𝑡 = 𝑃𝑡

𝑛
𝑗=1  corresponding to 

each stage 𝑡, on the condition that 

𝑃1+𝑃2+𝑃3 = 1. Therefore, since 𝜆𝑗
𝑡 ≥ 0, 

if ∑ 𝜆𝑗
𝑡 = 0𝑛

𝑗=1 , then 𝜆𝑗
𝑡 = 0 for every 𝑗. 

In general, we consider two scenarios for 

the parameters 𝑃𝑡: 
i) If 𝑃𝑡 ∈ {0,1} and 𝑃1+𝑃2+𝑃3 = 1, then 

the proposed model can calculate the 
efficiency of every stage. 

ii) If 𝑃𝑡 ∈ [0,1] and 𝑃1+𝑃2+𝑃3 = 1, then 

the proposed model can calculate the 

overall efficiency of our network. 
c. Let I1, I2 and I3 are the sets of indices 

of inputs in all three stages. Similarly F1, 

F2 and F3, and R1, R2 and R3 are the sets 
of indices of intermediate measures and 

final outputs respectively. 

d. In the suggested model, parameters 𝑃1, 

𝑃2 and 𝑃3 correspond to variables 𝜆𝑗
1, 𝜆𝑗

2 

and 𝜆𝑗
3, respectively. Now, since the three 

stages of our network as well correspond 

to 𝜆𝑗
1, 𝜆𝑗

2 and 𝜆𝑗
3, therefore the parameters 

𝑃1, 𝑃2 and 𝑃3 have a very significant role 

in calculation of stage and overall 

efficiencies. 

e. Variables
1

j , 
2

j , 
3

j  correspond to 

stages 1, 2 and 3, respectively. 

f. Since the three-stage network process 

is output-oriented, the proposed model 
aims to increase the output-to-input ratios, 

which are increased radially. Variables 

𝜑1, 𝜑2 and 𝜑3 are used to increase the 
outputs in stages one, two and three of a 

network with ratio data, respectively. 

The DEA-R model we propose for overall 

evaluation of three-stage serial production 
process is as follows:   

Maximize  1 2 3     

Subject to 
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p1 + p2 + p3 = 1,     

0;0;0 321  jjj   nj ,...,1 . 

 

Model (13) is a linear programming 

problem, in which 1p , 2p  and 
3p  are 

parameters determining overall efficiency 
for three-stage network processes. 

Generally speaking, model (13) can be a 

suitable alternative for model (8) in stage 
one and model (10) in stage two; in this 

regard, if we consider 𝑃1 = 1 and 𝑃2 =
𝑃3 = 0, we can only calculate the 

efficiency of stage one, as ∑𝜆𝑗
1 = 1 and 

∑𝜆𝑗
2 = ∑𝜆𝑗

3 = 0. Similarly, we can 

calculate the efficiency of later stages by 

changing the parameters 𝑃1, 𝑃2 and 𝑃3 to 
zeros or ones. However, if the parameters 

𝑃1, 𝑃2 and 𝑃3 were strictly greater than 

zero, then all constraints used in each 
network stage would influence the overall 

efficiency. 
 

5. A case study  
Let us consider 22 Iranian medical centers  
 

which provide necessary services to 
special patients with tumors. The data set 

available is taken from summer months 

2016. The treatment process of patients 

with cancer diseases can generally be 
divided into three stages: 

Stage 1 includes patients needing surgery. 

Patients at this stage generally have 
special diseases and their tumors are 

either benign of types A or B, or they are 

malignant. All three groups of patients 
need surgery according to conclusions by 

an expert physician. 

Stage 2 includes patients who need 

chemotherapy based on doctor’s orders. 
This group generally consists of patients 

with special diseases who either have had 

a surgery in previous years and currently 
need chemotherapy, or did not undergo 

the surgery because of their age or other 

specific factors and now chemotherapy is 
needed. 

Stage 3 includes radiotherapy. Generally, 

this group of patients either has 

undergone surgery, chemotherapy and 
radiotherapy during past years and 

according to doctor’s diagnosis need 

radiotherapy, or has finished the treatment 
process and need radiotherapy in order to 

destroy the cancer cells after surgery or 

chemotherapy. 

 

 

 
Figure 2. The three-stage process 
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Generally, in treatment of patients with 
tumors, medical centers provide the 

following treatment processes after the 

radiology and sampling stages. 

i) If the tumor was malignant, the stages 
of surgery, chemotherapy and 

radiotherapy are indeed essential. 

ii) If the tumor was malignant but the 
patient was not able to undergo surgery 

due to age limits, chemotherapy and 

radiotherapy are performed. 

iii) If the tumor was benign, there could 
only be a need for surgery based on 

doctor’s diagnosis. 

The treatment process is graphically 
illustrated on Figure 2. It is three-stage 

process where the following input, 

intermediate and output variables are 
used: 

1

1x   the number of patients with type 

A benign tumors needing a  surgery, 
1

2x    the number of patients with type 

B benign tumors needing a  surgery,. 
1

3x   the number of patients with 

malignant tumors needing a surgery. 
1

1y     patients who only require surgery 

according to the doctor’s diagnosis and 

their surgery is only successful in the first 

stage; based on the post-surgery 
pathology report, these patients don’t 

need to continue treatment and only make 

annual visits to the physician for follow-

ups. 
1

2y  : Patients who undergo surgery, but 

cannot continue the treatment process due 

to age limits. Meaning the patients are not 

in a suitable condition to continue 
treatment after surgery and it is in their 

best interest to stop the process. 
1

1z  : Number of special patients who have 

benign tumors, but for whom the need for 
chemotherapy becomes apparent in the 

radiological tests at the start of surgery. 
1

2z  : Number of patients with malignant 

tumors who need chemotherapy following 

surgery. 

2

1x  : Number of special patients who start 

the treatment process with chemotherapy 
because of their age or problems with 

other diseases such as heart or liver 

disease. 
2

2x  : Number of patients who have had 

surgery in previous years and their 
respective physician has prescribed 

chemotherapy in the current annual 

screening. 
2

1y  : Number of special patients who 

have finished chemotherapy but don’t 

need radiotherapy because of special 

conditions or other diseases. 
2

1z  : Number of patients who have 

undergone chemotherapy in stage 2 and 
do not require radiotherapy  

3

1x  : Number of patients who have 

undergone chemo and radiotherapy in 

previous years but currently require 
further radiotherapy based on doctor’s 

orders. 
3

2x  : Number of patients who only need 

radiotherapy based on their tumor type 
and age. 

3

1z  : Number of patients who recover 

following radiotherapy (relatively 

satisfied with treatment). 
3

1y  : Number of patients who recover 

after undergoing all treatment stages 
(completely satisfied with treatment).  

Regarding patients visiting the 22 medical 

centers, due to the special conditions of 
patients and uncertainty of the treatment 

process in each stage (since there is a 

chance of cell proliferation and 
dependency of patient’s immune system), 

it’s often impossible to obtain accurate 

data in terms of inputs and outputs for 

each stage. Consequently, we usually only 

have access to a ratio of 
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f j
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Table 4. Data related to the 22 Iranian medical centers in summer 2016 (stage 1) 

DMU 

1

1

1

1

z

x
 

1

2

1

1

z

x

 
1

1

1

2

z

x

 
1

2

1

2

z

x

 
1

1

1

3
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x
 

1

2

1

3

z

x

 
1

1

1

1

y

x
 

1

1

1

2

y

x

 
1

1

1

3

y

x

 
1

2

1

1

y

x
 

1

2

1

2

y

x

 
1

2

1

3

y

x

 

1 0.10 0.14 0.15 0.22 0.43 0.61 0.93 1.40 4.00 0.58 0.88 2.50 

2 0.22 0.06 0.08 0.02 1.56 0.44 0.72 0.25 5.00 1.07 0.37 7.41 

3 0.01 0.51 0.01 0.30 0.02 0.66 0.98 0.59 1.27 1.66 1.00 2.16 

4 0.38 0.07 0.50 0.09 1.88 0.34 0.81 1.08 4.06 0.39 0.52 1.96 

5 0.10 0.19 0.04 0.07 0.27 0.52 0.73 0.29 2.03 2.26 0.89 6.24 

6 0.17 0.23 0.19 0.26 0.56 0.76 0.70 0.81 2.36 0.62 0.71 2.08 

7 0.12 0.07 0.06 0.04 0.05 0.03 0.93 0.48 0.42 1.88 0.98 0.85 

8 0.43 0.22 0.48 0.25 1.00 0.51 0.57 0.64 1.34 0.72 0.81 1.69 

9 0.77 0.37 0.64 0.31 0.33 0.16 0.51 0.43 0.22 0.34 0.29 0.15 

10 0.01 0.02 0.05 0.15 0.01 0.02 0.04 0.37 0.04 0.03 0.30 0.03 
11 0.54 0.04 5.26 0.39 0.59 0.04 0.94 9.18 1.02 0.09 0.89 0.10 

12 0.04 0.07 0.03 0.05 0.03 0.05 0.98 0.70 0.62 1.04 0.75 0.66 

13 0.08 0.07 0.11 0.09 0.37 0.32 0.97 1.28 4.37 0.70 0.92 3.16 

14 0.59 0.10 0.30 0.05 1.10 0.18 0.95 0.48 1.77 1.93 0.97 3.62 

15 0.13 0.11 0.19 0.16 0.50 0.42 0.91 1.34 3.58 0.53 0.78 2.08 

16 0.31 0.51 0.24 0.40 0.61 1.00 0.83 0.64 1.61 1.09 0.84 2.11 

17 0.33 0.23 0.45 0.32 0.37 0.26 0.82 1.12 0.93 0.69 0.95 0.79 

18 1.00 0.07 1.40 0.10 1.25 0.09 0.93 1.31 1.17 0.58 0.81 0.73 

19 0.12 0.03 0.15 0.04 0.23 0.06 0.90 1.16 1.75 0.62 0.80 1.21 

20 0.33 0.08 0.42 0.10 0.58 0.13 0.14 0.18 0.25 0.07 0.08 0.11 

21 0.06 0.23 0.03 0.11 0.04 0.16 0.97 0.47 0.69 2.06 0.99 1.47 
22 0.30 0.21 0.39 0.27 1.31 0.91 0.30 0.39 1.31 0.21 0.27 0.91 

 
Table 5. Data related to the 22 Iranian medical centers in summer 2016 (stage 2) 

DMU 

2

1

1

1

z

z

 
2

1

1

2

z

z
 

2

1

2

1

z

x
 

2

1

2

2

z

x
 

2

1

2

1

y

x

 
2

1

2

2

y

x

 
3

1

3

1

z

x

 
3

1

3

2

z

x

 

1 0.43 0.30 0.25 0.18 0.09 0.07 0.22 0.13 

2 0.24 0.83 0.24 0.42 0.17 0.29 0.19 0.09 

3 1.80 0.04 0.26 0.12 0.26 0.12 0.34 0.15 

4 0.05 0.30 0.15 0.11 0.25 0.18 0.44 0.34 
5 0.33 0.17 0.13 0.39 0.15 0.45 0.17 0.14 

6 1.07 0.79 1.25 0.83 0.58 0.39 0.30 0.17 

7 1.40 2.33 0.20 0.17 0.14 0.12 1.42 0.49 

8 0.09 0.17 0.17 0.18 0.33 0.35 0.82 0.15 

9 0.19 0.38 0.38 0.20 0.92 0.48 0.83 0.35 

10 2.25 0.75 0.24 0.41 0.49 0.82 0.68 0.53 

11 0.01 0.13 0.09 0.06 0.21 0.13 1.36 1.06 

12 0.60 0.33 0.04 0.06 0.07 0.10 0.69 0.12 

13 1.14 1.33 0.57 0.67 0.21 0.25 0.18 0.14 

14 0.26 1.57 0.61 2.20 0.06 0.20 1.17 0.82 

15 2.17 2.60 0.37 0.18 0.06 0.03 1.06 1.13 
16 0.91 0.56 0.11 0.09 0.05 0.04 0.85 0.61 

17 0.20 0.28 0.22 0.07 0.15 0.04 0.76 0.68 

18 0.03 0.44 0.20 0.44 0.34 0.78 0.70 0.56 

19 0.20 0.75 0.13 0.36 0.26 0.76 0.23 0.17 

20 0.08 0.33 0.24 0.42 0.05 0.08 0.04 0.17 

21 6.00 1.50 0.20 0.10 0.08 0.04 0.18 0.28 

22 0.12 0.17 0.31 0.25 0.06 0.05 0.27 0.42 
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Table 6. Data related to the 22 Iranian medical centers in summer 2016 (stage 3) 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

Therefore, we can easily evaluate the 
units using the suggested network DEA-R 

model. Using the structure of MOLP in 

three-stage network DEA-R has the 

following outcomes: 

a) By considering 
11 MP  , 22 MP   and 

33 MP   in model (17) where 

1321  MMM  and  1,0,, 321 MMM  

efficiency value of each process would be 
calculated separately. 

b) If  1,0,, 321 MMM  in model (17), 

we would arrive at the overall efficiency 
and the evaluation criterion would depend 

on the values of 
1M , 

2M  and 
3M . 

 

  

DMU 

3

1

3

1

z

x
 

3
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3
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3

1

y

x
 

3

1

3
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x
 

3

1

3

1

y

z
 

3

1

2

1

z

z
 

3

1

2

1

y

z
 

1 0.22 0.13 0.63 0.38 2.86 0.54 1.54 

2 0.19 0.09 0.77 0.38 4.00 0.90 3.60 

3 0.34 0.15 0.78 0.34 2.27 1.22 2.78 

4 0.44 0.34 0.56 0.43 1.28 2.25 2.88 

5 0.17 0.14 0.21 0.17 1.21 1.17 1.42 

6 0.30 0.17 0.32 0.18 1.06 1.13 1.20 

7 1.42 0.49 1.33 0.46 0.94 2.43 2.29 

8 0.82 0.15 1.06 0.19 1.29 4.67 6.00 

9 0.83 0.35 1.39 0.58 1.67 3.00 5.00 

10 0.68 0.53 1.08 0.84 1.59 1.89 3.00 

11 1.36 1.06 1.79 1.39 1.32 4.75 6.25 

12 0.69 0.12 2.85 0.51 4.11 3.00 12.33 

13 0.18 0.14 0.42 0.33 2.35 2.13 5.00 

14 1.17 0.82 3.50 2.47 3.00 1.27 3.82 

15 1.06 1.13 2.50 2.67 2.35 1.31 3.08 

16 0.85 0.61 1.62 1.17 1.91 1.10 2.10 

17 0.76 0.68 2.06 1.84 2.69 1.44 3.89 

18 0.70 0.56 3.05 2.44 4.36 1.75 7.63 

19 0.23 0.17 1.26 0.93 5.57 0.78 4.33 

20 0.04 0.17 0.38 1.56 9.33 0.20 1.87 

21 0.18 0.28 0.42 0.65 2.31 1.33 3.08 

22 0.27 0.42 1.10 1.74 4.15 0.87 3.60 
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Table 7. Comparison of efficiency values obtained from model (17) using different parameters 

DMU 

Efficiency 

score 

(Stage 1) 

Efficiency 

score  

(Stage 2) 

Efficiency 

score  

(Stage 3) 

4.03 p  8.01 p  8.02 p  8.03 p  

p1 = p2 = 

0.3 

p2 = p3 = 

0.1 

p1 = p3 = 

0.1 

p1 = p2 = 

0.1 

1 1 0.2556 0.2164 0.3011 0.6049 0.2709 0.2388 

2 1 0.6089 0.3365 0.5047 0.7928 0.5844 0.3786 

3 1 0.6105 0.3283 0.4975 0.7884 0.5831 0.3702 

4 1 0.4003 0.4737 0.528 0.7931 0.433 0.4905 

5 1 0.61 0.2456 0.4132 0.7294 0.5499 0.284 

6 0.9086 1 0.2386 0.4335 0.7145 0.7523 0.2807 

7 0.9878 1 1 0.9963 0.9903 0.9988 0.9988 

8 0.9974 0.5158 0.9825 0.7755 0.911 0.5705 0.9022 

9 1 1 0.6876 0.8462 0.9566 0.9566 0.7335 

10 0.3662 1 0.5206 0.5298 0.4038 0.7904 0.5236 

11 1 0.2617 1 0.5416 0.7799 0.307 0.7799 

12 1 0.3519 1 0.6441 0.8444 0.4043 0.8444 

13 1 0.8564 0.5442 0.7218 0.9087 0.8211 0.5928 

14 1 1 1 1 1 1 1 

15 0.9689 1 1 0.9905 0.9749 0.9968 0.9968 

16 1 0.3034 0.6591 0.5275 0.7805 0.3462 0.6085 

17 1 0.2642 0.767 0.511 0.764 0.3069 0.6572 

18 1 0.9706 1 0.991 0.997 0.9763 0.997 

19 0.9343 1 0.4861 0.6925 0.8606 0.8987 0.5397 

20 0.4877 0.272 0.5846 0.4162 0.4589 0.3014 0.5151 

21 1 1 0.3975 0.6226 0.8684 0.8684 0.452 

22 1 0.2607 0.6813 0.4907 0.7517 0.3016 0.6032 

 

Model (17) is a linear programming 

problem; 1p , 2p  and 3p  are determining 

parameters for overall efficiency of the 

three-stage network process. 

Firstly, due to the priority of stage 1 

compared to other stages, 11 p  and 

032  pp , meaning that 



n

j

j p
1

1

1 1 . 

Therefore, based on the categorization of 

1I , 1F  & 1R  for the first stage, we can 

observe that units 1, 2, 3, 4, 5, 9, 11, 12, 

13, 14, 16, 17, 18, 21 & 22 are all 
efficient; column 2 of Table 7 

demonstrates this fact. If we only consider 

the second stage, units 6, 7, 9, 10, 14, 15, 
19 & 21 are efficient according to Table 

7’s third column. However, as 

demonstrated in column 4, units 7, 11, 12, 
14, 15 & 18 are efficient in stage 3. 

Obviously, unit 14 is efficient in all three 

stages. Therefore, we can conclude that 
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patients receive quality services in the 
surgery stage, but chemotherapy and 

radiotherapy stages lack proper service 

provision. 

After a detailed study of stages 2 & 3, we 
arrived at the following issues: 

a) Due to drug shortages and inability of 

patients to receive drugs (in terms of 
weak immune systems and allergic 

reactions to drugs), the chemotherapy 

stage requires special attention. 

b) The services provided in the 
radiotherapy stage lack quality due to the 

high number of patients, their desire for 

liberation from the treatment process 
(pain & suffering during treatment & 

disease) and problems with radiotherapy 

devices. 
Therefore, it is of great importance in this 

stage to fix the issues with radiotherapy 

machines, train the personnel to provide 

better services, convince the patients to 
stick to timetables in between 

radiotherapy sessions and make them 

aware of the dangers of radiotherapy. 
Columns 5 to 8 from Table 7 present the 

overall efficiency obtained from model 

(17). 
Four groups of weights were selected for 

the vector  321 ,, ppp : 

Group 1: Equal priority for all three 

network stages with parameters 

   4.0,3.0,3.0,, 321 ppp . Unit 14 is the 

only efficient one, however, units 7, 15 & 

18 are closer to being efficient. 

Group 2: Priority of the first stage in all 
three stages and finding the Pareto 

efficient solution using parameters 

   1.0,1.0,8.0,, 321 ppp . Unit 14 is the 

only one efficient, however, units 7, 8, 9, 

13 & 15 are closer to efficiency. 

Group 3: Priority of the second stage in 

all three stages and finding the Pareto 
efficient solution using parameters 

   1.0,8.0,1.0,, 321 ppp . But units 7, 9, 

15 & 18 are closer to efficiency. 

Group 4: Priority of the third stage in all 
three stages and finding the Pareto 

efficient solution using parameters 

   8.0,1.0,1.0,, 321 ppp . But units 7, 15 

& 18 are closer to efficiency. 

As can be witnessed in figures 5, 6 & 7, 

the first stage has similar behavior to the 
overall efficiency of the network, but 

stages 2 & 3 aren’t similar, therefore the 

medical centers don’t have an overall 
high efficiency. Since only unit 14 is 

efficient, the first stage has good 

efficiency but the second and third stages 

showed weak performances. Therefore, 
it’s essential to revise the process of 

treatment in stages 2 & 3. 

 

6. Conclusions 

DEA-R models (a combination of DEA 

and ratio data) are used in data 

envelopment analysis for evaluation of 
decision-making units, when inputs and 

outputs are not available and we only 

have access to a defined ratio of data. In 
many DMUs, intermediate links play an 

important role in the network structure of 

DEA. Therefore, we evaluated 22 medical 
centers in this paper using network DEA-

R models based on the structure of 

MOLP. Therefore, the reasons for using a 

three-stage network DEA-R model are as 
follows: 

I) When jx , jy  and jz  are not available 

for 
jDMU  in all three-stages and we only 

have access to a ratio of 

j

j

x

z
 and 

j

j

z

y
, 

network DEA-R models can be a suitable 

alternative for network DEA. 
II) We can obtain a ratio of the data at a 

very low cost; for instance, the ratio of 

recovered patients to all patients in each 
stage (surgery, chemotherapy & 

radiotherapy). Therefore, using the 

acquired ratio statistics for each stage, we 

can compare the centers’ performances in 
each time period to the point which would 

improve their quality of services.      

Thus, as can be seen in Table 7, 68% of 
the centers were efficient in stage 1, 31% 
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were efficient in stage 2 and 27% became 
efficient in stage 3. However, based on 

overall efficiency, unit 14 was the only 

one deemed efficient. With an optimistic 

view of model (17)’s optimal solutions 
(columns 5 to 8 of Table 7), we can say 

that units 6, 15 & 18 had proper 

performances in all three stages; on this 
basis, 18% of the units were approved in 

all stages based on overall efficiency 

value. Finally, our overall suggestions for 
the studied medical centers are as follows: 

a) The first stage of treatment requires the 

most attentive service provision; most of 

the centers, except units 10 & 20, had an 
acceptable performance in the first stage 

(Surgery). 

b) The second stage (Chemotherapy) 
requires even more attention in service 

provision. In this regard, units 6, 7, 9, 10, 

14, 15 & 19 were efficient and units 1, 11, 
12, 16, 17, 20 & 22 had weak 

performances. Those centers need to 

receive necessary training on service 

provision, patient guidance and drug 
prescription. 

c) Overall, the centers had weaker 

performances in stage 3 (Radiotherapy) 
comparing to stages 1 & 2. Only units 7, 

11, 12, 14, 15 & 18 were deemed efficient 

in this stage. The other units need to 

receive necessary training and revise their 
radiotherapy method as well as their 

methods for separating patients based on 

location of radiotherapy in the body, age 
requirements and types of disease. For 

future studies, we suggest determining 

medical centers’ level of progress or 
regress based on the Malmquist index, 

rating units based on transverse efficiency 

and determining returns to scale based on 

DEA-R models. 
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