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ABSTRACT 
In this 4D-QSAR study, we obtained pharmacophore identification and biological activity prediction for 50 

propoxy methylphenyl oxadiazole derivatives by the Electron Conformational Genetic Algorithm approach. In 

light of the results given in the data obtained from quantum chemical calculations at HF/3-21 G level, the 

electron conformational matrices of congruity (ECMC) were built by EMRE software. Considering the 

pharmacophore atoms, a parameter pool was introduced into the field. To find the theoretical biological activity 

of the molecules used in this study, the non-linear least squares regression method and genetic algorithm were 

used to determine the best subset of variables affecting bioactivity. As can be understand from our explanations, 

it should be noted that the results obtained in this study are in good agreement with the experimental data 

presented in the literature. The model for the training and test sets attained by the optimum 8 parameters gave 

highly satisfactory results with R
2

training= 0.872, q
2
=0.836 and SEtraining=0.059, q

2
ext1 = 0.787, q

2
ext2 = 0.786, 

q
2
ext3=0.830, ccctr = 0.933, ccctest = 0.896 and cccall = 0.926. 

 

Keywords: 4D-QSAR; propoxy methylphenyl oxasiazole derivatives; pharmacophore; electron conformational-

genetic algorithm method 

 

INTRODUCTION
The

1
 lysophospholipid receptor (LPL-R) 

group is a member of the G protein-

coupled receptor family of integral 

membrane proteins. The lysophospholipid 

sphingosine 1-phosphate (S1P) is the 

natural ligand. The physiological role of 

S1P receptor signaling is studied in several 

studies. S1P receptor activation is involved 

in many pathological situations including 

autoimmunity, inflammation, 

cardiovascular disorders and cancer [1]. 

Biological activities can be determined 

by quantitative structure activity 

relationship (QSAR) models of biological 

activities of new or untested chemicals 

                                                 
*
Corresponding author: emin@erciyes.edu.tr 

(such as property, reactivity, etc.), from the 

chemical structures of similar known 

compounds. The QSAR theory is based on 

a consideration of the linear total 

contribution of different structural and 

chemical properties of a compound to its 

biological activity. QSAR techniques are 

classified into two main categories. These 

include 2D-QSAR with classical Hansch 

type analysis and 3D-QSAR methods 

including CoMFA (comparative molecular 

field analysis) type techniques. In recent 

years, new QSAR methods have been 

developed in addition to 2D-QSAR [2,3] 

and 3D-QSAR methods [4-7]. 4D-QSAR  
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[8], 5D-QSAR [9-10], 6D-QSAR [11], 7D-

QSAR [12], Hologram QSAR (HQSAR), 

Inverse QSAR and Binary QSAR are some 

of the methods resported in recent studies. 

More detailed information on QSAR is 

given in previous studies [13-21]. 

One of the structure-based 

pharmacophore identification methods 

used in 3D-QSAR analysis is the electron 

topological (ET) metatools developed by 

Dimoglo and coworkers [22]. In this 

method, the geometric and electronic 

properties of the molecule obtained from 

quantum chemical calculations is 

represented by a matrix called the 

Electron-Topological Compliance Matrix 

(ETMC) and for every molecule of a single 

conformer selected by conformational 

analysis the pharmacophore is found by 

calculating the three-dimensional ETMC. 

Bersuker and coworkers developed the 

Electron Conformational Method (ECM) 

which finds the pharmacophore group and 

can calculate the quantitative bioactivity 

[23-25]. In this method developed by 

Bersuker, despite the presence of the Pha, 

activity can be reduced (APS, anti-

pharmacophore shielding) or increased 

(AG, auxiliary group) by atomic groups 

that partially or completely reduce activity 

outside the Pha and cause steric hindrance. 

These groups are both APS groups that 

prevent the Pha's proper interaction with 

the bioreceptor and AG groups that 

provide properties such as molecular 

hydrophobicity.  

Using a mixed method with many 

different methods can reduce mistakes in 

4D-QSAR studies, because the purpose of 

this application is to obtain the best 

method. In this study, a hybrid 4D-QSAR 

approach that combines the electron 

conformational method and the genetic 

algorithm method was used to identify the 

pharmacophore (Pha) and to predict the 

antibacterial activities of 50 propoxy 

methylphenyl oxadiazol derivatives. It is 

very important to note that there is not at 

present any QSAR study about them in the 

literature. So, the QSAR studies that will 

be presented in the present work about the 

aforementioned molecules are important 

because they are the first molecular 

modeling studies on these 50 propoxy 

methylphenyl oxadiazole derivatives 

 

METHOD 
Fifty propoxy methylphenyl oxadiazole 

derivates were discussed in the 4D-QSAR 

study with the help of the EC-GA method 

to identify the pharmacophore group and 

explain the relationship between the 

biological activities of these molecules and 

selected molecular parameters [1]. 

The structures of the studied 

compounds and their experimental 

biological activities including S1P1 values 

obtained from the literature are presented 

in Table 1-4. In this table, A
exp

 and A
cal

 

represent the experimental and calculated 

biological activities of the compounds, 

respectively. 

In this study, there is one racemic 

mixture whose activity is 8.075. This 

molecule has been calculated for both R- 

and S- conformers. These conformers were 

calculated as unknown molecules 

(Numbers 49 and 50). The R-enantiomer 

of these conformers was calculated and the 

activity was found to be 7.757. The S-

enantiomer of these conformers was 

calculated and the activity was found to be 

9.172. The R-enantiomer is closer to the 

experimental value. Therefore, the 

experimental value contribution of the R-

enantiomer is greater than that of the R-

enantiomer. 
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Figure 1. Molecular structures of propoxy methylphenyl oxadiazole acid derivatives. 

 

Table.1 Experimental and calculated activity values of propoxy methylphenyl 

oxadiazole acid derivatives for (a) 
Compound R1 R2 A

exp 
A

calc Conformer number 

1* - - 9.154 9.314 24 

2 Isobutyl H 8.244 8.636 39 

3
a
 Isobutyl H 7.050 7.401 18 

4 n-propyl H 8.337 8.435 26 

5 Isopropyl H 8.408 8.437 8 

6 Ethyl H 7.638 8.172 19 

7* Methyl H 6.605 6.734 23 

8 Isobutyl -CH3 9.000 9.697 43 

9
a
* Isobutyl -CH3 8.721 8.711 24 

10 İzopropil -CH3 10.000 10.000 36 

11* Pent-3-yl -CH3 9.045 9.267 19 

12 Cyclopentyl -CH3 10.000 9.452 17 

13 Isobutyl -CH2CH3 10.000 9.673 21 

14 Cyclopentyl -CH2CH3 9.698 9.877 9 

15 Diethylamino -CH2CH3 9.522 9.177 16 

16 N-pyrrolidine -CH3 7.638 7.830 25 

17 N-pyrrolidine -CH2CH3 8.552 8.301 8 
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Table 2. Experimental and calculated activity values of propoxy methylphenyl 

oxadiazole acid derivatives for (b) 

Compound R1 X Y A
exp 

A
calc 

Conformer number 

18 Isobutyl CH N 8.356 8.172 28 

19 Cyclopentyl N CH 9.698 9.158 17 

20 Cyclopentyl CH N 9.096 8.697 14 

 

Table 3. Experimental and calculated activity values of propoxy methylphenyl 

oxadiazole acid derivatives for (c) 
Compound R1 R2 A

exp 
A

calc 
Conformer number 

21* Isobutyl Methyl 9.301 9.446 23 

22* Methyl Isobutyl 8.866 9.572 38 

23 Cyclopentyl Methyl 9.698 9.238 14 

24 Methyl Cyclopentyl 9.045 8.547 55 

25 Diethylamino Methyl 8.886 8.839 22 

26 Methyl Diethylamino 7.267 7.108 16 

 

Table 4. Experimental and calculated activity values of propoxy methylphenyl 

oxadiazole acid derivatives for (d) 
Compound R1 R2 A

exp 
A

calc Conformer number 

27 H H 5.954 5.907 15 

28 Methyl H 7.065 7.062 43 

29 Ethyl H 8.677 8.379 34 

30* n-propyl H 9.154 8.489 38 

31 Isopropyl H 9.522 10.023 21 

32 n-butyl H 8.744 8.858 11 

33 Isobutyl H 9.698 10.189 38 

34 Pent-3-yl H 10.000 9.994 7 

35 Ethyl -CH3 9.522 8.962 25 

36 n-propyl -CH3 9.397 9.637 49 

37* Isobutyl -CH3 10.000 9.897 23 

38 Pent-3-yl -CH3 9.698 10.064 21 

39 Cyclobutyl -CH3 10.000 9.477 21 

40 Cyclopentyl -CH3 9.698 9.722 17 

41 Siklohexyl -CH3 9.000 9.624 15 

42 Pent-3-yl -CH2CH3 9.698 10.100 10 

43 Cyclobutyl -CH2CH3 10.000 10.409 27 

44* Cyclopentyl -CH2CH3 9.522 10.002 19 

45 Cyclohexyl -CH2CH3 8.698 9.274 21 

46 Ethylamino -CH3 9.397 9.060 27 

47 Diethylamino -CH3 9.221 9.375 22 

48 N-pyrrolidine -CH3 8.721 8.878 20 

49
a
 Isopentyl -CH3 - 7.757 31 

50 Isopentyl -CH3 - 9.172 15 

51
b
 Isopentyl -CH3 8.075 - - 

a
(R) enantiomer, 

b
racemic mixture, the compounds denoted by "*" are test compounds 

 

Optimization under certain 

circumstances it is possible to choose the 

best among the possible alternatives in a 

problem. The genetic algorithm (GA) gives 
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the closest solutions when working with 

the appropriate parameters. The GA can be 

used to solve problems that are difficult or 

impossible to solve by traditional methods 

[26-28]. The equation was solved by using 

the GA and the EC-GA method. 

In the context of the EC-GA method, 

series have been previously worked on 

different by our group and this method has 

not been elaborated here since the basis 

and details are given in the previous 

literature. [16,18,21]. For the identification 

of the pharmacophore, AG and APS 

groups, and in order to reveal the best 

parameter group with the greatest effect 

and contribution to the activity, the EC-GA 

approach is a new hybrid  method which 

was developed by combining the EC 

method with the GA optimization 

technique and it has been found to be very 

suitable for 4D-QSAR model studies. 

In the EC-GA method, the genetic 

algorithm optimization technique is used to 

determine the best parameters that affect 

the activity of the drug molecule and to 

finish the calculations in a shorter time. 

Using this method, thousands of 

parameters to define molecules and 

conformers can be prepared and it is 

possible to prepare a model which can give 

good results by selecting the parameters 

which are most suitable for both the 

training and the test set from among them. 

After creating a model using the genetic 

algorithm optimization technique, in order 

to accurately predict the validity of this 

model and the activities of compounds 

whose experimental activity is not known, 

this model is tested with a leave-one-out 

cross validation (LOO-CV) method.  

In these studies, the EMRE package 

program included the discovery of the Pha 

group of all the conformers of the 

compounds and the calculation of the 

activity calculations. Much better results 

were obtained when the EC-GA method 

was used to define the Pha group, AG and 

APS groups and to calculate biological 

activities. Spartan 10’ software 

optimizations [30] at Hartree-Fock 3-21G 

level were performed in the water phase, 

because the most suitable solvent for any 

biological system is water. Conformation 

analysis of the compounds was performed 

by Spartan 10 'software by means of which 

the structures of the molecules are created. 

After the conformational search, the 

conformers with lower energy which are 

more responsible for the biological activity 

were kept but the conformers with 

Boltzmann distribution under 1/10000 

were eliminated. After elimination, the 

Electron Conformational Matrices of 

Congruity (ECMC) were created using the 

remaining conformers. ECMCs have 

Mullikan charges on their diagonal 

elements [20,21]. Utilizing quantum 

chemical calculation data, 1266 ECMCs 

were generated. The illustration of the 

sample ECMC for the lowest energy 

conformer of compound 10 is given in 

Figure 2. As seen in Figure 2, the Mullikan 

charge of the N1 atom is -0.748 , the bond 

order between the C4 and C3 atoms is 

1.416 and the distance between the C22 

and C26 atoms is 4.122. 

In the comparison of the ECMC, the 

lowest energy conformation of the most 

active compound is used. Compounds with 

known activity are separated into two 

groups: active and inactive. Molecules 

whose activity value is greater than 9.154 

are known as active molecules and others 

are known as inactive molecules. After this 

step, the Electron Conformational 

Submatrix of Activity (ECSA) which is the 

pharmacophore, is described by comparing 

the ECMC of the pattern compound with 

all other ECMCs within the given 

tolerance interval. Many ECSCs obtained 

from comparison of ECMCs were 

evaluated using both Pα criteria and αa 

criteria given in previous studies 

[13,16,18,19].  
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Figure 2. ECMC of the lowest energy conformer for compound 10. Hydrogen atoms bonded 

to carbon atoms are neglected in the ECMC for clarity. 

 

Many of the methods used in QSAR 

studies cannot be used for to separate the 

enantiomers of the molecules from each 

other. Even though the absolute values of 

the matrix elements of the two enantiomers 

are the same, their geometric properties 

such as angle, distance, and dihedral angle 

etc. are not the same in these enantiomers. 

If one of the two enantiomers has a 

pharmacophore (pha), this does not mean 

that the other has to have one. Except for 

the pharmacophore, two important groups 

are responsible for the activity. The first 

group is called anti-pharmacophore 

shielding (APS), which may influence the 

bioactivity in a decreasing way, the second 

group is called the auxiliary group (AG), 

which may influence the bioactivity in an 

increasing way. Their effects are described 

by the function S, given below [14,30]: 
 





N

j

j

nijni aS
1

)(                               (1) 

For each conformer, the function Sni is 

calculated by the sum of the products of 

the jth kind of property in the ith 

conformation of the nth compound (𝑎𝑛𝑖
(𝑗)

) 

and the relative weight of different 

descriptors (κj). N is the number of the  
 

selected descriptor. 

Based on the function Sni, Bersuker 

explained the biological activity formula as 

follows [30]: 
 

𝐴𝑛 = 𝐴𝑙

∑ 𝑒−𝐸𝑙𝑖 𝑅𝑇⁄𝑚𝑙
𝑖=1

∑ 𝑒−𝐸𝑛𝑖 𝑅𝑇⁄𝑚𝑛
𝑖=1

 
∑ 𝛿𝑛𝑖[𝑃ℎ𝑎]𝑒−𝑆𝑛𝑖 𝑒−𝐸𝑛𝑖 𝑅𝑇⁄𝑚𝑛

𝑖=1

∑ 𝛿𝑙𝑖[𝑃ℎ𝑎]𝑒−𝑆𝑙𝑖𝑒−𝐸𝑙𝑖 𝑅𝑇⁄𝑚𝑙
𝑖=1

  

                                                            (2) 
 

where δ is a type of Kronecker δ function: 
 

𝛿𝑛𝑖[𝑝ℎ𝑎] = {
0,   𝑃ℎ𝑎 𝑖𝑠 𝑎𝑏𝑠𝑒𝑛𝑡
1,   𝑃ℎ𝑎 𝑖𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡

 

 

An and Al, indicate the activity values of 

the nth compound and reference 

compound, respectively. Eni and Eli are the 

relative energies (in kcal mol
-1

) of the ith 

conformation for the nth compound and 

reference compound, respectively. R (kcal 

molK-1) is the gas constant and T (in K) is 

the temperature. In light of this equation, 

the variational constant, κj, in Equation (1) 

was mathematically optimized using the 

Matlab toolbox function lsqnonlin [31]. 

In this study, 1172 ECMCs were 

obtained from the 50 compounds of 

propoxy methylphenyl oxadiazole 

derivatives using EMRE software [17]. 

Eight hundred and four parameters which 

are include the geometrical, 
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thermodynamic and topological parameters 

are prepared making use of Spartan data. 

Choosing an appropriate subset of data 

from a large data pool is the most 

important step of the QSAR model.  The 

GA was used for selecting parameters 

randomly and generating subgroups for the 

best parameter selection in the QSAR 

modeling process. The κj values were 

calculated using the least-squares method 

taking advantage of the lsqnonlin function 

in MATLAB [31]. The GA parameters for 

the optimization were set as follows: 

number of generations: 100; population 

size: 100; iteration number: 150; crossover 

fraction: 80%; mutation rate: 1.5%. 

A series of propoxy methylphenyl 

oxadiazole derivatives containing 50 

compounds were divided into a training set 

consisting of 39 random compounds and a 

test set consisting of 9 compounds. For the 

optimal number of parameters, it is 

necessary to make some calculations about 

the model's estimated power (q
2
) and the 

number of parameters. First, the 

compounds were randomly selected, then 

fixed. Calculation was made from 1 to 8 

parameters afterwards. As a result of the 

calculations made using the MATLAB 

program for the training and test sets, the 

theoretical activity (R
2
), standard error and 

q
2
 values were obtained for the 1-8 

parameters for the training and test sets 

and are given in Table 6.  

PRESS is the sum of the squares of the 

difference between the observed activity 

values and the estimated activity values. 

The cross validation LOO-CV operation in 

QSAR study is a method that allows you to 

use the entire data: 

𝑃𝑅𝐸𝑆𝑆𝑁 = ∑ |𝐴𝑛
𝑒𝑥𝑝 − 𝐴𝑛

𝑐𝑎𝑙𝑐|
2𝑁

𝑛=1             (3) 
 

In this equation, N is the total number of 

training compounds, while 𝐴𝑛
𝑐𝑎𝑙𝑐 and 𝐴𝑛

𝑒𝑥𝑝
 

are the calculated and experimental 

activity values of the nth compound. The 

quality of the randomly generated EC-GA 

model was controlled internally based on 

the training set and externally based on the 

test set for each of the descriptor subsets.  

Before checking the model's predictability 

for an external data set, internal 

verification was performed to check the 

conformity of the QSAR model. With 

external validation, the predicted power of 

the established model is checked by the 

test compounds. The stability, quality and 

prediction capacity of the established 

model is checked by the numerical value 

of the cross-validated correlation 

coefficient (q
2
), R

2
, q

2
ext1 and q

2
ext2 

proposed by Schüürman [32], q
2

ext3 given 

by Consonni [33] and the concordance 

correlation coefficient (CCC) proposed by 

Lin [34,35].  

For internal validation of the models, the 

value of q2 was found by the following 

formula: 

 

𝑞2 = 1 −
∑ |𝐴𝑛

𝑒𝑥𝑝 − 𝐴𝑛
𝑝𝑟𝑒|

2𝑁
𝑛=1

∑ |𝐴𝑛
𝑒𝑥𝑝 − �̅�𝑛

ℎ𝑒𝑠|
2𝑁

𝑛=1

≡ 1 −
𝑃𝑅𝐸𝑆𝑆

𝑆𝑆𝑌
                  (4) 

 

𝑞𝑒𝑥𝑡1
2 = 1 −

∑ |𝐴𝑛𝑡𝑒𝑠𝑡

𝑒𝑥𝑝
− 𝐴𝑛𝑡𝑒𝑠𝑡

𝑝𝑟𝑒
|

2𝑁𝑡𝑒𝑠𝑡
𝑛=1

∑ |𝐴𝑛𝑡𝑒𝑠𝑡

𝑒𝑥𝑝 − �̅�𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

𝑒𝑥𝑝 |
2

𝑁𝑡𝑒𝑠𝑡
𝑛=1

                            (5) 

𝑞𝑒𝑥𝑡2
2 = 1 −

∑ |𝐴𝑛𝑡𝑒𝑠𝑡

𝑒𝑥𝑝 − 𝐴𝑛𝑡𝑒𝑠𝑡

𝑝𝑟𝑒 |
2𝑁𝑡𝑒𝑠𝑡

𝑛=1

∑ |𝐴𝑛𝑡𝑒𝑠𝑡

𝑒𝑥𝑝 − �̅�𝑛𝑡𝑒𝑠𝑡

𝑝𝑟𝑒 |
2𝑁𝑡𝑒𝑠𝑡

𝑛=1

                           (6) 
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𝑞𝑒𝑥𝑡3
2 = 1 −

[∑ |𝐴𝑛𝑡𝑒𝑠𝑡

𝑒𝑥𝑝 − 𝐴𝑛𝑡𝑒𝑠𝑡

𝑝𝑟𝑒 |
2𝑁𝑡𝑒𝑠𝑡

𝑛=1 ] 𝑁𝑡𝑒𝑠𝑡⁄

[∑ |𝐴𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

𝑒𝑥𝑝 − �̅�𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

𝑒𝑥𝑝 |
2𝑁𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

𝑛=1 ] 𝑁𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔⁄
                    (7) 

 

 

where N stands for the count of 

molecules to be tested. 𝐴𝑛
𝑒𝑥𝑝 and 𝐴𝑛

𝑝𝑟𝑒
 are 

the experimental and the predicted 

activities of the nth compound in the test 

set. �̅�𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

𝑝𝑟𝑒
 and �̅�𝑛𝑡𝑒𝑠𝑡

𝑝𝑟𝑒
 are the average 

experimental activity values of the training 

and test sets, respectively. 𝐴𝑛𝑡𝑒𝑠𝑡

𝑒𝑥𝑝
 and 𝐴𝑛𝑡𝑒𝑠𝑡

𝑝𝑟𝑒
 

represent the experimental and estimated 

activities for the nth compound of the test 

set. 𝑁𝑡𝑒𝑠𝑡 and 𝑁𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 are the numbers of 

the test and training molecules. 𝐴𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

𝑒𝑥𝑝
 

denotes the experimental activity of the nth 

compound in the training set. �̅�𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

𝑒𝑥𝑝
 is 

the average of the experimental activities 

of the training set. 

Another external validation, the 

"concordance correlation coefficient 

(CCC)" used for the first time by 

Lin[34,35]. In QSAR model, the CCC 

value gives information about the accuracy 

and precision of the model. In this study, 

we used this equation for the training set, 

test set and all compounds: 

 

𝐶𝐶𝐶 = �̂�𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 =
2 ∑ (𝐴𝑖

𝑝𝑟𝑒
− �̂�𝑝𝑟𝑒)(𝐴𝑖

𝑒𝑥𝑝
− �̂�𝑒𝑥𝑝)

𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

𝑖=1

∑ (𝐴𝑖
𝑝𝑟𝑒

− �̂�𝑝𝑟𝑒)
2

+
𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

𝑖=1
∑ (𝐴𝑖

𝑒𝑥𝑝
− �̂�𝑒𝑥𝑝)2 + 𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔(�̂�𝑒𝑥𝑝 − �̂�𝑒𝑥𝑝)2

𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

𝑖=1

 

 

𝐶𝐶𝐶 = �̂�𝑡𝑒𝑠𝑡 =
2 ∑ (𝐴𝑖

𝑝𝑟𝑒 − �̂�𝑝𝑟𝑒)(𝐴𝑖
𝑒𝑥𝑝 − �̂�𝑒𝑥𝑝)

𝑛𝑡𝑒𝑠𝑡
𝑖=1

∑ (𝐴𝑖
𝑝𝑟𝑒 − �̂�𝑝𝑟𝑒)

2
+

𝑛𝑡𝑒𝑠𝑡

𝑖=1
∑ (𝐴𝑖

𝑒𝑥𝑝 − �̂�𝑒𝑥𝑝)2 + 𝑛𝑡𝑒𝑠𝑡(�̂�𝑝𝑟𝑒 − �̂�𝑒𝑥𝑝)2𝑛𝑡𝑒𝑠𝑡

𝑖=1

 

 

𝐶𝐶𝐶 = �̂�𝑎𝑙𝑙 =
2 ∑ (𝐴𝑖

𝑝𝑟𝑒
− �̂�𝑝𝑟𝑒)(𝐴𝑖

𝑒𝑥𝑝
− �̂�𝑒𝑥𝑝)

𝑛𝑎𝑙𝑙
𝑖=1

∑ (𝐴𝑖
𝑝𝑟𝑒 − �̂�𝑝𝑟𝑒)

2
+

𝑛𝑎𝑙𝑙
𝑖=1

∑ (𝐴𝑖
𝑒𝑥𝑝 − �̂�𝑒𝑥𝑝)2 + 𝑛𝑎𝑙𝑙(�̂�𝑝𝑟𝑒 − �̂�𝑒𝑥𝑝)2𝑛𝑎𝑙𝑙

𝑖=1

 

 

In the QSAR model, the CCC is the 

numerical value that gives the model its 

reliability and predictive power. In this 

way, we could verify the model-data fit of 

both the training and test sets separately. 

 

RESULTS AND DISCUSSION 
The chemical structures, experimental 

activities (IC50) and conformer numbers 

of the propoxy methylphenyl oxadiazole 

derivatives were taken from the literature 

[1] and are listed in Table 1-4. The 

geometry optimizations of all the 

molecular structures were carried out at the 

HF/3-21g level. Since 51 compounds have 

a total of 2850 conformation, calculation 

of the upper basis sets cannot be performed 

because HF calculations take too long. 

The ECMCs for 1339 conformers that 

used quantum chemical data, were built 

with the EMRE program. The most active 

of the propoxy methylphenyl oxadiazole 

derivatives is compound 10. After this, we 

set the cut-off activity (IC50) value to 

9.154. Twenty four compounds with 

activity values above this value are 

classified as highly active compounds and 

the others as low activity compounds. 

Following the completion of the creation 

of the ECMCs, the comparison of ECMCs, 

which has been described in previous 

publications, is used to identify the 

pharmacophore. With the help of this 
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theory, we obtained the pharmacophore 

(ECSA) which is containing seven atoms 

namely O1, N3, C11, C15, C16, C27 and 

C22 in Figure 3. The pharmacophore 

atoms are shown in yellow. The highest 

values of Pα (0.8750) and αa (0.7800) were 

obtained from the obtained ECSA. 

 

 
Figure 3. It is shown the pharmacophore (ECSA) which is containing seven atoms namely 

O1, N3, C11, C15, C16, C27 and C22. 

 

Table 5. (a) ECSA (pharmacophore) of reference compound (compound 10) for (S)-3-(3-ethyl-4-

(2-hydroxy-3-(2-hydroxyacetamido) propoxy)-5-methyl phenyl)- 1,2,4 -oxadiazole and its 

derivatives; (b) tolerance matrix of ECSA for 30 compounds with high activity; (c) Tolerance 

matrix of ECSA for 18 compounds with low activity (d) tolerance values for all conformers 

(706). Pharmacophore atoms are shown in yellow 
 

a) ECSA of reference compound (pharmacophore group) 

O1 N3 C11 C15 C16 C27 C22 Pha Atoms 

-0.556 +0.830 +2.153 +7.062 +7.404 +6.421 +6.908 O1 

 -0.288 +1.469 +6.164 +6.647 +7.795 +8.308 N3 

  +0.618 +4.969 +5.433 +7.780 +8.411 C11 

   -0.465 +0.907 +11.090 +11.913 C15 

    -0.600 +10.945 +11.934 C16 

     0.368 +0.913 C27 

      -0.542 C22 

 

b) Tolerance matrix of ECSA for 30 compounds with high activity 

O1 N3 C11 C15 C16 C27 C22 Pha Atoms 

±0.028 ±0.020 ±0.274 ±0.367 ±0.425 ±1.737 ±1.729 O1 

 ±0.007 ±0.767 ±0.924 ±0.793 ±1.465 ±1.669 N3 

  ±0.013 ±0.008 ±0.294 ±1.486 ±1.293 C11 

   ±0.046 ±0.003 ±1.747 ±1.797 C15 

    ±0.028 ±1.648 ±1.473 C16 

     ±0.365 ±1.612 C27 

      ±0.235 C22 
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c) Tolerance matrix of ECSA for 18 compounds with low activity 

O1 N3 C11 C15 C16 C27 C22 Pha Atoms 

±0.029 ±0.020 ±0.274 ±0.372 ±0.426 ±2.223 ±1.942 O1 

 ±0.013 ±0.766 ±0.932 ±0.993 ±2.169 ±1.969 N3 

  ±0.013 ±0.008 ±0.293 ±1.599 ±2.230 C11 

   ±0.048 ±0.004 ±1.465 ±2.232 C15 

    ±0.032 ±1.458 ±2.373 C16 

     ±0.804 ±1.616 C27 

      ±0.407 C22 

 

d) Tolerance matrix of ECSA for 706 conformations of 50 compounds 

O1 N3 C11 C15 C16 C27 C22 Pha Atoms 

±0.030 ±0.021 ±0.276 ±0.386 ±0.676 ±1.739 ±1.945 O1 

 ±0.011 ±0.769 ±0.945 ±1.336 ±1.713 ±1.971 N3 

  ±0.013 ±0.019 ±0.463 ±1.532 ±2.232 C11 

   ±0.050 ±0.010 ±1.859 ±2.233 C15 

    ±0.033 ±1.922 ±2.155 C16 

     ±1.229 ±2.116 C27 

      ±0.440 C22 

 

The ECSA for the tolerance values of 

propoxy methylphenyl oxadiazole 

derivatives are given in Table 5 for active 

and inactive compounds. The ECSA of the 

minimum energy conformer is 

demonstrated by the first matrix. The 

second and third submatrices show the 

tolerance values of 24 high activity 

compounds and 24 low activity 

compounds, respectively. The fourth 

submatrix for all conformers was obtained 

without any tolerance constraints applied 

for 706 conformations of the 50 

compounds. In light of the results given 

above, the tolerance values of the 

compounds with low activity are higher 

than those of the compounds with high 

activity. The first submatrix shows the 

tolerance values of the pharmacophoric 

atoms of the lowest energy conformer of 

the template compound. As can be 

understood from (b) and (c) of Table 5, the 

atomic charge tolerances of the O1 atom 

are ±0.028 and ±0.029 and the tolerances 

of the distance between the C15 and C16 

atoms are ±0.046 and ±0.048 for high and 

low active compounds, respectively. 

The O1, N3, C11, C15, C16, C27 and 

C22 atoms of the series of propoxy 

methylphenyl oxadiazole derivatives have 

an important role in the interaction 

between the receptor and ligand. Prior to 

parameter selection and calculation of 

bioactivity, we created a parameter pool 

consisting of 804 parameters such as 

thermodynamic, geometric, electronic, 

topological and quantum chemistry, which 

are often used for pharmacophore atoms 

with the EMRE program for each 

conformer. In the next step, the data set 

was randomly divided into two groups: the 

first group is the training set of 39 

compounds which is determined to 

develop the model, while the second group 

is the test set of 9 compounds which is 

created to evaluate the validity of the 

model. Although all parameters are 

thought to be effective on biological 

activity, a very small portion of all 

parameters is a significant contributor to 

activity. Other parameters are deleted 

because other parameters are not related to 

them. The GA technique is used to 

eliminate irrelevant parameters and to 

obtain the optimal parameter set that gives 

the most appropriate model. The GA 

technique [36] is used to eliminate 

irrelevant parameters and to obtain the 

optimal parameter set that gives the most 

appropriate model. By running the GA 
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technique in the MatLab environment [31], 

the optimal parameter set was obtained. 

With the help of this process, we 

calculated the κj values in Equation 1 with 

the GA technique by means of the 

lsqnonlin function, which is a non-linear 

least square optimization technique in the 

MatLab environment [31]. After the κj 

values were calculated, the theoretical 

activity values were calculated using the 

obtained values of κj. By evaluating the 

conformance value of each subset of 

parameters, we completed the best subset 

of parameters for a given number of 

parameters giving the optimal EC-GA 

model. 

As is well known, it is important in this 

study to create the best and most predictive 

model with the minimum number of 

parameters. We investigated the 

relationship between the numbers of 

parameters for a given model and the 

estimated power (q
2
) in order to define the 

optimal number of parameters of propoxy 

methylphenyl oxadiazole derivatives. 

Using a number between 1-15 parameters 

for this model, we run the GA. As seen in 

Figure 4, increasing the number of 

parameters increases the performance of 

this model. However, using 8 parameters 

which seemed to indicate the start of the 

stabilization point, appears to show that the 

values remained constant. In light of the 

result given in Figure 4, the number of 

compounds should be five times greater 

than the number of parameters [37]. The 

optimal number of parameters is 8. 

Explanation of the 8 parameters selected 

using the GA and the κj values are shown 

in Table 6. a
(5)

 and a
(7)

 are angle 

parameters. a
(6)

 and a
(8)

 are orthogonal 

distance parameters. a
(4)

 is the orthogonal 

distances plus van der Waals radius 

parameters. a
(3)

, a
(2)

 and a
(1)

  are other 

parameters.  It is seen in Table 6 that the 

geometrical and electronic parameters have 

a crucial role in the biological activity of 

propoxy methylphenyl oxadiazole 

derivatives. It is clear that one or more 

pharmacophore atoms are found in the 

parameters. Therefore, the presence of the 

pharmacophore is important for biological 

activity.  

 

 
Figure 4. Correlation chart between some statistical parameters and the number of molecular 

parameters. 
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To understand that APs and AG have an 

increasing or decreasing effect on 

biological activity, we need to look at what 

is the product of the parameter value and 

the κj values. The S function given in 

Equation 2 has an effect on the activity 

decreasing (APS) if the product of the 

numerical value of the relevant parameter 

and the κj value is positive and the activity 

increasing effect (AG) if the product is 

negative. As can be understood from Table 

6, four parameters, namely a
(1)

, a
(2)

, a
(3) 

 

and a
(8)

, indicate an increasing effect on 

activity as AG, although parameters a
(4)

, 

a
(5)

, a
(6) 

 and a
(7)

 indicate a reducing effect 

on activity as APS. In Figure 5, the a
(6)

  

and a
(8)

  parameters which show the 

orthogonal distance of the C2 atom to the 

N2 – C9 – N3 plane and the orthogonal 

distance of the C6 atom to the N2 – C9 – 

N3 plane are presented. 

 

Table 6. Description of optimum 8 parameters chosen by GA and their κj values employed in 

the calculation of the activity 
 

ani
(j)

 Name of parameter Kj value 

a
(1) 

Solvent energy -2.861 

a
(2)

 Cpk quality -0.005 

a
(3)

 Mulliken of C8 atom (e
-
) -18.776 

a
(4)

 
Orthogonal distance of O3 atom to C16 – C15 – C12 plane + Van der 

Walls radius of H16 atom (Å) 
0.076 

a
(5)

 C10 C7 C9 N2 dihedral angle 2.246 

a
(6)

 Orthogonal distance of C2 atom to N2 – C9 – N3 plane 10.123 

a
(7)

 N3 N2 H16 angle 0.256 

a
(8) 

Orthogonal distance of C6 atom to N2 – C9 – N3 plane -10.311 

 

 
Figure 5. Presentation of the orthogonal distance of C2 atom to N2 – C9 – N3 plane and 

orthogonal distance of C6 atom to N2 – C9 – N3 plane (a
(6)

  and a
(8)

  parameter) in Table 6. 
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When all the combined conformers and 

8 parameters are considered, the best EC-

GA model was created using 39 

compounds for the training set and 9 

compounds for the test set. The training 

and test sets were randomly selected from 

50 compounds. The experimental 

efficiency values and the calculated 

efficiency values are shown in Table 1-4. 

In Table 1-4, the test compounds are 

indicated by "a" index. The lsqnonlin 

function for the training set takes the 

values of the Kj value that was used to 

calculate the activity value of the test set. 

For the training and test sets in which 8 

parameters are used, Figure 6 shows the 

correlation between the experimental 

activity values and the estimated activity 

values. The correlation coefficient R
2
 

indicates the power of the model. For a 

model to be at the optimum level, it must 

have a high R
2
 and high internal and 

external q
2
 values close to 1. We created 

the EC-GA model with on R
2
 value of 

0.872 with a standard deviation of 0.059 

for the test set and a R
2
 value of 0.836 with 

a SE of 0.155 for the test set. Internal and 

external verification values were obtained 

for both the training and test sets. The EC-

GA model had a q
2
 value of 0.794 for the 

training set. The q
2
 values of external 

validation for the test set are q
2

ext1 = 0.787, 

q
2

ext2 = 0.786 and q
2

ext3 =0.830. Although 

the numerical values obtained with the 

parameters used for a QSAR model are 

satisfactory, the CCC values were 

calculated to obtain more accurate and 

better results with external verification for 

training, testing and other data. The CCCtr 

(0.933), CCCtest, (0.896) and CCCall 

(0.926) values are close to 1, indicating the 

sensitivity of the model. We can say that 

the model obtained is a predictive and 

robust model when all statistical data are 

taken into consideration. With this model, 

it is possible to predict the activities of 

unknown compounds.  

 

 
Figure 6. Correlation graph between experimental and predicted activities for training and 

test sets with 12 parameters. 
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Table 7 shows the comparison of the 

results with the use of the minimum energy 

conformers and all conformers of the 

propoxy methylphenyl oxadiazole 

derivatives. As can be understand from 

Table 7, the q
2
= 0.538, q

2
ext1 = 0.584, q

2
ext2 

= 0.582 and q
2

ext3 = 0.669 values indicated 

a less effective model with lower 

predictive ability. On the other hand, the 

CCCtr, CCCtest and CCCall values are in 

good agreement. 

The resulting model, which is obtained 

from more than one conformation, is a 

function of the contribution at different 

rates with 8 descriptors. The EC-GA 

model, in which the best results were 

obtained, was quantified by the E-statistics 

of the independent contribution of each of 

the 8 parameters [13-21].  After each 

parameter was skipped once, we calculated 

the E values as reported in the literature 

[38] and other statistical parameters with 

the remaining parameters. The E-statistics 

of 8 parameters are given in Table 8. The 

magnitude of the numerical value of E 

indicates that the parameter is important 

for the model. If the numerical value of E 

is lower, then that parameter is very 

important for the model. Within of the 8 

parameters, the a
 (2) 

parameter with the 

lowest E value (0.1868) is the most 

effective parameter. When this parameter 

(Cpk quality) is eliminated, a remarkable 

decrease in the R
2

tr (from 0.872 to 0.364), 

R
2

test (from 0.836 to 0.507) and especially 

the q
2
 (from 0.794 to -0.097), q

2
ext1 (from 

0.787 to 0.373), q
2

ext2 (from 0.786 to 

0.370) and q
2

ext3 (from 0.830 to 0.501) 

values is observed. When we look at the 

numerical values of E, the three most  
 

important parameters are a
 (2)

, a
 (3) 

and a
 (4)

. 

It is seen that the R
2

tr, R
2

test and q
2
 values 

of these parameters are greatly reduced. 

The a
 (8)

 parameter with the highest E 

value is the parameter that has the most 

effect on the model power. A slight 

decrease in the R
2

tr (from 0.872 to 0.829), 

R
2

test (from 0.836 to 0.836) and q
2
 (from 

0.794 to 0.743) values in the a
 (8)

 parameter 

proves that there is not much change in the 

numerical value of the model when it is 

excluded from the model. For the a
 (7)

 

parameter with the second highest E value 

(0.7991), a slight decrease in R
2

tr and q
2
 

values is seen. Therefore, this parameter 

has little effect on activity. As shown in 

table 8, the parameters used for this model 

are listed from highest to lowest: a
(2)

 >a
(1)

 

>a
(3)

 >a
(4)

 >a
(6)

 >a
(5)

 >a
(7)

 >a
(8)

. As can be 

understand from this model, a
(2)

 (Cpk 

quality) is the most important parameter 

for the bioactivity of the propoxy 

methylphenyl oxadiazole derivatives. 

 

CONCLUSION 
In this study, a model obtained from 50 

propoxy methylphenyl oxadiazole 

derivatives was developed for the 

prediction of the activity and identification 

of pharmacophores for the treatment of 

autoimmune diseases of the central 

nervous system (CNS) by the 4D-QSAR 

EC-GA method. The effect of the 

conformational ensemble of the 

compounds related with Boltzmann 

distribution was included in all stages of 

the study. Pharmacophores are formed 

from the composition of the O1, N3, C11, 

C15, C16, C27 and C22 atoms in this 

model.  

Table 7. Statistical parameters of the 8-parameter EC-GA model obtained by using both 

minimum energy conformer and multiple conformers 
 

 RTr RTest q
2
 q

2
ext1 q

2
ext2 q

2
ext3 CCCtr CCCtest CCCall 

Single conformer 0.711 0.713 0.538 0.584 0.582 0.669 0.840 0.822 0.836 

Multiple conformers 0.872 0.836 0.794 0.787 0.786 0.830 0.933 0.896 0.926 



Burak Tüzün et al. /J. Phys. Theor. Chem. IAU Iran, 14 (2) 149-164: Summer 2017   

 

163 

Table 8. in the propoxy methylphenyl oxadiazole derivatives the effect of model performance 

of each of 8 parameters show E, R
2

training, R
2
test, q

2
, q

2
ext1, q

2
ext2 

 

Parameters E RTr RTest q
2 

q
2

ext1 q
2
ext2 q

2
ext3 CCCtr CCCtest CCCall 

a
 (1)

 0.1871 0.525 0.388 -0.096 -0.256 -0.262 -0.001 0.696 0.542 0.666 

a
 (2)

 0.1868 0.364 0.507 -0.097 0.373 0.370 0.501 0.587 0.619 0.592 

a
 (3)

 0.3463 0.643 0.344 0.407 -0.424 -0.431 -0.135 0.800 0.529 0.735 

a
 (4)

 0.5684 0.769 0.544 0.639 0.185 0.182 0.351 0.874 0.682 0.835 

a
 (5)

 0.7430 0.817 0.853 0.735 0.840 0.839 0.873 0.902 0.921 0.906 

a
 (6)

 0.5731 0.768 0.892 0.642 0.891 0.891 0.913 0.875 0.942 0.886 

a
 (7)

 0.7991 0.836 0.681 0.743 0.615 0.613 0.693 0.914 0.811 0.896 

a
 (8)

 0.8001 0.829 0.835 0.743 0.826 0.825 0.861 0.910 0.910 0.910 

 

The QSAR model obtained with LOO 

cross-validated R
2
 and q

2
 values showed 

high internal and external validation of 

activity and proved robustness by dividing 

the data set into training and test sets. By 

using the GA method, the geometrical and 

electronic parameters were obtained by 

selecting variables.  With the obtained 4D-

QSAR EC-GA model and the internal and 

external validity, the agreement values 

between the experimental and predicted 

activities are over 0.750. The prediction 

power shown for both the training and test 

sets by the q
2
, q

2
ext1 and q

2
ext2 values was 

greater than 0.750. 

In consideration of previous 

explanations, the results of the model show 

that the QSAR model of propoxy 

methylphenyl oxadiazole derivatives using 

the EC-GA model is a promising tool for 

the future design of new propoxy 

methylphenyl oxadiazole derivatives as 

receptors for the treatment of autoimmune 

diseases of the central nervous system 

(CNS).  
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