Journal of Physical and Theoretical Chemistry of Islamic Azad University of Iran, 4 (4) 251-259: Winter 2008 (J.Phys.Theor.Chem.IAU Iran: Winter 2008) ISSN: 1735-2126

Investigation of Water Cluster $((H_2O)_n, n = 2-6)$ in Aspect of Structures, Energies and Thermodynamic Properties by Ab Initio methods

S. Abedini Khorrami, Sh. Moradi, P. Aberomand Azar^{*}, E. Pournamdari

Chemistry Department, North Tehran Branch, Islamic Azad University, Tehran, Iran

ABSTRACT

The intermolecular forces between water molecules are of great importance in many areas of chemistry including solvation, solution chemistry, and biochemistry. As a result of this (H2O)n systems have received a great significant of attention, both experimental and theoretical. All calculation of this study are carried out by Gaussian 98 soft ware. Geometry optimization for each cluster were be performed at HF/6-311++G(2df,2p), single point vibration energy B3LYP/6-311++G (2df,2p) and MP2/6-31+G(2df,p). IR frequencies and intensity were calculated at B3LYP/6-311++G (2df,2p) level of theory.

All calculation was accomplished at 298 k and 0 k. The structures, energies and thermodynamic properties will be discussed.

Keywords: Structure; Energy; Thermodynamic; Ab initio; Water cluster

INTRODUCTION

One of the most amount chemical studies is about water because of it's importance in life. In addition to these "natural" reasons, because it has unique physical properties (structures, thermodynamic energies, quantities and spectra) and a model of hydrogen-bonding in liquids [1,2]. Water clusters have been studied for a long time in order to analyze the interaction between water molecules, and for developing a deeper understanding of liquid and solid phase of bulk water [3]. In the limit $n \rightarrow \infty$, the energies and thermodynamic properties of clusters approach the energies and properties of the liquid phase. In recent years there has been considerable interest in the structures, energies and thermodynamics of small water clusters and it is the subject of many experimental and theoretical studies because of its fundamental importance in chemical and biological process [4]. Computer simulations of liquid water have been performed for more than three decades, since the pioneering work of Rahman and Stillinger in 1971. Since then simulations have provided a great deal of insight in to the physical properties of water, however; there are still very fundamental open questions regarding the microscopic dynamics of the individual molecules in the liquid [2]. Theoretical calculations on the clusters are largely based upon ab initio calculations.

The present study is one of a series of calculations which investigates the properties of small water clusters. The main focus of this

^{* .} Corresponding author: Chemistry Department, Islamic Azad University, Science and Research Branch

work was on a comparison of structures, energies, and thermodynamic properties of different clusters. The optimal structures, energies and thermodynamic properties of these cluster, (H2O)n, have been determined at the Hartree-Fock(HF), density functional theory(DFT) and at the correlated Moller-Plesset (MP2) level. In predicting structures and energies from ab initio calculations, the size of basis sets and theoretical methods employed are important issues. Using proper and large Basis sets with considering electron correlation are recommended to describe weakly interacting molecular systems such as hydrogen bonded water clusters. Intra and intermolecular harmonic vibrational frequencies were calculated for n=2-6, and infrared bond intensities were determined for these clusters based on the B3LYP/6-311+G(2df,2p). For each value of n, we have considered the conformations corresponding to the lowest-energy minimum and those in nearby relative minima. Thus we report on two dimers, two trimers, two tetramers, two pentamers and two hexamers. Hexamer has diverse isoenergies structures. These diverse isoenergies hexamer conformers would play an important role in entropy, and so be responsible for various phase transitions of water [4]. Most of the above data been compared to the available have experimental data.

COMPUTATIONAL METHOD

The optimized structures, energies and vibrational frequencies of water clusters dimmer to hexamer were obtained at various levels of theory using different basis sets. The theoretical methods include density functional method with Beck's three parameter's employing Lee-Yang-Parr correlation functional (B3LYP/6-311++G(2df, 2p)), and (B3LYP/6-311++G(2df, Hartree-Fock method (HF/6p)). the 311++G(2DF, 2P)), and (HF/6-311+G(2df,p)), Moller-Plesset second order perturbation method (MP2/6-31+G(2df, p)).Density functional method gives the best result for IR vibrational spectra and IR intensities. The MP2 level was used to optimize the structures and energies of the water dimmer to hexamer. Zero point vibrational energies were scaled by a factor of 0.9135. All these calculations were carried out with a GAUSSIAN 98 soft ware [5].

RESULTS AND DISCUSSION A. Structures

In clusters containing dangling hydrogen (Hd) atoms, two different orientations for each Hd atom are possible along the H-bond orientation of the proton donor-proton acceptor ("da")-type water molecules [4]. The numbers of dangling H atoms for cyclic clusters from dimmer to hexamer are 2, 3, 4, 5 and 6 and for linear dimer and tetramer are 3 and 5 respectively. There exist various conformers with different hydrogen orientations which have topologically equivalent. The structures with a 2,3,4,5 and 6 membered ring can be easily interconvertible by simple manipulation of one or two hydrogen bonds. Different plane of symmetry for each kinds of cluster from dimer to Hexamer was kept throughout their optimization. The (H-O-H) min for the tetramer is 101°, which is much closed to the most optimal H-bonding angle of water (104.5°). Thus, hydrogen bonding between adjacent water in the tetramer is possible without much strain and it is found to be a stable structure. The features of water clusters are shown in Fig.1.

Fig.1. Low-energy structures of water clusters $(H_2O)_n$, n=2-6 , distances are in A° ; angles in degrees.

Energies and thermodynamic quantities

We have investigated the changes in energies with increasing cluster size. The energies of these configurations are given in Table 1 and 2. They correspond to the structures shown in figure 1. The lowest energy conformers from dimmer to hexamer are cyclic structures. Water clusters favor chainlike H-bond network (as H bonds are most strengthened with the addition of

a chainlike H bond), while they tend to be more stable with cyclic structures that have one more bond compared to the linear chain Η structure[21]. On the basis of Gibbs free energies using B3LYP/6-311++G(2df,2p) basis set we understood that the most stable conformer for dimer is W2.C2V, for trimer is W3.C2V, for tetramer is W4.C2h, for the pentamer is W5.C2V and for the hexamer is W6.C2h.

Feature	W2.Cs	W2.C2V	W3.Cs	W3.C 2V	W4.Cs	W4.C2h
HF/6+311++G(2df,2P)	-152.121627	4 52.11 8246	•228.111691	-228.182472	-304.251145	-304.182847
E _{ret}	(0.0)	(1.13)	(41.27)	(0.0)	(0.0)	(37.38)
ZPVE	31.02739	29,94305	42.73722	46.163.08	62.69146	56.69338
G ^o 28*G ^o 0	-0.174124	-0.522147	-0.364561	-0.944767	-0.429185	•0.431 999
End	(0.35)	(0.0)	(0.58)	(0.0)	(0.002)	(0.0)
H ⁰ 28*H ⁰ 0	-0.140558	-0.489961	-0.332045	-0.9011	-0.382602	-0.39605
E _{rel}	(10.35)	(0.0)	(0.569)	(0.0)	(0.013)	(0.0)
S ^e 208	70.647	68.480	68,420	91.907	98.042	75.660
HF/6-311+G(2df,P)	-152.121148	-1 52.11 4249	-228.111691	-228.177073	-304.243919	-304.177702
End	(0.0)	(3.53)	(40.67)	(0.0)	(0.0)	(36.11)
ZPVE	31.02937	29.92520	42.99719	46.17368	62.70460	56.74933
$G^{a}_{2W}G^{a}_{0}$	-0.178272	-0.523114	-0.366467	-0.947367	-0.433256	-0.449001
End	(0.34)	(0.0)	(0.58)	(0.0)	(0.015)	(0.0)
H° 28*H °0	-0.144679	0.490968	-0.334217	-0.904265	-0.382039	-0.472978
End	(0.35)	(0.0)	(0.57)	(0.0)	(0.09)	(0.0)
S ^a 298	70.702	67.658	67.875	90.716	107.796	75.816
B3LYP/6+311++G(2df,2P)	-152.933118	-1 52.9284	-220.412135	-229.398565	-305.875368	-305.855106
E _{rel}	(0.0)	(1.80)	(0.0)	(5.94)	(0.0)	(10.317)
ZPVE	28,96233	27.61112	45.72143	42,89691	58,36078	55.73631
G° 28*G°0	-0.164407	-0.480442	-0.411446	-0.853982	-0.401552	•0.443332
E _{rel}	(0.32)	(0.0)	(0.44)	(0.0)	(0.041)	(0.0)
H° 28*H°0	-0.131386	-0.449803	•0.373659	-0.81049	-0.358215	-0.406677
E _{rel}	(0.32)	(0.0)	(0.44)	(0.0)	(0.048)	(0.0)
S°208	69.497	64.486	79.53	91.542	91.210	77.146
B3LYP/6+311++G(2df,P)	-152.929361	-1 52.924614	•229.3653.97	-229.393751	-305,868665	-305.850396
Enel	(0.0)	(1.83)	(16.63)	(0.0)	(0.0)	(9.205)
ZPVE	28,91523	27.63923	41.71636	42.99259	58,33001	55.85800
G° 28*G°0	-0.165082	-0.484079	-0.25197	-0.858025	-0.402324	-0.44695
E _{rel}	(0.32)	(0.0)	(0.61)	(0.0)	(0.045)	(0.0)
H° 28*H°0	-0.132115	-0.450446	•0.2 20293	-0.815296	-0.359226	-0.410237
E _{rel}	(0.32)	(0.0)	(0.60)	(0.0)	(0.051)	(0.0)
S ^e 208	69_384	70.787	66.671	89,930	90.708	77.268
MP2/6-31+G(2df,P)FOPT	-152.553753	-1 52.56 4783	•228.8213.09	-228.853449	-305.147581	-305.123868
E _{rel}	(0.01)	(0.0)	(0.03)	(0.0)	(0.0)	(0.02)

Feature	W&C5V	W5.C2V	W6. C2V	W6.C2h
HF/6-311++G(2df,2P)	-380.234678	-380.309596	-456.292462	-456.295956
End	(40.19)	(0.0)	(1.67)	(0.0)
ZPVE	70.29302	77.76042	85,56897	86.14863
G ⁰ 208*G ⁰ 0	-0.03 0396	-1.737916	-0.642145	-0.6547104
Ent	(1.70)	(0.0)	(0.01)	(0.0)
H ^a 208*H ^a 0	0.0085178	-1.673736	-0.594375	-0.605584
End	(1.68)	(0.0)	(0.01)	(0.0)
S° 238	81,898	13 5.079	100.539	102.120
HF/6-311+G(2d£P)	-380.228771	-380.301048	-456.285941	-456.28952
End	(38.51)	(0.0)	(1.67)	(0.0)
ZPVE	70.28009	77.76558	85.791.98	86.41867
G ⁰ 258 ² G ⁰ 0	-0.030995	-1.74584	-0.648221	-0.660129
End	(1.71)	(0.0)	(0.01)	(0.0)
H ^a 208*H ^a 0	0.008474	-1.682429	-0.600339	-0.611758
End	(1.69)	(0.0)	(0.01)	(0.0)
S° 298	83.071	133.461	100.776	101.750
B3LYP/6-311++G(2df,2P)	- 382.322694	-382.337109	-458,796889	-458,800401
End	(0.94)	(0.0)	(76.99)	(0.0)
ZPVE	68,46518	77.32952	81.86312	82.55301
G ⁰ 298"G ⁰ 0	-0.03 0033	-1.547273	-0.670734	-0.683919
E _{ral}	(1.51)	(0.0)	(0.01)	(0.0)
H ⁰ 298'H ⁰ 0	0.008724	-1.547273	-0.622854	-0.63276
E _{rel}	(1.55)	(0.0)	(0.01)	(0.0)
S ⁹ 298	81.571	136.072	100.722	107.673
B3LYP/6-311++G(2df,P)	-382.316734	-382.329296	-458.790426	- 458.794122
Erel	(4.37)	(0.0)	(1.66)	(0.0)
ZPVE	68.62422	72.46879	82.38086	83,10653
G°298"G°0	-0.563525	-1.597025	-0.67569	-0.689486
Erel	(1.03)	(0.0)	(0.01)	(0.0)
H°258 H°0	-0.524485	-1.533329	-0.628747	-0.639103
End	(1.00)	(0.0)	(0.01)	(0.0)
S°298	82.167	134.060	98,798	106.038
MP2/6-31+G(2df,P)FOPT	-381.407591	-381.42998	- 457.317428	-457.308251
End	(0.02)	(0.0)	(0.0)	(0.01)

Table 2. Total energy and $\Delta^{o}G$, $\Delta^{o}H$ (Hartree) ^{o}S (cal/mol K) and relative energy (kcal/mol)

Vibrational spectra

In water clusters, the individual water monomers are linked by different kinds of H bonds. Water clusters from dimer to hexamer have only "da"type of water molecules and the numbers of "da" type of water molecules in these clusters are 2, 3, 4, 5 and 6 respectively. Therefore frequency and IR intensity of water cluster are calculated with B3LYP/6-311+++G (2df, 2p) basis sets Since this basis set results gives much more reliable results than the other ones reported here so our discussion will be based on this large basis set results. In this paper, we report theoretical frequencies and IR intensities of water clusters with different plane of symmetry from dimer to hexamer which are shown in tables from 3 to 12.

Table 3. OH frequency shifts (cm⁻¹) and IR intensity (km/mol)

W2.CS	B3LYP/6-31	1++G(2df, 2p)
Vibrational modes	Frequency	IR intensity
A"	135.7	167.4
Α'	158.7	88.7
A"	160.5	12.1
Α'	190.5	192.9
Α'	366.8	69.7
A"	638.9	125.9
Α'	1631.9	91.8
Α'	1652.3	37.5
Α'	3707	325.1
Α'	3811.9	13.6
Α'	3893.1	87.2
A"	3912.2	84.7

Table 4. OH frequency shifts (cm⁻¹) and IR intensity (km/mol)

W2.C2V	B3LYP/6-311++G(2df, 2p	
Vibrational modes	Frequency	IR intensity
A1	86.4	0.2
B2	155.2	42.4
B1	318.4	284.7
A1	1631.2	0
A1	1647.6	192.6
A1	3817	12.6
A1	3828.3	11.1
B2	3912.4	55.7
B2	3917.8	72

Table 5. OH frequency shifts (cm⁻¹) and IR intensity (km/mol)

ty	W3.CS	B3LYP/6-311++G(2df, 2	
5	Vibrational modes	Frequency	IR intensity
_	-	174.3	33.9
)	-	183.3	7.4
	-	193.1	105.2
	-	218.5	134.6
	-	219.5	15
	-	259.5	46.1
	-	351	80.3
	-	365.2	37.7
	-	450.9	130.8
	-	575.9	194.4
	-	680.6	319.5
	-	871.1	8.9
	-	1640.9	100
	-	1644.8	60.4
	-	1668.1	19.3
	-	3565.8	12.5
	-	3623.8	558.7
	-	3634.3	522.6
	-	3884.1	92
	-	3887.7	83.4
_	-	3890.3	69.3

W3.C2V	B3LYP/6-311++G(2df, 2p)	
Vibrational modes	Frequency	IR intensity
B2	18.5	2.0
B1	24.7	0.1
A1	90.2	0.7
B2	114.7	11.6
B1	177.9	254
B1	462.9	264.3
B2	465.4	276.2
A1	1625.5	8.1
A1	1643.3	4.4
A1	1659.8	360.6
A1	3813.0	35.6
A1	3818.6	24.7
A1	3823.8	5.2
B2	3893.8	54.2
B1	3895.0	68.8
B2	3915.0	82.4

(km/mol)

Table 6. OH frequency shifts (cm⁻¹) and IR intensity Table 8. OH frequency shifts (cm⁻¹) and IR intensity (km/mol)

W4.C2h	B3LYP/6-311++G(2df, 2		
Vibrational modes	Frequency	IR intensity	
AU	64.6	6.6	
BU	395.8	111.7	
AU	502.5	17.5	
BU	570.5	40.3	
BU	624.8	17.2	
AU	625.4	3.9	
AU	750.2	884.2	
BU	1067.4	6376.9	
AU	1076.9	5413.7	
BU	1348.5	97.6	
BU	1580.3	162.3	
AU	1600.7	546.1	
BU	1778.8	371.5	
AU	3870.6	55	
BU	3872.4	118	

Table 7. OH frequency shifts (cm⁻¹) and IR intensity (km/mol)

Table 9. OH frequency shifts (cm⁻¹) and IR intensity (km/mol)

· · · · ·			()		
W4.CS	B3LYP/6-311++G(2df, 2p)		W5.C5V	B3LYP/6-311++G(2df.	
Vibrational modes	Frequency	IR intensity		2m)	
A'	23.6	0.8		2p)	
A'	45.2	1.2	Vibrational	Frequency	IR intensity
A'	133.1	3.2	madag	1 2	
A'	182.3	1.1	TIOUES	211.0	0.1
A'	207.8	84.2	EI	311.2	0.1
A'	241.4	5.7	E1	311.3	0.1
A'	330.6	99.6	A1	359.4	140.4
A'	434.1	2.4	E1	570.2	4126.4
A''	492.5	150.9	E1	570.2	4126.1
A'	532.1	124.2	E1	584.0	19.1
A''	542.4	184.6	E1	584.0	194
A''	570.5	0	F1	973.2	4567.3
A'	1632.2	76.1	E1	073.2	4567.5
A''	1662.8	68.8		1209 1	4307.4
A''	1667.2	27.1		1308.4	111.0
A'	1672.4	45.4	EI	1308.4	111./
A'	3634.6	970.2	Al	1362.9	259.9
A'	3678.7	141.4	A1	1863.7	39.1
A'	3698.1	310.1	E1	3883.9	65.4
A'	3821.4	14.2	E1	3883.9	65.4
A'	3895.6	67.5	A1	3885.9	58.1
A'	3900.3	77.1			
Α'	3900.7	125			
Α'	3924 3	99 1			

W5 COV	D2I VD/6 21	1 + C(2df, 2r)	WE COV	D21 VD/C 21	$1 \cup C(2df, 2\pi)$
WO.CZV	D3L1P/0-31	$\frac{1 + + O(2ai, 2p)}{D + int}$	$\frac{W0.U2V}{U^{1}}$	D3L Y P/0-31	$\frac{1++G(2a1, 2p)}{D(2a1, 2p)}$
Vibrational modes	Frequency	IR intensity	Vibrational modes	Frequency	IR intensity
B2	5.3	0.254	Al	46.6	0.2
B2	5.9	0.5976	Al	84.9	2.6
B2	20.0	3.5693	B2	97.3	3436.8
B1	28.1	2.9	B2	130.6	2.7
B2	48.2	0.8	B1	197.7	3414.0
B1	52.5	0.1	B2	287.4	126.1
A1	60.8	0.9	A1	299.2	80.1
B2	131.7	13.0	B1	386.4	3831.4
A1	161.2	0.1	A1	438.4	4.9
B1	195.7	255.6	A1	449.6	1.3
B1	474.1	182.3	B2	459.9	1938.3
B2	486.5	177.1	B2	535.5	88.7
B2	516.7	336.8	B1	537.7	12
B1	516.9	320.9	B1	702.4	1342.1
A1	1625.8	5.7	A1	712	0.2
A1	1635.9	1.1	B1	737.1	1660.6
A1	1646.9	42.5	B1	781.5	688.2
A1	1658.4	2.1	B2	909.7	2199.0
A1	1666.5	688.1	A1	1206.8	231.4
A1	3810.6	127.7	B1	1224.4	131.9
A1	3812.7	19.9	A1	1355.3	110.3
A1	3816.3	2.6	B2	1480.9	9.9
A1	3819.3	4.8	B1	1496.1	405.6
A1	3822.3	8	A1	1569.9	389.8
B2	3880.9	67.7	B2	1582.1	2.6
B1	3881.6	64.6	B2	1621.4	1176.8
B1	3888.7	74.5	A1	1646.1	50.0
B2	3890.3	56.3	B1	1646.6	61.7
B2	3913.8	84.7	B1	1807.8	566.8
			A1	1818.4	85.3
			B2	3873.3	24.7
			A1	3873.6	75.0
			B2	3879.5	37.4

Table 10. OH frequency shifts (cm^{-1}) and IR intensity (km/mol)

Table 11. OH frequency shifts (cm⁻¹) and IR intensity (km/mol)

3881.3

3881.8

49.4

67.9

B1

A1

W6.C2h	B3LYP/6-311++G(2df, 2	
Vibrational modes	Frequency	IR intensity
AU	38.5	16.4
AG	42.4	11.6
BU	143.5	11.8
AU	205.3	4650.3
BU	208.1	4607.1
BG	305.4	67.9
BU	466.5	3140.4
AG	467.3	3014.4
BU	539.2	198.6
BG	539.8	243.3
AU	724.1	0.3
AG	761.4	2885.2
AU	763.9	2902.4
AG	785.9	2.5
BU	1415.2	0.1
AG	1464	1.2
BU	1577.1	669
AU	1601.4	450.3
AU	1604	453.8
BU	1664.2	751.9
AG	1664.9	750.6
BG	3874.1	96.1
AU	3875.1	113.1
AG	3875.2	56.4

Table 12. OH frequency shifts (cm⁻¹) and IR intensity (km/mol)

REFERENCES

- 1. Jonathon K. Gregory and David C. Clary, J. Chem. Phys, 102, 7817 (1995).
- 2. Wayne B. Bosma, Laurence E. Fried, and Shaul Mukamel, J. Chem. Phys. 98, 6 (1993).
- 3. R. Knochenmuss and S. Leutwyler, J. Chem. Phys. 96, 7 (1992).
- 4. Han Myoung Lee, Seung Bum Suh, Jin Yong Lee, P. Tarakeshwar, and Kwang S. Kim, J. Chem. Phys 112, 22 (2000).
- 5. Gaussian 98, Revision A. 6, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J.R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S.Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, (1998).