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ABSTRACT 

Essential Oils are highly concentrated substances the subtle, aromatic and volatile liquids. The 

use of essential oils is largely widespread in foods, deodorants, pharmaceuticals, drinks, 

cosmetics, medicine and embalming antiseptics especially with aromatherapy becoming 

increasingly popular. The lipophilicity of an organic compound can be described by a 

partition coefficient, logP, which plays a significant role in drug discovery and compound 

design. A data set of 40 compounds in the essential oil of kesum was randomly divided into 3 

groups: training, test and validation sets consisting of 70%, 15% and 15% of data point, 

respectively. A large number of molecular descriptors were calculated with Dragon software. 

The Genetic Algorithm - Multiple Linear Regressions (GA-MLR) and genetic algorithm -

artificial neural network (GA-ANN) were employed to design the Quantitative Structure-

Property Relationship (QSPR) models. The predictive powers of the QSPR model was 

discussed using Coefficient of determination (R
2
), Absolute Average Deviation (AAD) and 

the Mean Squared Error (MSE). The R
2 

and MSE values of the MLR model were calculated 

to be 0.734 and 0.194 respectively. The R
2 

and MSE values for the training set of the ANN 

model were calculated to be 0.9905 and 2×10
-4

 respectively. Comparison of the results 

revealed that the application the GA-ANN method gave better results than GA-MLR method. 

 

Keywords: QSPR; multiple linear regressions; artificial neural network; genetic algorithm; 

essential oils; octanol- water partition coefficient 

 
INTRODUCTION

Essential
1
 Oils are highly concentrated 

substances the subtle, aromatic and volatile 

liquids extracted from the flowers, leaves, 

stems, seeds, bark and roots of herbs, 

bushes, shrubs and trees through 

distillation. Natural essential oils are 

usually mixtures of terpenoids, aromatic 
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and aliphatic compounds such as alcohols, 

aldehydes, ketones, carboxylic acids, 

esters, lactones and sulfides. The use of 

essential oils is largely widespread in 

foods, deodorants, pharmaceuticals, drinks, 

cosmetics, medicine and embalming 

antiseptics especially with aromatherapy  
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becoming increasingly popular. 

Essential oils and their constituents are 

commonly known for their antibacterial, 

antifungal and 

antiparasitic activity, and there are also 

reports on the antimycobacterial 

properties[1]. 

Kesum (Polygonum minus) is an 

aromatic plant commonly used in Malay 

delicacies. This plant produces essential oil 

containing high levels of aliphatic 

aldehydes [2]. Kesum leaves is applied to 

hair to remove dandruff, used in aroma 

therapy [3] and in the perfume industry [4]. 

This plant has also been reported to 

possess several pharmacological properties 

like antimicrobial activity [5], cytotoxic 

activity [6], antioxidant activity [7] and 

anticancer activity [8,9]. 

 Lipophilicity, as the ability of a 

molecule to mix with an oily phase rather 

than with water, is usually measured as 

partition coefficient, P, between the two 

phases and is often expressed as the 

logarithm of the partition coefficient 

between n-octanol and water (logPow). This 

coefficient is inversely related to the 

solubility of a compound in water. LogPow 

is commonly used in Quantitative 

structure-property/ activity relationships 

(QSPRs/QSARs) studies and drug design 

[10-13] since this property is related to 

absorption [14], distribution [15], 

metabolism [16], excretion [17], and 

toxicity [18]. 

The QSAR models included the 

octanol-water partition coefficient as the 

molecular property and quantum 

mechanical descriptors such as the 

energies of the highest occupied molecular 

orbital and the lowest unoccupied 

molecular orbital, EHOMO and ELUMO have 

been applied to predict the 

antimycobacterial activity of Twenty-five 

constituents of essential oils [19] 

The relationship between the molecular  
 

structures of the essential oil compounds 

and their antifungal activity have been 

done using the partial least squares (PLS) 

method ,logPow, EHOMO, and the number of 

hydrogen-bond donor atoms in the 

molecules of the compounds studied 

(Donor) as molecular descriptors [20]. 

The QSAR studies have been widely 

used to understand the relationship 

between the chemical structure and 

biological activity of the molecules [19, 

21]. 

The antibacterial activity of phenolic 

compounds in essential oils has been 

investigated by QSAR studies. These 

studies have been shown the importance of 

the contribution of the octanol-water 

partition coefficient (Pow) in relation with 

the hydrophobic and amphiphilic character 

of the molecule [1]. 

Properties such as the n-octanol–water 

partition coefficient, Vapor pressures (PV) 

and aqueous solubility (Sw,L) are important 

in predicting the environmental fate of 

organic compounds[22,23]. 

The objective of this study was to 

develop QSAR models for prediction the 

log Pow of 40 compounds in kesum 

essential oil. 

The QSPR model was constructed using 

the genetic algorithm (GA) variable 

selection, multiple linear regression and 

the Back-Propagation artificial neural 

network (BPANN) methods. 

 
MATERIALS AND MATHEMATICAL 

METHODS 

The chemical compounds in Essential 

Oils are compounds with a wide range of 

biological activities and they are the basis 

of several groups of drugs. A data set 

containing 40 compounds in kesum 

essential oil was used in this study. The 

chemical structure of molecules was drawn 

with the Gauss view program and 

optimized with the Gaussian 09W program 

based on the B3LYP functional and a 6-
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31G* basis set. The name, structure, 

formula and logPow of the studied 

compounds in kesum, such as Nerolidol, 

Xanthorrhizol, Valencene, Farnesol and 

Drimenol are listed in Table 1. The logPow 

values were taken from the literature [24]. 

The molecular descriptor is the final 

result of logic and mathematical procedure 

which transforms chemical information 

encoded within a symbolic representation 

of a molecule into a useful number [25] 

and they are the independent chemical 

information used to predict the 

properties/activities of compounds in the 

research fields of QSPR/QSAR [26-28].  

1489 molecular descriptors were 

calculated for selected compounds using 

the software DRAGON Version - 2006 

package [29]. This software provides more 

than 4000 molecular descriptors that are 

divided into 20 logical blocks such as 

geometrical, getaway, WHIM, RDF, 

topological, functional group and 

constitutional descriptors [30, 31]. 

The genetic algorithm (GA) is written 

in MATLAB (version 2010a) environment 

has been used to reduce the number of 

descriptors derived from output Dragon 

software. Also backward stepwise 

regressions have been used to decrease the 

number of descriptors. The present back 

step program uses a backward variable-

selection algorithm that starts with a set of 

n variables and, on the basis of a statistical 

usefulness criterion, selectively deletes one 

variable at a time to form progressively 

smaller subsets of predictors. After , 

remove the predictor with the highest p-

value greater than 0.05. Then Refit the 

model and go to the Previous step. Stop 

when all p-values are less than 0.05. The 

software package SPSS 21.0 for Windows 

is used to implement multilinear regression 

[32]. 
 

 
Table 1. The name, chemical structure of 40 compounds in kesum essential oils and their logPow used in the 

present study 
 

Chemical structure Log POW Formula Name No. 

 

3.12 C10H22O 1-Decanol 1 

 

3.9 C12H26O 1-Dodecanol 2 

 

1.56 C6H14O 1-Hexanol 3 

 

2.73 C9H20O 1-Nonanol 4 

 

3.48 C15H24O 
Alloaromadendrene oxid-

(1) 
5 
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Chemical structure Log POW Formula Name No. 

 

4.27 C15H24 Alloaromadendrene 6 

 

3.65 C15H26O α-Bisabolol 7 

 

4.89 C15H24 α-Caryophyllene 8 

 

4.84 C15H22 σ-Curcumene 9 

 

4.11 C15H24 (-)-σ-Panasinsene 10 

 

3 C10H16 α-Pinene 11 

 

4.73 C15H24 α-Selinene 12 

 

3.94 C15H24O β-Carvophyllene oxide 13 

 

4.27 C15H24 β-Cubebene 14 

 

4.01 C15H24O cis-Lanceol 15 
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Chemical structure Log POW Formula Name No. 

 

3.33 C10H20O Decanal 16 

 

4.11 C12H24O Dodecanal 17 

 

3.99 C12H24O2 Dodecanoic acid 18 

 

3.32 C15H22O2 Drimenin 19 

 

3.78 C15H26O Drimenol 20 

 

4.73 C15H24 (E)-Caryophyllene 21 

 

5.2 C15H24 Farnesene 22 

 

4.4 C15H26O Farnesol 23 

 

1.77 C6H12O Hexanal 24 

 

6.59 C15H24 Humulene 25 

 

2.76 C12H20O2 Isobornyl acetate 26 
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Chemical structure Log POW Formula Name No. 

 

3.94 C15H24 iso-Caryophyllene 27 

 

3.21 C10H20O2 n-Decanoic acid 28 

 

4.4 C15H26O Nerolidol 29 

 

2.94 C9H18O Nonanal 30 

 

4.74 C15H24 σ-Cadinine 31 

 

4.89 C14H28O Tetradecanal 32 

 

4.73 C15H24 trans-α-bergamotene 33 

 

4.73 C15H24O trans-α-(Z)-bergamotol 34 

 

3.53 C15H24O trans-Longipinocarveol 35 

 

3.72 C11H22O Undecanal 36 

 

4.54 C11H24 Undecane 37 

 

4.73 C15H24 Valencene 38 
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Chemical structure Log POW Formula Name No. 

 

4.55 C15H22O Xanthorrhizol 39 

 

4.08 C15H24 β-Himachalene 40 

 

RESULTS AND DISCUSSION 

Multiple Linear Regressions 

The data set of 40 compounds was 

randomly separated into two groups, a 

training set of 30 compounds (75%) that 

was applied to create model and a test set 

of 10 compounds (25%) that was used to 

assess the performance of the made model. 

Structural-activity model was generated 

using the backward multiple linear 

regression (BW-MLR) procedure of SPSS. 

The octanol-water partition coefficient 

(logPow) as the dependent variable and 

dragon molecular descriptors as the 

independent variable was used. Quality of 

the models was indicated by statistics 

parameters: correlation coefficient (R), 

squared regression coefficient (R
2
), the 

Root Mean Squared Error (RMSE), Fisher 

ratio (F), Durbin- Watson (DW) and 

Significance (Sig) [33, 34]. 

The BW–MLR analysis led to the 

derivation of 6 models for the logPow, with 

3-8 descriptors (Table 2). As can be seen, 

the three descriptors are useful to predict 

the logPow which are: Mor09u (signal 09 / 

unweighted), ALOGP (Ghose-Crippen 

octanol-water partition coeff. (logP)) and 

EEig05x (Eigenvalue05 from edge 

adj,matrix weighted edge degrees). These 

descriptors are classified as 3D-MoRSE 

descriptors, molecular properties and 

Eigenvalues indices respectively. 

With the selected descriptors, we have 

built the linear model using the training set 

data, (30 compounds) and obtained the 

following equation: 

 

log POW = 1.156 + 0.670 ALOGP + 0.493 

EEig05x – 0.643 Mor09u                        (1) 

 

N=30, R=0.857, R
2
=0.734, R

2
adj =0.704, 

F=23.944,  DW=1.808,  Sig=0.000,  MSE= 

0.192 

 

The MSE of this model was 0.192 and 

the R
2
 value was 0.734. If squared 

regression coefficient is higher than 0.75 

(R
2
 >0.75), it indicates that there is a linear 

regression relationship between variables. 

But the MSE value indicated that the 

statistical results are not very satisfactory 

and there is no suitable linear relationship 

between molecular descriptors and 

octanol-water partition coefficient. 

 

Table 2. Statistical parameters of the models calculated with the SPSS software for the log POW 
 

models Indepdndent Variables R R
2
 R

2
adj RMSE F Sig 

1 Mor25v,Mor09u,Mor31e,IDDE,ALOGP,X0Av,EEig05x,VEp1 0.893 0.798 0.721 0.438 10.350 0.000 

2 Mor25v,Mor09u,Mor31e,IDDE,ALOGP,EEig05x,VEp1 0.892 0.796 0.731 0.438 12.257 0.000 

3 Mor09u,Mor31e,IDDE,ALOGP, EEig05x,VEp1 0.887 0.787 0.731 0.438 14.140 0.000 

4 Mor09u,Mor31e, ALOGP, EEig05x,VEp1 0.876 0.767 0.718 0.438 15.801 0.000 

5 Mor09u, ALOGP, EEig05x,VEp1 0.863 0.746 0.705 0.438 18.309 0.000 

6 Mor09u, ALOGP, EEig05x 0.857 0.734 0.704 0.438 23.944 0.000 
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Artificial Neural Network (ANN) 
Because of the poor statistical results of 

the linear model, a non-linear model was 

also constructed in this study.  

Artificial Neural Network (ANN) is an 

intelligence model and it imitates the 

working method of the human brain. A 

typical ANN system consists of a number 

of simple processing elements called 

neurons or nodes. These neurons are 

organized into different groups which are 

called layers. ANN contains three different 

layers: an input layer, one or more hidden 

layer, and an output layer of neurons [35].  

In the ANN study, for the learning 

process, the data sets were randomly 

divided into 3 groups: training, test and 

validation sets consisting of 70%, 15% and 

15% of the data point, respectively. The 

software would use the training data to 

build a basic model. The best algorithm 

based on minimum absolute error was 

selected when simulation trainings were 

completed [36, 37]. 

Among the ANN learning algorithms, 

the backpropagation (BP) method is one of 

the most generally used methods. 

In this study, the BP algorithm strategy 

was used to develop and optimize the 

biases and the weights. The artificial  

 

neural network model is presented with 

Neural Network Toolbox techniques in 

MATLAB R2010b [38]. 

The number of input neurons was equal 

to that of the selected molecular 

descriptors. The GA-MLR selection 

procedure selected 3 descriptors for use as 

the input layers for ANN. The number of 

hidden neurons is an important parameter 

influencing the performances of the ANN 

model. In this work, we constructed 

BPANN model with 2-10 neurons in the 

hidden layer, individually and one node in 

the output layer. The input and output data 

were normalized between 0.1 and 0.9 using 

the following equation to avoid numerical 

overflows due to very large or very small 

weights. 

      (
       

         
)                       

 

 The mean squared error (MSE) and 

squared regression coefficient (R
2
) were 

calculated and recorded after every 10 

cycles. The hidden layer with 6 neurons 

was produced the lowest MSE and the 

highest R
2
. 

(Fig. 1) shows the structure of a Back-

Propagation Artificial Neural Network 

(BPANN). 

 

 
Fig. 1. Structure of a back-propagation artificial neural network. 
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To evaluate the ANN performance, the 

squared regression coefficients (R
2
) Root 

Mean Square Error (RMSE) and Absolute 

Average Deviation (AAD) were used as 

criteria. 

These parameters are defined as 

follows: The coefficient of determination 

(R
2
) represents the fraction of the variance 

of Y "explained" by the correlation of Y 

with X. It gives the proportion of the 

variance (fluctuation) of one variable that 

is predictable from other variables [39]. 

     ∑{
(              )

 

(               )
 }

 

   

                           

 

The mean squared error (MSE) is 

defined as the average of the squares of the 

errors and the difference between the 

attribute which is to be estimated and 

the estimator [40], Root Mean Square 

Error (RMSE) is known to between 

observed and predicted estimated data is 

evaluated. Also, it is supposed that the 

indices with less estimated errors are more 

important [41]. 
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The absolute average deviation (AAD 

(%)) indicates the relative absolute 

deviation in percent from the calculation 

values. 
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In the above equations, n is the number 

of experimental data; yi,pred  and yi,exp  are 

the predicted and experimental responses, 

respectively, and yavg, exp is the average of 

experimental values.  

The R
2
, MSE, RMSE and ADD values 

of total, training, testing and validation are 

listed in Table 3. 

Comparison of the values of MSE and 

other statistical parameters in Table 3 

clearly indicates that the superiority of the 

GA-BPANN model over the GA-MLR 

model. The mean square error of 0.192 for 

the total set by the GA-MLR model should 

be compared with the value of 2×10
-4

 for 

the GA-BPANN model. Based on these 

results, there is the non-linear relationship 

between logPow of the studied essential 

oils.  

The experimental (observed) and 

predicted (calculated) values of the 

octanol-water partition coefficient of 

constituents of essential oils using BPANN 

and MLR models are listed in Table 4.    

Comparison of the residual values for 

logPow of compounds in kesum essential 

oil versus the experimental values has been 

demonstrated in Fig.3. As can be seen the 

propagation of errors in both sides of zero 

are random shown in Fig. 3. 

 

 

 

Table 3. Performances of MLR and BPANN, QSAR Models  
 

BPANN 

SET R
2
 MSE RMSE ADD 

Total 0.9910 0.0002 0.0141 2.7358 

Training 0.9905 0.0002 0.0151 2.7178 

Test 0.9931 0.0043 0.0658 3.5902 

Validation 0.9922 0.0002 0.0153 1.9652 

MLR 

SET R
2
 MSE RMSE F 

Total 0.734 0.192 0.438 23.94 
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Fig. 2. Plot of the calculated logP against the experimental values for the training (a), test(b) and validation(c) 

sets. 
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Table 4. The experimental, predicted and residual values of the logPow by GA-BPANN and GA-MLR methods 
 

MLR BPANN(normalized)  

Residual 

log POW 

Predicted 

log POW 
Experimental log POW 

Residual 

log POW 

Predicted 

log POW 
Experimental log POW No. 

-0.07895 3.24639 3.12 0.004 0.344 0.348 1 

0.21975 3.74955 3.9 0.010 0.462 0.472 2 

0.00833 1.92783 1.56 -0.014 0.114 0.100 3 

-0.10925 2.9486 2.73 0.017 0.270 0.286 4 

-0.0434 3.7262 3.48 -0.001 0.406 0.405 5 

0.09479 4.50305 4.27 -0.026 0.557 0.531 6 

-0.09437 4.32806 3.65 -0.021 0.453 0.432 7 

-0.05244 4.51683 4.89 -0.003 0.632 0.630 8 

0.06127 5.10338 4.84 0.012 0.610 0.622 9 

-0.00592 3.64512 4.11 0.000 0.506 0.506 10 

-0.00963 2.93139 3 0.000 0.329 0.329 11 

0.02276 4.51584 4.73 -0.002 0.606 0.604 12 

0.01768 4.30821 3.94 -0.003 0.481 0.479 13 

0.06972 4.42634 4.27 0.009 0.522 0.531 14 

-0.03001 4.09353 4.01 -0.002 0.492 0.490 15 

-0.02512 3.37956 3.33 -0.018 0.400 0.382 16 

-0.0684 3.93631 4.11 0.009 0.497 0.506 17 

0.00042 3.96594 3.99 -0.005 0.492 0.486 18 

-0.07211 3.54487 3.32 -0.017 0.397 0.380 19 

-0.01019 3.76043 3.78 0.003 0.450 0.453 20 

0.2373 4.82554 4.73 -0.007 0.611 0.604 21 

0.10529 4.97812 5.2 0.010 0.669 0.679 22 

-0.0708 4.66123 4.4 0.010 0.542 0.552 23 

0.04152 1.56476 1.77 -0.013 0.146 0.133 24 

0.02776 5.13554 6.59 0.006 0.894 0.900 25 

-0.01416 2.55556 2.76 -0.020 0.311 0.291 26 

-0.3496 4.86771 3.94 -0.018 0.497 0.479 27 

0.0673 3.34192 3.21 -0.011 0.374 0.362 28 

-0.02304 4.40545 4.4 -0.004 0.555 0.552 29 

0.1459 2.92504 2.94 0.001 0.318 0.319 30 

0.11172 4.32982 4.74 0.007 0.599 0.606 31 

0.04703 4.88552 4.89 -0.002 0.632 0.630 32 

-0.13859 4.50621 4.73 0.037 0.567 0.604 33 

0.1654 3.97178 4.73 0.009 0.595 0.604 34 

-0.00497 3.47266 3.53 0.012 0.402 0.413 35 

0.00185 3.77199 3.72 -0.009 0.452 0.444 36 

-0.16619 4.17879 4.54 0.028 0.546 0.574 37 

0.01669 4.65904 4.73 -0.035 0.639 0.604 38 

-0.11187 5.17134 4.55 0.006 0.570 0.576 39 

0.01655 4.44454 4.08 -0.012 0.513 0.501 40 
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Fig.3. Plot of the residual values for logPow of compounds versus the experimental values. 

 

Interpretation of the best descriptors 

The results and discussion lead us to 

conclude that combining of the three 

descriptors selected by GA, namely 

Mor09u, ALOGP and EEig05x can be 

used successfully for modeling and 

predicting the logPow of compounds in 

kesum essential oil. These descriptors have 

been classified in 3D-MoRSE descriptor, 

molecular properties and Eigenvalues 

indices respectively. 3D-MoRSE 

descriptor derived from the knowledge of 

the 3D structure of the molecule and it 

plays a significant role in 

chemoinformatics and QSAR/QSPR 

purposes [42, 43]. Molecular properties 

indices have been improved such as 

Moriguchi logP, Ghose-Crippen logP, 

Lipinski rule-of-five, etc. 

The GhoseCrippen octanol water 

coefficient (ALOGP) is a group 

contribution model for the octanolwater 

partition coefficient [44,45,46]. 

One of eigenvalue descriptor is the so-

called eigenvalue-based topological 

molecular indices (EI). A descriptor from 

this set is defined using eigenvalues that 

come from one of the graph matrices (e.g. 

adjacency matrix). The EI introduced by 

Ernesto Estrada (therefore named as 

Estrada index) It has been successfully 

applied in modeling the folding in 

biomolecules. These indices can be 

classified into several groups by the nature 

of graph parameters used in their 

definitions [47-50].  

 

CONCLUSIONS   

In the present study, QSAR models 

have been developed to predict the logPow 

of 40 compounds in kesum essential oil by 

genetic algorithm -multiple linear 

regression GA-MLR) and genetic 

algorithm - Back-Propagation Artificial 

Neural Network (GA-BPANN). Molecular 

descriptors were calculated with Dragon 

software and The Genetic Algorithm (GA) 

and backward Multiple Linear Regression 

(MLR) methods were used to select the 

suitable descriptors and to generate the 

correlation models that relate the chemical 

structural features to the biological 

activities. 

The squared correlation coefficient (R
2
), 

and mean square errors (MSE) have been 

designed to evaluate the quality and 

predictive ability of the linear and 

nonlinear models. Also other statistical 
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Parameters such as root mean squared 

error (RMSE), and absolute average 

deviation (AAD(%)) were used as a 

criterion. The R
2
 and MSE values of the 

MLR and ANN models were calculated 

0.734, 0.192and 0.9910, 2×10
-4

 

respectively. The obtained results showed 

that the BPANN model with three selected 

descriptors (Mor09ul,  ALOGP and 

EEig05x) could be used to predict logPow 

of compounds in kesum essential oil. 
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 هایبا استفاده از روش kesumآب در ترکیبات اسانس -مطالعه ارتباط ساختار ضریب تقسیم اکتانول
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 چکیده
-ها، داروها، نوشیدنی ها در غذاها، دئودورانتوماتیک با غلظت بالا و معطر هستند. استفاده از اسانسها موادی مایع آراسانس

های بسیار رایج هستند، به ویژه با رایحه درمانی که رو به افزایش است. چربی ها، لوازم آرایشی، داروها و ضد عفونی کننده

 01، که نقش مهمی در کشف دارو و طراحی آن دارد، توصیف کرد.  logPتوان با ضریب توزیع، دوستی یک ترکیب آلی را می

گروه تقسیم شدند: مجموعه آموزش، آزمون و اعتبارسنجی که به ترتیب  0به طور تصادفی به  kesumترکیب موجود در اسانس 

-سبه شد. الگوریتم ژنتیک محا Dragon افزاراز داده بود. تعداد زیادی توصیف کننده مولکولی با نرم ٪13و  ٪13،  ٪71شامل 

های کمی برای طراحی مدل (GA-ANN) شبکه عصبی مصنوعی -و الگوریتم ژنتیک (GA-MLR) رگرسیون خطی چندگانه

، انحراف متوسط  (R2)با استفاده از ضریب تعیین QSPR بینی مدلاستفاده شد. قدرت پیش (QSPR) ویژگی خواص -ساختار

 150/1و 700/1به ترتیب MLR مدل MSE و R2 مورد بحث قرار گرفت. مقادیر (MSE) و خطای میانگین مربع (AAD) مطلق

محاسبه شد. مقایسه نتایج نشان  2× 11-0و  5513/1به ترتیب  ANN برای مجموعه آموزشی مدل MSE و R2 محاسبه شد. مقادیر

 دارد. GA-MLR نتایج بهتری نسبت به روش GA-ANN داد که کاربرد
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