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Abstract 

Investors use different approaches  to select optimal portfolio. so, Optimal investment choices 

according to return can be interpreted in different models. The traditional approach to allocate 

portfolio selection called a mean - variance explains. Another approach is  Markov chain. Markov 

chain is a random process without memory. This means that the conditional probability distribution of 

the next state depends only on the current state and not related to earlier events. This type of memory 

is called the Markov property. Based on proposed approach, the possibility of testing the assumption 

of independence of the intervals selected a portfolio of distribution of a relationship between these 

values there. The presence of this dependency, consider a model based on Markov chain makes it 

possible. In this paper, assuming that independent portfolios can be modeled by a Markov chain 

model to describe different portfolio selection, Value at risk (VaR) and Conditional Value at Risk 

(CVaR). In fact, the portfolio return is selected, the ranges are divided into n range, each interval of a 

discrete Markov chains, we consider the situation. Finally, the results of this study indicate that the 

optimal portfolio selection based on Markov models arehigh performance but complex. 
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1. Introduction 

In this paper we pursue two objectives. We 

first propose different markovian models that 

may be used to determine optimal portfolio 

strategies and to value opportunely the risk of a 
given portfolio. Then we compare portfolio 

selection strategies obtained either by modeling 

the return distributions with a Markov chain or 

by using a mean–variance analysis. Following 

the methodology proposed by Christoffersen 

[3], it is possible to test the null hypothesis that 

the intervals of the distributional support of a 

given portfolio are independent against the 

hypothesis that the intervals follow a Markov 

chain. Several empirical analyses, carried out 

by considering both different distributional 

hypotheses for many return portfolios 
(Gaussian, Stable Paretian, Student’s t, and 

semi-parametric), and different percentiles θ, 

have shown that we cannot reject the 

markovian hypothesis. Therefore, the sequence 

of intervals of the distributional support are 

significantly dependent along time. 

Accordingly, in this paper we assume that 

interval dependence of portfolios can be 

characterized by a Markov chain so that we can 

describe different portfolio selections, VaR and 

CVaR models. As a matter of fact, given a 
portfolio of gross returns, we share the support 

of the portfolio in N intervals and each interval 

is assumed to be a state of a Markov chain. 

Then, we build up the transition matrix and 

maximize the expected logarithmic utility 

function by assuming that in each interval the 

return is given by the middle point. 

 

2. Literature review 
Three major model paradigms have been 

developed in the literature: common factor 

models (Bluhm et al. 2001), mixed binomial 

models (Frey and McNeil 2003, SchÄonbucher 

and Schubert 2001) and dependent lifetime 

models (Li 2000). Let us brie°y discuss these 

approaches. The common factor approach 

originates on Merton's ¯rm value model 

(Merton 1974), developed by Va- sicek (1987) 

and Bluhm et al. (2001). The ¯nancial viability 

of debtor i is described by vi = p ½c+ p 1 ¡ ½ai. 

Here c is a random variable common to all 

debtors and ai is an individual variable, which 

is independent of c. Debtor i will default in the 

next period, if vi · v, where v is a critical 

threshold. Typically c and ai are assumed to be 

normally distributed. However, Hull and White 

(2004) use t-distributions for both c and ai. The 

mixed binomial model assumes that the 

probability of default for an individual debtor, 

q, is a random variable. Then, even if 
conditional on q, the default events of debtors i 

and j are independent, the unconditional events 

are dependent, if the distribution of q is non-

degenerate. A typical distribution for q is beta, 

and in multivariate cases Dirichlet. In the 

dependent lifetime model the time until default 

for debtor i is modelled by an exponential 

distribution with parameter ¸i, but the 

distributions for di®erent i are made dependent 

using a normal copula for the logarithms of the 

default times. 
These models su®er from some drawbacks. 

They use distributional assumptions, which are 

di±cult to verify. Often there is no explicit 

correspondence between the 

correlations (of portfolio components) 

which may be observed empirically and the 

numerical parameters determining, 

typically via copulas, interdependence of assets 

involved in a model. Also, some of these 

models are not in accordance with the 

transition matrices used in rating agencies. For 
attempts in harmonizing these 

approaches see Koylouglu and Hickman 

(1998), and Bluhm et al. (2001). 

 

3. Portfolio Selection with Homogeneous 

Markov Chains 
Portfolio choice problem by describing the 

behavior of portfolios through a homogeneous 

Markov chain. 

Let us consider n + 1 assets: n of these 

assets are risky with gross returns1 zt+1 = 

[z1,t+1, . . . , zn,t+1]_ and the (n+1)-th asset is 

characterized by a risk-free gross return z0,t+1. 

If we denote with x0 the weight of the riskless 

asset and with x = [x1, . . . , xn]_ the vector of 

the positions taken in the n assets forming the 

risky portfolio, then the return portfolio during 

the period [t, t + 1] is given by 
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Let us assume that the portfolio of gross 

returns has support on the interval (mink 

z(x),k;maxk z(x),k), where z(x),k is the k-th past 

observation of the portfolio z(x). We first share 

the portfolio support (mink z(x),k;maxk z(x),k) 

in N intervals (a(x),i; a(x),i+1) where a(x),i = 
_maxk z(x),k 

mink z(x),k _i/N mink z(x),k, i = 0, 1, . . .,N. 

For simplicity, we assume that on the interval 

(a(x),i; a(x),i+1) the state of the return is given 

by the geometric mean of the extremes z(i) (x) 

a(x),ia(x),i+1. Moreover, we add an additional 

state, z (N+1) (x) := z0, in the case we assume a 

fixed riskless return. Secondly, we build the 

transition matrix Pt = [pi,j;t]1≤i,j≤N valued at 

time t where the probability pi,j;t points out 

the probability (valued at time t)of a transition 
of the process between the state z(i)(x) and the 

state z(j)(x). On the other hand, if we consider 

an homogeneous Markov chain, the transition 

matrix is independent of time and it can be 

denoted simply by P. We observe that the 

transition probability matrix associated with the 

Markov chain is usually sparse and this deeply 

reduces the computational costs. In 

constructing the approximating Markov chain, 

we need to choose the length of a time step and 

the number of states of the process. In portfolio 

selection problems we assume daily step with 
the convention that the Markov chain is 

computed on returns valued with respect to 

investor’s temporal horizon T . For instance, if 

the investor recalibrates the portfolio every 

month (T = 20 working days), we consider 

monthly returns with daily frequency and 

compute on the portfolio series the relative 

transition matrix. Moreover, for portfolio 

selection problems, it is better to use a limited 

number of states since the transition matrix is 

strictly dependent on the portfolio composition. 
As the portfolio composition is the variable of 

the optimization problem, the complexity of the 

problems becomes relevant when the number 

of states increases. However this does not 

excessively compromise the goodness of the 

investor’s choices. 

  Under these assumptions, the final wealth 

(after T periods (days)) obtained investing W0 

in the portfolio with composition (x0, x) is 

simply given by: 
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Where 

 ν(h) (t+i) =  _1 if at (t + i)-th period the 

portfolio return is in the s-th state 

                            0 otherwise 

As a consequence of the Chapman-

Kolmogorov equations, when at t-th time the 

portfolio is in the m-th state, the expected value 

of the logarithm of the final wealth is given by: 
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where p(i)m,s is the element in position (m, s) 

of the i-th power of the transitionmatrix Pi. The 

expected value of the log final wealth is : 
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where pm is the probability of being in the 

state m. When no short sales are allowed, an 

investor with logarithmic utility function and 

temporal horizon T tries to solve the following 

optimization problem. This fact is a 

consequence of the discretization process we 

adopt in building the approximating transiction 

matrix that depends on the portfolio 

composition. Thus, the sensitivity of the 
maximum expected utility respect to the 

portfolio composition implies that we have 

many local maximum in the above 

optimization problem. In order to approximate 

the optimal solution of portfolio problem (5), 

we consider two procedures. 

 

Procedure 1 
First we look for a local optimum near a 

potential optimal point. To verify our model, 

we consider the optimal allocation amongst 24 
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assets: 23 of these assets are risky and the 24-th 

is risk-free with annual rate 20%. Our dataset 

consists of monthly gross returns (20 working 

days). 

Figure 1 reports a comparison between the 

markovian approach and the mean–variance 

one. In both cases the initial wealth is one and 

the portfolio is calibrated 60 times according to 

the procedure proposed in Leccadito et al., [9]. 

 

 
 

 

Procdure 2 

VaR and CVaR Models with Markov 

Chains 
In this section we propose some alternative 

models to compute Value at Risk (VaR) and 

Conditional Value at Risk (CVaR) with an 
homogeneous Markov chain. If we denote with 

τ the investor’s temporal horizon, with Wt+τ 

−Wt the profit/loss realized in the interval [t, t 

+ τ] and with θ the level of confidence, then the 

VaR is the percentile at the (1−θ) of the 

profit/loss distribution in the interval [t, t + τ]: 

 

, (W ) inf{q | Pr(W ) 1 }t t t tVaR W W q           

 

On the other hand the CVaR measures the 

expected value of profit/loss given that the VaR 

has not been exceeded: 

1

, ,
0

1
(W ) (W )

1
t t t q t t tCVaR W VaR W dq



    




     
 
 

  We can think to use the Markovian tree to 

compute the possible losses (VaR, CVaR) at a 

given future time T . Suppose we build a 

homogeneous Markov chain of 50 states. Thus, 

for our choice of the states, we can make a 

Markovian tree that growths linearly with the 

time because it recombines every period. 

Then, after T = 60 days, we have (N − 1)T + 1 

= 49 ∗ 60 + 1 = 2941 nodes in the markovian 

tree. Starting to count from the lowest node, let 
p(j) be the probability of being at the j-th node 

where the portfolio return is given by z (j) T (j 

= 1, . . . , (N −1)T +1). Considering a 

confidence level θ, we can compute VaR and 

CVaR with the Markovian hypothesis: 
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An ex-post analysis on 60 days portfolio 

return distributions shows that the markovian 

tree better approximates the heavy tails than the 

Riskmetrics Gaussian model (B&S). 

Figure 3 compares the ex post empirical 

return distribution (of an arbitrary portfolio) 

with the forecasted 60 days Markovian (mkv) 

and Riskmetrics (B&S) ones. This graphical 
comparison is confirmed by some simple 

statistical tests (Kolmogorv Smirnov and 

Anderson Darling) valuated on some US 

indexes (see TEDIX, TEDPIX) . 

 

| (x) F ( )|emp theo
x

KS Sup F x   

and Anderson-Darling test :  
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  As we can see from Table 1 the 
Markovian approach presents the best 

performance in approximating the 60 days 

return distributions. These results are confirms 

that the proposed Markovian approach takes 

into account much better the aggregated 60 

days risk as compared to classical Riskmetrics 

model. 

 

Table 1. Kolmogorov-Smirnoff and 

Anderson-Darling tests for the indexes: 

Nasdaq, S&P500, and Dow Jones Industrials 

Markovian RiskMetircs   

0.0629 0.0555 KS TEDPIX 

32.021 37.021 AD  

0.0401 0.0424 KS 
50 

Comapanies 

36.012 41.027 AD  

 

Concluding Remarks 
This paper proposes alternative models for 

the portfolio selection and the VaR and CVaR 

calculation. In the first part we describe a 

portfolio selection model that uses a Markov 

chain to capture the behavior and the evolution 

of portfolio returns. In the second part we 

present some alternative markovian VaR and 

CVaR models. It is important to underline that 

the numerical procedure to compute the 

percentiles and the expected loss with the 

markovian approach is quite complex. As far as 

large portfolios or on-line VaR and CVaR 

calculation are concerned, the implementation 
of the above mentioned models should be 

evaluated on the basis of the tradeoff between 

costs and benefits. On the other hand, we 

believe that further very interesting markovian 

and semi-markovian approaches to value the 

expected risk exposure of portfolios can be 

easily expressed using some recently studied 

methodologies: either based on the 

approximation of more or less complex 

diffusion processes and capturing their 

markovianity with a Markov chain (see [5,6]) 
or using semi-markovian approaches (see 

[10,2,4]). 
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