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Abstract 
Data Envelopment Analysis (DEA) is a mathematical programming technique for evaluating 
the relative efficiency of a set of Decision Making Units (DMUs) and can also be utilized for 
setting target. Target setting is one of the important subjects since according to its results 
efficiency can be increased. An important issue to be currently discussed, is to set target 
while considering share data. These data for each individual indicate the share of the unit, 
which takes part in an activity, from the whole amount which is a predefined constant. It is 
obvious that the sum of units’ share is equal to the entire amount. Thus, any changes in the 
magnitude of these data has to be dependent on the changes in data of other units. In this 
paper a two-stage procedure is developed to find benchmark units where share data exist. The 
fact that all DMUs are jointly projected onto the new efficient frontier and simplicity, are the 
significant features of the proposed method. With a numerical example we demonstrate how 
this method works. 
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1. Introduction 

Data Envelopment Analysis as a 

mathematical programming technique is 

nowadays used for performance evaluation 

of a set of DMUs. There exist various 퐷퐸퐴 

models on the basis of variant assumptions 

about production technology. One of the 

important key features of DEA is 

recognizing target units and reference set 

for those units do not perform efficiently. 

The most well known 퐷퐸퐴 models are 

referred as radial models which include 

CCR, first provided by Charnes et al. [4] 

and BCC, first introduced by Banker et al. 

[3]. 

In recent years, several studies have 

undertaken benchmarking and provided 

new methods in different circumstances. 

Some of the important papers are as 

follows. Post and Spronk [10] presented a 

procedure for benchmarking. In their 

approach they extended DEA to 

incorporate the interactive Multiple Goal 

Programming (IMGP) which is called 

Interactive Data Envelopment Analysis 

(IDEA). Gonzalez and Alvarez [6] tried to 

find an appropriate target for inefficient 

DMUs. They note that the most analogous 

efficient DMU is the better target to be 

imitated. Hougaard and Tvede [8] 

considered an axiomatic approach to 

benchmark selection. They considered 

simple and weak axioms and then defined 

a family of benchmark. Hougaard and 

Keiding [7] examined the benchmark 

selections existed in production factors and 

technology. They noted that without 

convexity in class of technologies, then 

continuous selections cannot exist. Cook et 

al. [5] presented mathematical 

programming models to be used in 

benchmarking. They used these models 

where multiple performance measures are 

required. Seo et.al [12] used the integrated 

form of DEA and decision tree to provide 

an approach for benchmarking. Presented 

approach allows the manager for selecting 

those processes help DMUs to be 

improved. Ross and Droge [11] provided a 

benchmarking process to be represented in 

a large supply chain system in which 

distribution centers exists. Aparicio et al. 

[1] proposed an approach in order to find 

the closest targets for a DMU to imitate. 

Their idea is upon this fact that closer 

targets cause minor variations in the data 

of the inefficient units. Trappey and 

Chiang [13] used DEA analysis for 

providing a benchmarking planning. In 

this work they tried to gain the maximal 

profit. Baek and Lee [2] studied the use of 

the least distance measure in order to 

obtain the shortest projection from the 

DMU to the strong efficient frontier. Thus, 
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they let an inefficient DMU search for the 

easiest way to increase the efficiency 

score. Wu et al. [14] used cross efficiency 

evaluation method to measure the 

performance of DMUs. As mentioned 

above various method have been presented 

in literature for benchmarking and target 

setting. Considering share data" as one of 

the important types of data, used 

frequently in real life, here the aim is to 

present a new method based on this type of 

data.  These data for each unit indicate the 

share of that unit from the total amount. 

Therefore the sum of all units’ share is 

equal to the entire amount. Since the sum 

of this element among all units equals the 

predefined constant, any changes in the 

share of these units have to be dependent 

on each other. We turn into an example in 

stock market for indicating the issue more 

factual. Consider five stockholders each of 

which has a share in an specific stock. If 

one of them wants to increase its share, in 

this stock, the share of others must be 

decreased. Therefore, any changes in share 

of each of them entails changing in share 

of others. So, it is impossible to set target 

individually for each unit. In this paper 

considering this data type, a method is 

presented which identifies efficient targets.  

The current article proceeds as follows: In 

the next section, 퐷퐸퐴 background will be 

briefly reviewed. Then, in Section 3, the 

proposed method will be discussed. An 

illustrative example is documented in 

section 4 and section 5 concludes the 

paper. 

 

2. DEA Background 

Data enveloping analysis is now utilized 

frequently for performance evaluation of 

set of DMUs. Let 퐷푀푈  be a unit under 

assessment from a total n units. Define 

푥 ∈ 푅  and 푦 ∈ 푅  as the inputs and 

outputs of 퐷푀푈 . Consider the most 

general definition of the production 

technology ,푇 , which is defined with a set 

of semipositive (푥, 푦) as:  

푇 = {(푥, 푦)| 푥 ≥ 휆 푥 , 

 푦 ≤ 휆 푦 , 휆 ≥ 0, 

푗 = 1, . . . , 푛} 
 

The constant returns to scale form of the 

enveloping problem in input orientation 

which first introduced by Charnes et al.[4], 

is as follows:  

푚푖푛     휃 

푠. 푡.      휆 푥  ≤ 휃푥 ,  푖 = 1, . . . , 푚, 

휆 푦 ≥ 푦 ,  푟 = 1, . . . , 푠, 

휆 ≥ 0,  푗 = 1, . . . , 푛. 
 

Considering 퐷퐸퐴 models it is possible to  

(2.1) 

(2.2) 
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find an efficient frontier that can also be 

taken into account as a benchmark frontier. 

Thus, having the relative efficiency of 

each퐷푀푈, it can be separately projected 

onto the efficient frontier. In order to find 

targets for 퐷푀푈  one should follow the 

two-stage optimization procedure. In the 

first stage the optimal value of the 

objective function of 퐶퐶푅 model is 

obtained. This factor showed the 

proportional reduction in inputs without 

any alterations in outputs. Note that, with 

this factor shortfall in outputs or excess in 

input cannot be considered. In order to find 

the target the second stage should be 

solved for identifying the nonradial 

improvements for inputs and outputs. This 

aim is done in the following model by 

maximizing the sum of input and output 

slacks. The second stage is as follows:  

max                     푠 + 푠  

푠. 푡.     휆 푥 + 푠 = 휃∗푥 ,  푖 = 1, . . . , 푚, 

∑ 휆 푦 − 푠 = 푦 ,  푟 = 1, . . . , 푠, 
휆 ≥ 0,  푗 = 1, . . . , 푛, 

푠 ≥ 0, 푠 ≥ 0 
 

Therefore, targets for 퐷푀푈  will be 

(휃∗푥 − 푠 ∗, 푦 + 푠 ∗), in which 휃∗ is the 

input radial improvement and 푠 ∗ and 푠 ∗ 

are input excess and output shortfall,  

respectively.  

3. Target Setting with Share Data 

As mentioned in the previous section 

conventional 퐷퐸퐴 models set target for 

each 퐷푀푈 separately. Hence, in this 

section considering ßhare data" two 

models are presented for a two-stage 

procedure which, in a joint manner, find a 

target for each 퐷푀푈. In general target 

setting, the data of different units do not 

have a special relation to one another, but 

share data indicate the share of a unit from 

the total amount which shows relation 

among the units. Since the sum of this 

element among all units equals the 

predefined constant, any changes in the 

amount have to be dependent on the 

changes in data of other units. Thus, while 

working with share data it is not possible 

to set target for each unit individually. 

Here, the aim is to carry out the analysis 

for benchmarking in such situations. The 

advantage of this model is that in lieu of 

solving an independent LP problem 

assessing each 퐷푀푈 in turn, all 퐷푀푈푠 are 

simultaneously assessed through solving 

an LP model. 

Let, 푝 refer to the number of 퐷푀푈푠 and 

푦  for all j (j=1,...,n) indicates 

푠ℎ푎푟푒푑푎푡푎. In the presented model sum of 

the first element of output in all units is 

confined to be equal to the predefined 

constant "푐". This predefined constant is 

(2.3) 
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∑ 푦 . In this paper we restrict the 

analysis to the case in which initial sum of 

the specific element, in output vector, 

remains unchanged throughout the work. 

Constraint (a) in the presented models, 

(3.4) and (3.5), ensures that this scenario 

will happen. We consider this model in 

input orientation. The same analysis can be 

performed for output orientation with 

share data in output. Thus, for all p and j 

(p, j=1,...,n), the sum of 휆 푦  over p and j, 

is considered to be equal to the initial sum 

of the first element of output through all 

units. That means, any alterations in the 

first element of output in all units are 

under the influence of changes of this 

factor in other units in a way that the initial 

sum of this element remains unchanged.  

In these models the corresponding slacks 

of the first element of all 퐷푀푈푠 are 

considered unrestricted in sign in order to 

enhance models to find suitable targets. 

The proposed procedure is the extension of 

two-stage 퐶퐶푅 model in which share data 

are incorporated. The following model 

consists of 푛 separable models that are 

considered in a joint manner. Since for all j 

the sum of 푦  after changes must equal 

the total amount; for all p, 푠  is  

considered unrestricted in sign.  

min           휃  

푠. 푡.           휆 푥  + 푠 = 휃 푥 , 

 푖 = 1, . . . , 푚, 푝 = 1, . . . , 푛 

휆 푦 − 푠 = 푦 , 

 푟 = 1, . . . , 푠, 푝 = 1, . . . , 푛, 

휆 푦 +. . . + 휆 푦 = 푐, (푎) 

푠 ≥ 0, 푠 ≥ 0, 
푖 = 1, . . . , 푚, 푟 = 2, . . . , 푠, 푝 = 1, . . . , 푛 

휆 ≥ 0,  푗 = 1, … , 푛, 
 푠 푢푛푟푒푠푡푟푖푐푡푒푑,        푝 = 1, . . . , 푛. 

 

This model is some how like the model 

discussed in Post and Spronk [11]. This 

paper and that of Post and Spronk consider 

n separable models in one LP model but 

the aim in these two models are different 

from each other since Post and Spronk 

[11] presented a procedure for 

performance benchmarking. They 

extended the DEA technique for 

incorporating the interactive multiple goal 

programming and called it interactive data 

envelopment analysis. Note that in this 

paper, constraint (a) and unrestricted 푠  

are considered to set target for 퐷푀푈푠 in a 

joint manner while share data are taken 

into account. Now, for the second stage 

consider the following model in which the 

objective is to maximize the sum of slacks. 

(3.4) 
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In the following model for all p, 휃∗ is the 

optimal solution of model (3.4). According 

to the constraint (a) in model (3.5), for all j 

any changes in 푦  are implemented in a 

way that the sum of the resultant output 

still equals the sum of initial amount.  

max        ( 푠 + 푠 + |푠 |) 

푠. 푡.           휆 푥 + 푠 = 휃∗푥 , 

푖 = 1, . . . , 푚, 푝 = 1, . . . , 푛, 

휆 푦 − 푠 = 푦 ,  

푟 = 1, . . . , 푠, 푝 = 1, . . . , 푛, 

휆 푦 +. . . + 휆 푦 = 푐, (푎) 

휆 ≥ 0,  푗 = 1, . . . , 푛,  푝 = 1, . . . , 푛, 
푠 ≥ 0,  푖 = 1, . . . , 푚,  푝 = 1, . . . , 푛, 

푠 ≥ 0,  푟 = 2, . . . , 푠, 
푠 푢푛푟푒푠푡푟푖푐푡푒푑, 푝 = 1, . . . , 푛. 

 

In the above model c defines as ∑ 푦 . 

The obtained slacks through solving this 

model is greater than or equal to those 

resulted from model (3.4). For all p, each 

of 푠  is deemed unrestricted in sign thus 

in the optimal solution of model (3.5) by 

summing the constraints corresponding to 

the first element of output vector of all 

units, we always have ∑ 푠 ∗ = 0. We 

can draw the conclusion that if there exists 

a positive 푠 ∗  then, there must exist 

another unit, like k, whose corresponding 

slack, 푠 ∗ , is negative. This fact ensures 

that the changes through these units are 

related to each other. According to non 

radial changes which are resulted from 

model (3.5), the first element of output 

vector for all units is increased or 

decreased in such a way that finally after 

these changes the sum of this element in 

target units is equal to the sum of initial 

amounts. Therefore, a target for 퐷푀푈  is 

(휃∗푥 − 푠 ∗, 푦 + 푠 ∗), in which 휃∗ is the 

proportional changes and 푠 ∗ and 푠 ∗ are 

non radial changes, respectively. This 

model can be easily converted into its 

linear counterpart. To this end let 푠 =

푢 − 푣 , 푢 ≥ 0, 푣 ≥ 0 for all p, where  

푢 =
0, 푠 ≤ 0,
푠 , 푠 ≥ 0.

� 푣

=
0, 푠 ≥ 0,
−푠 , 푠 ≤ 0,

� 

 

Which results in 푢 . 푣 = 0 for all p. 

Now, accordingly |푠 | = 푢 + 푣  for all 

p. It should be noted that by using this 

variable transformation the nonlinear 

constraint, 푢 . 푣 = 0, is also added to the 

model. But the aforesaid nonlinear 

constraint is redundant due to the 

dependency of corresponding coefficient 

column vectors. Thus, model (3.5) can be 

easily written in linear form. The linear 

counterpart of model (3.5) is as follows:  

(3.5) 
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max        ( 푠 + 푠 + 푢 + 푣 ) 

푠. 푡.          휆 푥 + 푠 = 휃∗푥 , 

 푖 = 1, . . . , 푚,  푝 = 1, . . . , 푛, 

휆 푥 + 푠 = 휃∗푥 , 

푖 = 1, . . . , 푚,  푝 = 1, . . . , 푛, 

휆 푦 − (푢 − 푣 ) = 푦 , 

 푟 = 1,  푝 = 1, . . . , 푛, 

휆 푦 +. . . + 휆 푦 = 푐, (푎) 

푠 ≥ 0, 푢 ≥ 0, 푣 ≥ 0, 
 푟 = 2, . . . , 푠,  푝 = 1, . . . , 푛, 

휆 ≥ 0,  푗 = 1, . . . , 푛,  푝 = 1, . . . , 푛, 
푠 ≥ 0,  푖 = 1, . . . , 푚,  푝 = 1, . . . , 푛. 

 
In the following it is shown that when 

solving 퐶퐶푅 model for these targets all of 

them are evaluated as efficient units. It is 

noteworthy to mention that in 푇 ⊆ 푅  

(one-input and one-output), the projection 

point in input orientation is always located 

onto the efficient frontier. You can see this 

situation in Figure 1. 

Consider an input-oriented projection, a 

projection point is found by maximum 

proportional reduction in inputs without 

any change in output data. Thus, 

conventional target setting in 푇 ⊆ 푅  is 

equivalent to the presented method. 

According to what has been discussed 

above in 푇 ⊆ 푅  (one-input and one-

output), the differences between this 

method and conventional one can not be 

seen. It is obvious that in higher 

dimensions where multiple outputs exist 

and positive output slacks can be found, 

the differences between this method and 

conventional one are more tangible. 

Therefore, to make matters more clearly in 

using this method, we turn to a schematic 

portrayal for an arbitrary 푇 in Figure 2. In 

this figure solid lines and dotted lines 

indicate proportional changes in inputs and 

nonradial changes, respectively. 

 
Figure1: Target setting (one-input and one-output) 

 

(3.6) 
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Figure2: Target setting (an arbitrary T) 

Non radial changes can be a decrease or an 

increase in first element of output in order 

to set target. The dotted curve in this figure 

is the efficient frontier passing through all 

target units.  

Theorem 1. There exist at least one unit 

from among n units that corresponding 휃∗ 

in model (3.4) is equal to one.  

Proof. To prove this claim we will show 

that there exist a p and a 퐷푀푈  which 

corresponding inequality constraint in 

multiplier form of model (3.4) is binding. 

Consider model (3.4), since a solution with  

∀푝, 휆 = 1; ∀푝, 휃 = 1; 

∀푗 = 1, . . . , 푛, 푗 ≠ 푝, 휆 = 0, 

Always exists, then the optimal value of 

objective function is less than or equal to 

n. Moreover, considering 휃∗ = 0 for all p 

results in 휆 = 0, for all j and p which is in 

contradiction to constraint (a) because 푐 is 

a positive constant. Thus, 0 < ∑ 휃∗ ≤

푛. Now, consider the objective function of 

the corresponding multiplier form of 

model (?). Consequently, in accordance 

with the strong duality theorem the 

optimal value of objective function of 

enveloping and multiplier forms are equal. 

Thus the optimal value of objective 

function in corresponding multiplier model 

of model (?) is finite and positive that 

means;  

0 < 휃∗ = 푢∗ 푦 + 푤∗푐. 

Hence, there exists at least one non zero 

term in objective function of multiplier 

form. Without loss of generality let exist k 

and l such that 푢∗ 푦 > 0, thus 푢∗ ≠

0, 푦 ≠ 0. Now we will prove that there 

exist p and there exist 퐷푀푈  which 

corresponding constraint in optimal 

solution of multiplier form is binding. 

Consider the inequality constraints of 

multiplier form which is as following;  

∑ 푢 푦 − ∑ 푣 푥 + 푤푦 ≤ 0, 

푗 = 1, . . . , 푛, 푝 = 1, . . . , 푛. 
 

By contradiction suppose that there exist 

no binding constraints in optimal solution 

hence;  

(3.7) 

(3.8) 

(3.9) 
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∀푝, ∀푗; ∑ 푢∗ 푦 − ∑ 푣∗ 푥 +

푤∗푦 < 0. 
 

Since 푦 ≠ 0, if for all j, 푦 = 0 then let 

휀̄ ∈ 푅  and 푢̄ = 푢∗ + 휀̄ . If for all j, 

푦 > 0 then let 푢̄ = 푢∗ + 휀 . Now, by 

substituting (푢̄, 푣∗, 푤∗) in (0.3) we will 

arrive at the following expression;  

휀 ≤
∑ 푣∗ 푥 − ∑ 푢∗ 푦 − 푤∗푦

푦  

Now define; 휀 = 푚푖푛{휀 , ∀푗}. Therefore a 

feasible solution such as  

∀푖, ∀푝, 푣̄ = 푣∗ ; 푤̄ = 푤∗; 

∀푟 ≠ 푙, ∀푝, 푢̄ = 푢∗ ; 

 푟 = 푙, ∀푝, 푢̄ = 푢∗ + 휀, 

is at hand for which there exist p and 

퐷푀푈  such that;  

푢∗ 푦 − 푣∗ 푥 + 푤∗푦  

< 푢̄∗ 푦 − 푣̄∗ 푥 + 푤̄∗푦 ≤ 0. 

The important issue is that this feasible 

solution has an objective value which is 

greater than the optimum, thus leading to a 

contradiction and this completes the proof. 

Therefore, there exist a 푝 and there exist 

퐷푀푈  which corresponding constraint in 

optimal solution of multiplier form is 

binding.   

Theorem 2. Consider the set of target 

units, 퐷푀푈 (푥́, 푦́) where (푥́, 푦́) = (휃∗푥 −

푠 ∗ , 푦 + 푠 ∗ ) for all k, each of them is 

efficient.  

Proof. Let us assume that the proposition 

is false and we will arrive at contradiction. 

Assume that the target unit of 퐷푀푈  is not 

located on the efficient frontier thus there 

exists(푥, 푦), 휆, 푠̂  and 푠̂  in corresponding 

푃푃푆 that;  

푥 = ∑ 휆 푥 + 푠̂ , 

푦 = 휆 푦 − 푠̂ , 

휆 ≥ 0, 푠̂ ≥ 0, 푠̂ ≥ 0 
 
Which dominates (푥́, 푦́), i.e.; 푥́ ≥ 푥, 푦́ ≤

푦, and at least one equality is strict. Hence, 

there exists non negative vectors 훼 and 훽 

that;  

∑ 훼 + ∑ 훽 > 0, 

Thus,  

푥́ = 푥 + 훼 ,  푖 = 1, … , 푚, 

 푦́ = 푦 − 훽 ,  푟 = 1, . . . , 푠. 

According to model (3.5) in optimal 

solution we have the following 

expressions. For simplification of notation 

for all p, consider 푠 ∗ = 푢∗ − 푣∗ .  

∑ 휆∗ 푥 + 푠 ∗ = 휃∗푥 , ∀푖  

∑ 휆∗ 푦 − 푠 ∗ = 푦 , ∀푟,  

∑ 휆∗ 푥 + 푠 ∗ = 휃∗푥 , ∀푖, ∀푝 ≠ 푘,  

∑ 휆∗ 푦 − 푠 ∗ = 푦 , ∀푟, ∀푝 ≠ 푘.   

Considering expressions (3.11) and (3.13) 

while assessing 퐷푀푈  define;  

(3.10) 

(3.11) 

(3.12) 

(3.13) 
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푥́ = 휃∗푥 − 푠 ∗ = ∑ 휆 푥 + 푠̂ +

훼 ,   푖 = 1, . . . , 푚,  

푦́ = 푦 + 푠 ∗ = ∑ 휆 푦 − 푠̂ −

훽 ,   푟 = 1, . . . , 푠,  

Where;  

휃∗푥 = ∑ 휆 푥 + 푠̂ + 훼 +

푠 ∗ ,   푖 = 1, . . . , 푚,  

푦 = ∑ 휆 푦 − 푠̂ − 훽 −

푠 ∗ ,   푟 = 1, . . . , 푠.  

Therefore, while assessing (휃∗푥 , 푦 ) a 

feasible solution such as (휆, 푆 , 푆 ) has 

been obtained in which;  

푆 = 푠̂ + 푠 ∗ + 훼 ,  푖 = 1, . . . , 푚,  

푆 = 푠̂ + 푠 ∗ + 훽 ,  푟 = 2, . . . , 푠,  

푆 = 푠̂ + 푠 ∗ + 훽 ,  

푆 = 푠 ∗ ,  푖 = 1, . . . , 푚,  ∀푝 ≠ 푘  

푆 = 푠 ∗ ,  푟 = 1, . . . , 푠,  ∀푝 ≠ 푘  

It is worth mentioning that this is also a 

feasible solution for the second phase 

model. Thus, considering this solution we 

will acquire an objective value which is 

greater than the obtained optimum through 

solving the second phase. Therefore, we 

have arrived at a contradiction and proof is 

completed.  By constructing a set of these 

new observations, all of these units, in a 

joint manner, are located onto a new 

efficient frontier that is, solving 퐶퐶푅 

model all of them will be assessed as 

efficient units. To make matters more 

concrete in use of this procedure we turn to 

a numerical example which involves 6 

퐷푀푈푠. The input-output data are tabulated 

in Table 1.  

Solving model (3.5) resulted in the optimal 

strategy of each unit in which the first 

output can be decreased or increased or 

remained unchanged. By contribution of 

the constraint (a) in model (3.5), for all j 

any changes in 푦 , are implemented in a 

way that the resultant sum after changes 

equals the initial sum. An increase in the 

share of an individual will cause a 

decrease in the share of other ones and 

vice versa. As can be seen, any alterations 

in the first element of output through all 

units are under the influence of the 

alterations of other units. According to 

Table 2, the sum of 푠 ∗  through all 

퐷푀푈푠 is equal to zero. Considering what 

has been indicated in Table 2 for each 

inefficient unit by utilizing model (3.4) 

and (3.5) efficient targets can be found. 

The targets resulted from the presented 

two-stage procedure are gathered in 

Table3. 
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Table1. Inputs and Outputs 

DMUp I1 O1 O2 DMUp I1 O1 O2 
DMU1 59 31 28 DMU4 45 23 33 
DMU2 28 22 33 DMU5 36 34 27 
DMU3 57 30 26 DMU6 64 35 22 

 

Table2. Optimal solutions of model (3.4) and (3.5) 

DMUp 휽*p S1
-*p S1

+*p S2
+*p DMUp 휽*p S1

-*p S1
+*p S2

+*p 
DMU1 0.63 0 4.26 0 DMU4 0.62 0 -1 0 
DMU2 1 0 0 0 DMU5 0.64 0 -16 0 
DMU3 0.61 0 2.74 0 DMU6 0.74 0 10 13.74 

 

Table3. Targets 

DMUp I1 O1 O2 DMUp I1 O1 O2 
DMU1 37.33 35.26 28 DMU4 28 22 33 
DMU2 28 22 33 DMU5 22.91 18 27 
DMU3 34.67 32.74 26 DMU6 47.65 45 35.74 

 

When solving 퐶퐶푅 model for the set of 

obtained targets all of them will be 

evaluated as efficient units. That means, 

these targets has been located on an 

efficient frontier which is passing through 

all of them.  

Theorem 3. Share data remains share 

throughout the analysis.  

Proof. Considering the target unit of 

DMU  we will show that the sum of output 

element of this unit is equal to ∑ y By 

summing the constraints related to the first 

element of 퐷푀푈  over p we will have;  

휆∗ 푦 − 푠 = 푦 . 

Taking into account constraint (a),  

휆∗ 푦 + ⋯ + 휆∗ 푦 = 

∑ 푦  by comparing these two 

equalities we have; ∑ 푠∗ = 0. Now, 

consider the first element of output of  

benchmark unit, by summing this output 

over p we have; ∑ ( 푦 + 푠∗ ) =

∑ 푦 . In accordance to what has been 

mentioned above since ∑ 푠∗ = 0 thus  

share data remains share throughout the 

analysis.  By summing of the first element 

of output through all units in Table 1 and 

3, we can see that both of them are equal 

to the initial sum which is 175. One point 

to note is that the difference between this 

method and the conventional one due to 

existence of share data, are constraint (a) 

and the unrestricted slack. This constraint 

relates 퐷푀푈푠 to each other. Thus, the 
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amount of the first element of output will 

be altered in such a way that the resulted 

sum after changes in this element remains 

equal to the initial sum. Due to existence 

of unrestricted non radial changes in the 

first element of output vector it should be 

noted that in different examples it is 

necessary to have multiple outputs with at 

least one regular element. Otherwise this 

method will not give interpretable results. 
 

1. Application 

In this section, an empirical example about 

the application of the proposed approach 

into Commercial banks is given. We 

consider eleven Commercial banks of Iran 

and the related input-output data are 

tabulated in Table 4. In summary, the input 

and output sets are as follows:  

 Inputs:  

• Payable interest. / • Number of Personnel 

per hour. / • Non-performing loans.  

 

Outputs:  

• Total sum of the four main deposits. / 

 • Other deposits. / • Loans granted. /  

• Received interest. / • Fee.  

As it is mentioned above 표  indicates the 

entire sum of four main deposits of each 

bank. This element indicates share data 

since the entire investment in banks is 

limited to these deposits. The sum of the 

invested money in all banks is different 

from those deposits which are not for 

investing. Thus, if a bank wants to increase 

its invested money, then the invested 

money of other banks are to be decreased. 

That means, any of these banks must 

convince people to invest their money in 

their bank. Thus the share of other banks 

from invested money will decrease. 

Therefore, any alterations in the share of 

the banks are related to each other.  

Considering model (3.4) and (3.5) 

mentioned units in Table 4 are assessed in 

order to find suitable target. 
Table4. Inputs and Outputs 

DMUp I1 I2 I3 O1 O2 O3 O4 O5 
DMU1 4707.86 175.8 60801 1033890 42954 611224 31671.6 189.17 
DMU2 32641.23 477.94 264991 5398005 966040 5090776 108826.2 2328.4 
DMU3 24603.99 511.76 238510 5795565 871880 4839322 131011.6 2335.87 
DMU4 9097.12 348.65 85897 2332104 815245 3284772 65056.46 2936.8 
DMU5 34766.12 276.55 402614 4313779 539228 7878616 231066.5 2306.15 
DMU6 41239.42 408.88 105778 6136069 298420 5115135 29197.01 1838.93 
DMU7 24978.41 459.78 321776 4923925 1802130 4887652 123469.1 3580.4 
DMU8 4902.54 254.34 110543 1097316 122046 1127011 12581.5 306.16 
DMU9 2278.13 142.75 300084 555997 22165 168786 3672.26 137.19 
DMU10 23642.26 736.26 58238 3736368 190077 1353879 23249.96 512.91 
DMU11 8394.97 529.64 64750 1437663 60187 929473 20853.48 281.64 
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Table5. Optimal solution of model (3.5) 

DMUp S1
+*p DMUp S1

+*p DMUp S1
+*p DMUp S1

+*p 
DMU1 85041.96 DMU4 0 DMU7 0 DMU10 -565552 
DMU2 1779323 DMU5 0 DMU8 -297167 DMU11 -577289 
DMU3 0 DMU6 0 DMU9 -424356   

 

As it is listed in Table 5, units 1 and 2 are 

to increase the share of their invested 

money and then units 8, 9, 10 and 11 are to 

decrease their share. 

As can be seen in Table 5 the sum of 푠 ∗  

over p is equal to zero. Hence, shared data 

remains shared throughout the analysis. In 

accordance with the obtained optimal 

solution of model (3.4) and (3.5), target 

units can be found.  

 

2. Conclusion 

In this paper, while considering share date, 

we focused on finding suitable target units. 

Share data for each individual indicate the 

share of a unit from the whole amount. 

The basic idea behind this study is to make 

some changes in two-stage procedure in 

order to acquire target units, while the sum 

of specific element of output vector in 

benchmark units is still equal to the initial 

sum. In the presented procedure share data 

can be increased or decreased in such a 

way that finally after these changes the 

sum of resultant elements in benchmark 

units is still equal to the initial sum. The  

proposed model is in input orientation and 

the mentioned condition is on outputs. Due 

to existence of unrestricted non radial 

changes it should be mentioned that at 

least one regular element in output vector 

is required in order to gain interpretable 

results. Thus, further investigations of 

other concepts which are relevant to 퐷퐸퐴 

and an analysis where all elements of 

output vector indicate share data, can be 

considered from this point of view. 



B. Rahmani Parchkolaei, et al /JNRM Vol.1, No.4, Winter 2016                                                                          70 
 

 
 

References 

[1] J. Aparicio, J.L. Ruiz, and I. Sirvent, 
Closest targets and minimum distance to 
the Pareto-efficient frontier in DEA, J Prod 
Anal. 28 (2007), pp.209–218.  
[2] C. Baek, and J. Lee, The relevance of 
DEA benchmarking information and the 
Least-Distance Measure, Mathematical 
and Computer Modelling. 49 (2009), 
pp.265-275.  
[3] R.D. Banker, A. Charnes, and W.W. 
Cooper, Some models for estimating 
technical and scale efficiencies in data 
envelopment analysis, Management 
Sience. 30 (1984), pp.1078-1092.  
[4] A. Charnes, W.W. Cooper, and E. 
Rhodes, Measureing the efficiency of 
decision making units, European journal of 
operational reaserch. 2 (1978), pp.429-444.  
[5] W.D. Cook, L.M. Seiford, and J. Zhu, 
Models for performance benchmarking: 
measuring the efficiect of e-business 
activities on banking performance, Omega. 
32 (2004), pp.313–322.  
[6] E. Gonzalez, and A. Alvarez, From 
efficiency measurement to efficiency 
improvemenT: The choice of a relevent 
benchmark, European journal of 
operational reaserch. 133 (2001), pp.512-
520.  
[7] J.L. Hougaard, and H. Keiding, 
Continuous benchmark selections. 
Operations Research Letters. 32 (2004), 
pp.94-98  
[8] J.L. Hougaard, and M. Tvede, 
Benchmark selection: An axiomatic 
approach, European journal of operational 
reaserch. 137 (2002), pp.218–228  
[9] C.N. Madu, and C. Kuei, Application 
of data envelop analysis in benchmarking, 
International Journal of Quality Science. 3 
(1998), pp.320-327  
[10] A. Post, and J. Spronk, An integrated 
benchmarking approach to distribution 
center performance using DEA modeling, 
Journal of Operations Management. 20 
(1999), pp.19-32.  

[11] T. Ross, and C. Droge, Performance 
benchmarking using interactive data 
envelopment analysis, European journal of 
operational reaserch. 115 (2002), pp.472 - 
487.  
[12] H. Seo, J. Choi, G. Park, and Y. Park, 
A framework for benchmarking service 
process using data envelopment analysis 
and decision tree, Expert Systems with 
Applications. 32 (2007), pp.432–440.  
[13] A.J.C. Trappey, and Tzu-An Chiang, 
A DEA benchmarking methodology for 
project planning and management of new 
product development under decentralized 
profit-center business model, Advanced 
Engineering Informatics. 22 (2008), 
pp.438–444.  
[14] J. Wu, L. Liang, and F. Yang, 
Achievement and benchmarking of 
countries at the Summer Olympics using 
cross efficiency evaluation method, 
European journal of operational reaserch. 
197 (2009), pp.722-730.  
 


