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Abstract 

In this paper we present a recurrent neural network model to recognize efficient Decision 

Making Units(DMUs) in Data Envelopment Analysis(DEA). The proposed neural network 

model is derived from an unconstrained minimization problem. In theoretical aspect, it is 

shown that the proposed neural network is stable in the sense of lyapunov and globally 

convergent. The proposed model has a single-layer structure. Simulation shows that the 

proposed model is effective to identify efficient DMUs in DEA. 
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1. Introduction 

DEA is a nonparametric approach in 

operations research to estimate the 

performance evaluation and relative 

efficiency of a set of homogeneous DMUs 

such as business units, government 

agencies, police departments, hospitals, 

educational institutions and etc. Charnes et 

al in their seminal DEA model (CCR 

model) in 1978 proposed that the 

efficiency of a DMU can be obtained as 

the maximum of a ratio of weighted 

outputs to weighted inputs, subject to the 

condition that the same ratio for all DMUs 

must be less than or equal to one[3]. 

Banker et al in 1984 developed a variable 

returns to scale version of the CCR model 

that was called BCC model [1]. DEA 

successfully divides DMUs into two 

categories: efficient DMUs and inefficient 

DMUs. DEA does this by assigning a 

relative efficiency score to each DMU 

such that the DMUs in efficient category 

have identical relative efficiencies equal to 

one and the rest have the relative 

efficiencies between zero and one. 

Linear programming is needed to 

recognize efficient and inefficient DMUs 

in CCR and BCC models. The dimension 

and denseness of the structure of linear 

programming increases as the numbers of 

DMUs increases, in this case, the 

numerical methods become less affected 

for solving corresponding linear 

programming. One promising approach to 

solve CCR and BCC models with hight 

dimension and denseness of structure is to 

employ the artificial neural networks based 

on circuit implementation [7]. The neural 

networks are computing systems 

composed of a number of highly 

interconnected simple information 

processing units, and thus can usually 

solve optimization problems in execution 

times at the orders of magnitude much 

faster than most popular optimization 

algorithms for general-purpose digital[9]. 

One approach commonly used in 

developing an optimization neural network 

is to first convert the constrained 

optimization problem into an associated 

unconstrained optimization problem, then 

establish an energy function and a dynamic 

system which is a representation of an 

neural network model. The dynamic 

system is normally in the form of first 

order ordinary differential equations. 

In this paper, based on properties of 

Additive form in BCC, we establish a 

convex energy function which its 

minimum points can applied to identify 

efficient DMUs in BCC and using gradient 

method we construct a first order ordinary 

differential equation which its equilibrium 
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points correspond to the minimum points 

of proposed energy function, in this case, 

the obtained dynamic system can be 

realized by a recurrent neural network 

model which one-layer structure. The 

proposed neural network model is proved 

to has globally convergent. Simulation 

results present effectiveness of the 

proposed model to identify efficient 

DMUs in BCC model. This paper is 

divided into six sections. In next section 

preliminary information is introduced to 

facilitate later discussions. In section III, 

we proposed a neural network model to 

identify efficient DMUs in BCC models. 

we analyze stability condition and global 

convergence in section IV. In section V, 

some simulation examples are discussed. 

Section VI gives the conclusions of this 

paper.  
 

2. Preliminaries 

2.1. DEA Preliminaries 

Suppose there are n DMUs with m  inputs 

and s  outputs. The input and output 

vectors of  

t
sjjj
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Charnes et al [3] have concluded the 

following PPS for CCR model:  
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The CCR model is used for an efficiency 

measure of DMUs under the condition of 

constant returns to scale (CRS)[3]. The 

envelopment model of CCR in input-

oriented to evaluate the efficiency of a 

specific }){1,...,( npDMU p   under CCRT  

is as follows[5]:  
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Banker et al[1] omitted the ray 

unboundedness postulate from the CCR 

postulates and inferred the following PPS 

for BCC model:  
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The BCC model is used for an efficiency 

measure under the condition of variant 

returns to scale(VRS)[1]. The envelopment 

model of BCC in input-oriented to 

evaluate the efficiency of a specific 

}){1,...,( npDMU p   under BCCT  is as 

follows[5]:  
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Envelopment model of BCC model in 

output-oriented is expressed as[5]  
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Combination both orientations in a single 

model is called the Additive model which 

is as follows:  
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Where sm RSandRS     . The dual 

problem to the above can be expressed as 

follows:  
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Definition 2.1.  
pDMU is ADD-efficient if and only if 

0= *
ADDw [5].  

Definition 2.2. 

if pDMU  is ADD-efficient then pDMU  is 

called BCC-efficient otherwise pDMU  is 

called BCC-inefficient[5].  
 

2.2. Functions  

Definition 2.3. 

A function mm RRF :  is said to be 

Lipschitz continuous with constant 0>L  

[6] if for each pair of points mRyx ,   

.)()(  yxLyFxF   

Definition 2.4. 

Let }{1,...,,|{= mNiuxlRxX ii
m  }, 

XRP m
X :  is called a projection 

operator and defined the following 

form[6]:  

XyyxminargxPX  , =)(   
 

Indeed )(xPX  is a projection of vector x  

to set X . Since X  is a box set, the 

projection operator XP  can be stated by  
'

1 )](),...,([=)( mXXX xPxPxP  
 

Where )( iX xP  is a piecewise function. For 

iiX xxPNmi =)( ,}{1,...,   and for Ni , 

)( iX xP  is defined the following form[6]:  
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Lemma 2.1. 

Let nRX   be a closed convex set.Then  
n

XX RyxyxyPxP  ,         ,)()( 
 

where )(xPX  is a projection operator on 

X . 

Proof: See[6].  

Theorem 2.1. Let S  be a nonempty open 

convex set in nR  and let RSf :  be a 

differentiable function on S. Then f  is 

convex if and only if for each Sxxl 2,   

0)())()(( 1212  xxxfxf T

Proof. See[2].  
 

2.3. Differential Equation Preliminaries 

Definition 2.5. 

Take the following dynamical system  
nRxtxtxfx 00 =)(        )),((= (5) 

 

Where nn RRf : . *x  is called an 

equilibrium point of (5) if [10]  

0.=)( *xf  
 

Theorem 2.2. 

Assume that f  in (5) is a continuous 

mapping, then for arbitrary 00 t  and 

nRx 0  there exists a local solution )(tx  

to (5) where ],[ 0 tt  for some 0> t . 

Furthermore if f  is locally Lipschitzian 

continuous at 0x  then the solution is 

unique, and if f  is Lipschitzian 

continuous in nR  then   can be extended 

to  [10].  

Theorem 2.3. Let *x  be an equilibrium 

point of (5) and nRX   be an open 

neighborhood of *x , if RRV n :  is a 

continuously differentiable function over 

X  and V  satisfies in the following 

conditions:   

0=)(    0,=)(
*

*

dt
xdVxV   

}{           0,>)(  0,))(( *xXxxV
dt

txdV


  )( xVx   

Then *x  is a lyapunov stable equilibrium 

and the solution always exist globally[10].  

Lemma 2.2. 

Let u  and v  be real-valued non negative 

continuous functions with domain }|{ 0ttt 

, let )(=)( 00  ttata   where 0a  is 

monotone increasing function. if for 0tt    
 

dssvsutatu
t

t
)()()()(

0
  

hence  
dssv

t

tetatu
)(

0)()(


  
 
 

Proof: See[8].  
 

3. Neural Network Model 

Based upon definition 2.1 and 2.2 pDMU  

is called BCC-efficient if the following 

system of linear inequality has a solution:  
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So (6) can be rewritten as the following 

form:  

, . . . ,

tA w
tB w
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              (7) 

 

Now we define the following convex 

energy function to design our proposed 

neural network model to solve (7):  
2 2

2 2

1 1= { ,0} ,
2 2

t tB w A w w E(w) Max  (8) 

Where 
}1,...,=1,|{= 1 smixRx i

sm    
0)( wE  for all 1 smRw ,so if *w  be 

minimizer of (8)and 0=)( *wE  then (6) 

has a solution, hence based on definition 

2.1 and 2.2 , pDMU  is BCC-efficient, 

otherwise pDMU  is inefficient in BCC. 

We use gradient method to obtain 

minimizer of (8) then we have the 

following dynamic system:  

( ) = ( ( ))

[ ( ( )) ( ( ))]t t

w w

B B w A A w
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Where 0>  is a scaler parameter, E  is 

the gradient of E ,   is defined in (8), 

}n1,...,=i0,|{=  i
n xRx , P  and 

P  are projection operator as follows:  

ஐܲ(ݑ) = [ ஐܲ(ݑଵ),… , ஐܲ(ݑ௠ା௦),  ௠ା௦ାଵ]௧ݑ
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Based on definition 2.5 and foregoing 

statement, the equilibrium points of system 

described by Eq.(9) can be applied to 

identify efficient DMU in BCC. 

We see from Fig.1 that the system 

described by Eq.(9) can be realized by a 

recurrent neural network with one-layer 

structure. The operator  PandP    may be 

implemented by using a piecewise 

activation function[4]. 

 
Fig. 1. Block diagram of the recurrent neural network in (9). 
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As shown in Fig.1, the proposed neural 

network can be implemented by using a 

simple hardware only without analog 

multipliers for variables or the penalty 

parameter. The proposed neural network 

consists of 1 sm  integrators, m+s+n 

piecewise activation function and m+s+1 

summers. 
 

4. Global Stability 

In this section, we consider global 

convergence of (9) under assumption 

|{=* wW  w  is minimizer of (8)} . We 

first give one definition for latter 

discussions.  
 

Definition 4.1. 

The neural network in (9) is said to be 

stable in the sense of Lyapunov, globally 

convergent and globally asymptotically 

stable, if the corresponding dynamic 

system is so [9].  

The proposed neural network has the 

following basic property.  

Lemma 4.1. 

The equilibria of the neural network in (9) 

is equal to *W . Moreover, for any initial 

point )(= 00 tww , there exist a unique 

continuous solution )(tw  for (9) over 

),[ 0 t .  

Proof. Let w  be equilibrium of (9) so 

0=)(wE , since E  is a convex function 

then w  be minimizer of )(wE . Moreover 

)(wE  always has minimum so *W . 

Let = [ ( ( )) ( ( ))]t tw B B w A A w F( ) P P P , 

for any 1,  smRvu  we have:  
 

(ݑ)ܨ‖ − ‖(ݒ)ܨ

= ብ
ܤ௧൫ܤൣ ஐܲ(ݑ)൯ + ௧ܣஐഥ൫ܲܣ ஐܲ(ݑ)൯൧
௧ܤ൫ܤ]− ஐܲ(ݒ)൯ + ௧ܣஐഥ൫ܲܣ ஐܲ(ݒ)൯]

ብ

≤ ௧ܤܤ‖ ஐܲ(ݑ) − ௧ܤܤ ஐܲ(ݒ)‖
+ ฮܲܣஐഥ൫ܣ௧ ஐܲ(ݑ)൯ − ௧ܣ)ஐഥܲܣ ஐܲ(ݒ))ฮ 

 

by lemma 2.1 we have 
  

(ݑ)ܨ‖ − ‖(ݒ)ܨ
≤ ‖‖௧ܤܤ‖ ஐܲ(ݑ) − ஐܲ(ݒ)‖
+ ௧ܣܣ‖ ஐܲ(ݑ) − ௧ܣܣ ஐܲ(ݒ)‖
≤ ‖‖௧ܤܤ‖ ஐܲ(ݑ) − ஐܲ(ݒ)‖
+ ‖‖௧ܣܣ‖ ஐܲ(ݑ) − ஐܲ(ݒ)‖
≤ ‖௧ܤܤ‖)
+ ݑ‖(‖௧ܣܣ‖ −  ‖ݒ

 

hence )(wF  is lipschitz continuous in 
1smR , so based on theorem 2.2 for any 

initial point )(= 00 tww  there exist a 

unique continuous solution )(tw  for (9) 

over ),[ 0 Tt  which ),[ 0 Tt  be its maximal 

interval of existence. Now we present that 

=T . for this, let ** Ww  , then we have: 
  

‖(ݓ)ܨ‖ = (ݓ)ܨ‖ − ‖(∗ݓ)ܨ

= ብ
‖௧ܤܤ‖ൣ ஐܲ(ݓ) − ௧ܣஐഥ൫ܲܣ ஐܲ(ݓ)൯൧
௧ܤܤ]− ஐܲ(ݓ∗) − ௧ܣஐഥ൫ܲܣ ஐܲ(ݓ∗)൯]

ብ

≤ ௧ܤܤ‖ ஐܲ(ݓ) − ௧ܤܤ ஐܲ(ݓ∗)‖
+ ฮܲܣஐഥ൫ܣ௧ ஐܲ(ݓ)൯ − ௧ܣஐഥ൫ܲܣ ஐܲ(ݓ∗)൯ฮ
≤ ‖௧ܤܤ‖) + ‖ݓ‖(‖௧ܣܣ‖
+ ‖௧ܤܤ‖) +  ‖∗ݓ‖(‖௧ܣܣ‖

 

using foregoing inequality and (9) we have  
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where *= ( )t tBB AA wq  and 

= ( )t tBB AAq . Regarding lemma 

2.2 we have  

0( ) ( ( ) ,   w w  q(t-t )
0 0 0t t q(t-t )) e  t [t ,T]

 

so )(tw  is bounded on ),[ 0 Tt  then =T , 

this proof is completed.  

We now affirm our basic result as follows.  
 

Theorem 4.1. 

The state trajectory of (9) is globally 

convergent to *W  within a finite time 

when the parameter   is large enough. 

Moreover, the convergence rate of the 

neural network in (9) increases as   

increases.  

Proof. Let * *w W  and )(tw  be the 

trajectory of the state equation defined 

in(9) with any given initial point 

00 =)( wtw . Consider the following 

lyapunov function:  

21 *( ( ) ) = ( )
2 2

w w wV t t  
 

So, the time derivative of V  along the 

trajectory of (9) is as follows  

*( ( )) - ( ( ) - ) ( ( ))V w V w w w w
w

   Td t d d t E tdt d dt
 (10) 

moreover )(wE  is continuously 

differentiable and convex on   and 
*E( ) 0 w , so by theorem 2.1 we have  

((ݐ)ݓ)ܸ݀
ݐ݀

= (ݐ)ݓ)ߣ−	 − ௧(∗ݓ ൯(ݐ)ݓ൫ܧ∇	 ≤ 0 

଴ݐ]߳	ݐ∀ , +∞]                                               (11) 
 

(1) and (9) yield  

( )= 0 = 0d V ( (t)) d t
d t d t
w w          (12) 

 
using (10), (12), we have  
((ݐ)ݓ)ܸ݀

ݐ݀
= (ݐ)ݓ)ߣ−	 − ௧(∗ݓ ൯(ݐ)ݓ൫ܧ∇	 ≤ 0 

(ݐ)ݓ 	∉  (12)                                                 ∗ݓ
 
 

Moreover if w  then  )(wV  so 

by applying the theorem 2.3, we get result 

that the proposed neural network is globally 

convergent to the solution set of (7). 

Now, we show that the convergence time 

is finite. For this, suppose 00 =)( wtw  

is not equilibrium point. we define  

݃൫(ݐ)ݓ൯ = (ݐ)ݓ) − ௧(∗ݓ  ,൯(ݐ)ݓ൫ܧ∇	
ݐ∀	 ≥                           (14)	଴ݐ

 

from (11), we know that 0))(( twg  for 

all 0tt  , since )( 0tw  is not equilibrium 

point then 0>))(( twg . g(w(t)) is 

continuous, so there exist 0>  and 0>  

such that  

       0g ( (t))> 0 t t w                     (15) 

using (10) and (14) we have:  

=d V ( ( t)) g ( (t ))d t w w                  (16) 
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0 0
= ,   [ )0 0

dV( (z)) dz g( (z))dz t t ,t +dz     
t t

t t

w w
 

thus by (15) we have:  

ܸ൫(ݐ)ݓ൯ = ܸ൫ݓ(ݐ଴)൯ 

නߣ−

݃൫(ݖ)ݓ൯݀ݖ ≤

ܸ൫ݓ(ݐ଴)൯ − නߣ ݖ݀ߙ
௧బା௞

௧బ

= ܸ൫ݓ(ݐ଴)൯ − ݇ߙߣ

௧బା௞
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so  
0V( (t)) V( (t ))  w w  

 

by taking = 0V( (t ))

w  we have  

= 0 ,       0V ( ( t ) ) t t + k w  

thus  
*= ,       w w   0(t) t t   

that is, the state trajectory of proposed 

neural network is globally convergent to 
*W  within a finite time. By (12) we have  

0dV( (t))
dt 
w  

then we can result that as   increases, the 

convergence rate of the neural network in 

(9) increases. This proof is completed.  
 

5. Illustrative Example 

In this section, we demonstrate the 

effectiveness and performance of the 

propose neural network model with two 

illustrative examples. The ordinary 

differential equation solver engaged in 

ode23 in matlab 2012.  

Example 1. Fourteen DMUs were 

evaluated in terms of three inputs 

),,( 321 xxx  and three output ),,( 321 yyy  

that defined in table 1.  

The result of proposed model and additive 

model(4) to identify BCC-efficient DMUs 

is provided in table 2. As can be seen from 

table 2, the result of proposed model 

similar to additive model, so it is effective 

approach to identify BCC-efficient DMUs.  
 
 
 

Table 1: Data set in Example 1. 
DMUs 1x  2x  3x  1y  2y  3y  

1 225935.0 405.0 1000.0 178285.0 4967.0 3388.0 
2 102200.0 179.0 575.0 75526.0 3808.0 2083.0 
3 94900.0 135.0 388.0 63868.0 5435.0 1246.0 
4 51100.0 95.0 263.0 31835.0 1222.0 559.0 
5 43800.0 43.0 186.0 19360.0 1112.0 373.0 
6 31755.0 36.0 116.0 23372.0 2095.0 275.0 
7 31390.0 28.0 99.0 17798.0 462.0 277.0 
8 29930.0 31.0 159.0 14067.0 794.0 184.0 
9 23360.0 39.0 153.0 18127.0 1143.0 269.0 

10 20440.0 31.0 94.0 14860.0 949.0 157.0 
11 10585.0 15.0 67.0 4498.0 148.0 29.0 
12 8030.0 15.0 62.0 8311.0 335.0 70.0 
13 11680.0 26.0 110.0 9449.0 435.0 161.0 
14 11315.0 20.0 92.0 4797.0 71.0 53.0 
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Table 2: Results of comparison of our model and BCC model in Example 1. 

DMUs )(wE  Result of proposed model *
ADDw  Result of Additive model

1 0.000 Efficient 0.000 Efficient 
2 0.000 Efficient 0.000 Efficient 
3 0.000 Efficient 0.000 Efficient 
4 0.2851 Inefficient 0.5095 Inefficient 
5 0.1545 Inefficient 0.2890 Inefficient 
6 0.000 Efficient 0.000 Efficient 
7 0.000 Efficient 0.000 Efficient 
8 0.1535 Inefficient 0.2796 Inefficient 
9 0.0465 Inefficient 0.0808 Inefficient 
10 0.0489 Inefficient 0.0860 Inefficient 
11 0.0421 Inefficient 0.0842 Inefficient 
12 0.000 Efficient 0.000 Efficient 
13 0.000 Efficient 0.000 Efficient 
14 0.0882 Inefficient 0.1659 Inefficient 

 

 

Example 2. The inputs and outputs of 

seven DMUs which each DMU consumes  

 

 

two inputs ),( 21 xx  to produce four outputs 

),,,( 4321 yyyy  is presented in table 3. 
 
 
 
 

Table 3: Data set in Example 2 
DMUs 1x  2x  1y  2y  3y  4y  
1 2.0 2.0 2.0 2.0 2.0 2.0 
2 2.0 2.0 2.0 3.0 2.0 2.0 
3 2.0 2.0 2.0 2.0 3.0 2.0 
4 2.0 2.0 2.0 2.0 2.0 3.0 
5 1.0 1.0 2.0 2.5 3.5 2.0 
6 1.0 3.0 2.0 2.0 2.0 4.0 
7 2.0 1.0 2.0 2.5 2.25 3.0 

 

 

The results of running additive model and 

our proposed model are summarized in 

table 4. The results comparison can report 

that our proposed neural network model is 

effective to identify efficient and 

inefficient DMUs in BCCT . Fig. 2 shows 

that transient behavior of the neural  

 

 

network  of (9) in terms of )(tw . As can be 

seen from Fig. 2, the proposed neural 

network model is globally convergent to 

the optimal solution.  
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Table 4: Results of comparison of our model and additive model in Example 2 

DMUs )(wE  Result of 
proposed model 

*
ADDw  Result of 

additive model 
1 0.7162 Inefficient 1.4286 Inefficient 
2 0.000 Efficient 0.000 Efficient 
3 0.5714 Inefficient 1.1429 Inefficient 
4 0.4524 Inefficient 0.7976 Inefficient 
5 0.000 Efficient 0.000 Efficient 
6 0.0000 Efficient 1.000 Efficient 
7 0.0000 Efficient 1.000 Efficient 

 

 

Fig. 2. Transient behavior of the neural network of (9) in terms of )(tw  in example 2

 
 

6. Conclusion 

In this paper, a recurrent neural network 

introduced to identify efficient DMUs in 

BBCT . The proposed model is a one-layer 

neural network. It is shown here that the 

proposed neural network is stable in the 

sense of Lyapunov and globally 

convergent to the optimal solutions. 

Finally, examples are provided to show the 

effectiveness of the proposed neural 

network.  
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