
 J. ADV COMP ENG TECHNOL, 7(1) Winter 2021

 This work is licensed under the Creative Commons Attribution 4.0 International Licence.

To view a copy o this licence, visit https://creativecommons.org/licenses/by/4.0/

Intelligent Resource Allocation in Fog
Computing: A Learning Automata Approach

Alireza Enami1 , Javad Akbari Torkestani2

1- Department of Computer Engineering, Islamic Azad University Arak Branch, Arak, Iran.
2- Department of Computer Engineering, Islamic Azad University Arak Branch, Arak, Iran. (j-akbari@iau-arak.ac.ir)

Received (2020-09-28) Accepted (2021-03-23)

Abstract: Fog computing is being seen as a bridge between smart IoT devices and large scale
cloud computing. It is possible to develop cloud computing services to network edge devices using
Fog computing. As one of the most important services of the system, the resource allocation should
always be available to achieve the goals of Fog computing. Resource allocation is the process of
distributing limited available resources among applications based on predefined rules. Because the
problems raised in the resource management system are NP-hard, and due to the complexity of
resource allocation, heuristic algorithms are promising methods for solving the resource allocation
problem. In this paper, an algorithm is proposed based on learning automata to solve this problem,
which uses two learning automata: a learning automata is related to applications (LAAPP) and the
other is related to Fog nodes (LAN). In this method, an application is selected from the action set of
LAAPP and then, a Fog node is selected from the action set of LAN. If the requirements of deadline,
response time and resources are met, then the resource will be allocated to the application.
The efficiency of the proposed algorithm is evaluated through conducting several simulation
experiments under different Fog configurations. The obtained results are compared with several
existing methods in terms of the makespan, average response time, load balancing and throughput.

Keywords: Fog Computing, Heuristic Algorithms, Learning Automata, Resource Allocation

I. INTRODUCTION

Fog computing is a distributed
computing that acts as an intermediate

layer between cloud servers and Internet of
Things (IoT) devices/sensors. Similar to cloud
servers, Fog computing provides processing,
networking, and storage, but closer to IoT
devices/sensors to reduce latency, network
traffic, power consumption, and operating
costs [1]. Fog computing has both edge and
network computations. The development of
multi-layered applications and the migration
of services from a number of IoT devices/
sensors can be easily done through the Fog.
Also, the edge network components can be

closer to IoT devices/sensors than cloud and
edge servers, thus reducing service delays
for real-time applications [2]. Fig. 1 shows a
3-layer architecture for Fog computing.

The features of Fog computing include
[4],[5]: Awareness of location, mobility
support, real-time interactions, scalability,
interoperability, reduce service latency, reduce
energy consumption, reduce network traffic,
reduce capital and operational expenses, reduce
content distribution, reduce network latency,
wide geographical distribution, huge number
of nodes, wireless access, real-time analysis
and heterogeneity of software and hardware
resources. Due to the above features, some
applications are assumed for Fog computing
in the fields of health, medicine, agriculture,

How to cite this article:
Alireza Enami , and Javad Akbari Torkestani. Intelligent Resource Allocation in Fog Computing: A Learning Automata
Approach. J. ADV COMP ENG TECHNOL, 7(1) Winter 2021 : 18-34

https://creativecommons.org/licenses/by/4.0/

Alireza Enami. et al./Intelligent Resource Allocation in Fog Computing: A Learning Automata Approach

20 J. ADV COMP ENG TECHNOL, 7(1) Winter 2021

data centers, energy, industry, military, smart
homes, smart cities, transportation, network of
cars, online games and video transmission [4],[5].

Fig.1. Three-layer architecture of Fog computing [3].

Resource allocation [6]-[8] is one of the
most important services of the system, which
should always be available to achieve the goals
of Fog computing. A common problem with
Fog computing is choosing the best resource
for running specific applications. Resource
allocation is the process of distributing limited
available resources among applications based on
predefined rules. Resource allocation mechanisms
play an essential role in the process of scheduling
of Fog computing, and the efficiency of these
mechanisms determines the quality of service [3].
There are several interesting features that make
resource allocation much more challenging.
Some of these features include [9]: scalability,
adaptability, error tolerance and reliability, load
balancing, dynamic structure, high heterogeneity
of resources and applications.

Considering the challenging features of
Fog computing, the heuristic solutions are
undoubtedly the best way to solve the resource
allocation problem in the Fog computing. The
features of these solutions include [10],[11].

• Heuristic solutions are well-understood.
• There is no need for optimal solutions.

• Effective heuristic in a short time.
• Dealing with multi-objective nature.
• Appropriateness for decentralized

solutions
• Ability to combine with other practices.
• Designing robust schedulers.
• Libraries and frameworks for meta-

heuristic.
• The learning automata and its hybrid

models can be considered as a suitable
model for solving the above problem
because of the following features [12]-
[24]:

• The learning automata are able to perfectly
adapt themselves to environmental
changes. This feature is very suitable for
use in Fog environments with a high
degree of dynamism.

• In addition to very low computational
requirements, the learning automata
impose a small amount of communication
costs in interacting with the environment.
This feature distinguishes learning
automata as a suitable alternative for use
in environments with energy constraints
and bandwidth than the other models.

• Interacting with each other, the learning
automata are able to perfectly model
the distribution of Fog environments
and in addition, simulate the changing
behavioral patterns of the nodes in relation
to each other and with the environment
considering their learning ability and
their adaptability to the environment.

• Interacting with each other, the learning
automata are able to converge to the
global optimal answer only based on the
local decisions when solving optimization
problems. Therefore, learning automata-
based algorithms can be considered as an
appropriate choice for the Fog as they can
resolve the slag resulted from aggregation
or dissemination of information in
centralized algorithms.

• The learning automata complete their
information required for decision-making
in an iterable process and over time, from
the environment in which they are located.
Accordingly, in case of the occurrence of
possible errors, the tolerance of learning
automata-based algorithms will not affect

Alireza Enami. et al./Intelligent Resource Allocation in Fog Computing: A Learning Automata Approach

 J. ADV COMP ENG TECHNOL, 7(1) Winter 2021 21

the algorithm's performance compared to
the other algorithms.

In this paper, a learning automata-based
algorithm is proposed to solve resource allocation
problem in Fog computing (RALA). This method
uses two learning automata: a learning automata
is related to applications (LAAPP) and the other
is related to Fog nodes (LAN). In the proposed
algorithm, an application is selected from the
action set of LAAPP and then a Fog node is
selected from the action set of LAN. If the
following 3 conditions are met, then the resource
will be allocated to the application:

• The selected application has the shortest
deadline.

• The response time of the selected
application is less than its deadline.

• The selected Fog node has the ability
to provide the resources of the selected
application.

Several simulation experiments are conducted
under several Fog configurations to show the
performance of the proposed resource allocation
algorithm. The results of the proposed algorithm
are compared with those of BLA [25], ACO [26],
GABVMP [27], and Random. Simulation results
show that the proposed algorithm outperforms
the other methods in terms of makespan, average
response time, load balancing and throughput.

The rest of the paper is organized as follows.
Literature is reviewed in the section II. In Section
III, the definition of learning automata and
learning automata with variable action set is
described. In Section IV, the resource allocation
algorithm based on learning automata is
proposed. In Section V, the results of the proposed
algorithm are presented, and finally, conclusion is
provided in section VI.

II. RELATED WORKS

As a modern and comprehensive computing
model, Fog computing is expanding due to
computations at the edge level. Resource
allocation is the process of distributing limited
available resources among applications based on
predefined rules. In this section, a set of related
mechanisms and algorithms are introduced.

A method based on the life of bees for the

job scheduling problem in the Fog computing
environment was presented in the paper [25].
The proposed method was based on marriage
(reproduction) and search for a food source.
Two evaluation criteria were considered: the
execution time of the processor and the total
amount of memory required for all jobs accepted
for execution (dedicated memory). The results
of the proposed algorithm had been compared
with genetic algorithm and particle swarm
optimization, and the simulation results showed
an improvement in the proposed algorithm
over other algorithms. Though proving a great
performance in solving such large scale problem,
it did not consider some special characteristics
of Fog computing paradigm, e.g., the tradeoff
problem whether send the tasks to the cloud or
not.

Ghaffari [26] first studied Fog computing
and scheduling, and then proposed an algorithm
based on the ant colony to assign tasks to virtual
machines with minimal time and cost. The
proposed algorithm consists of 3 steps. In the
first stage, input tasks were categorized based on
end time and cost. In the second step, categorized
tasks were prioritized in terms of time and cost.
In the third step, the ant colony algorithm was
implemented to assign tasks to virtual machines.
The proposed algorithm was evaluated in terms
of end time, delay, load balancing and energy. The
ant colony usually takes longer time to search and
not suitable for large-scale problems.

The issue of service quality in cloud/Fog
computing environments had been investigated in
[27] by providing two models. In this regard, first
the issue of assigning tasks to virtual machines
was formulated as a linear programming model,
and the HABBP algorithm was presented for load
balancing policy to assign cloudlets to virtual
machines. Next, the problem of virtual machine
placement was solved using the genetic algorithm
(GABVMP). The simulation results showed, this
algorithm outperforms the Random Placement
and First Fit algorithms in term of the allocation
cost parameter. The genetic algorithm has a slow
convergence rate and it may converges to a local
optima.

Guangshun Li et al. [28] first standardized and
normalized the resource attributes and features.
Next, fuzzy clustering and particle swarm
optimization methods had been combined in

Alireza Enami. et al./Intelligent Resource Allocation in Fog Computing: A Learning Automata Approach

22 J. ADV COMP ENG TECHNOL, 7(1) Winter 2021

their paper to categorize resources to reduce
the resource search scale. Finally, a resource
scheduling algorithm based on fuzzy clustering
was presented. The simulation results showed that
the proposed algorithm had a higher convergence
velocity than the conventional fuzzy algorithm. In
this paper, the proposed algorithm is compared
with the algorithm based on the Grid structure.
Also, user satisfaction is the only parameter
examined in this article.

In the paper [29], a heuristic algorithm for
task scheduling in Fog computing was presented
based on ant colony optimization and particle
swarm optimization. This algorithm solved the
problem of scheduling end devices with limited
computational resources and high energy
consumption, so that it was suitable for real-
time tasks and efficient processing. The proposed
algorithm had been compared with ACO, PSO,
Round Robin algorithms and provided good
results in terms of reliability, energy consumption
and completion time. This algorithm is static and
the load balancing parameter is ignored.

A multi-objective simplified swarm
optimization (MOSSO) method for solving
the scheduling problem in Fog computing was
presented in the paper [30]. MOSSO was a
multi-objective optimization method based on
Simplified Swarm Optimization (SSO). SSO
was a population-based stochastic optimization
method characterized by its simplicity and
efficiency. The objectives of the MOSSO method
were to reduce the processing rate as well as the
cost, which provided better results compared to
the multi-objective particle swarm optimization
(MOPSO) algorithm. In this article, no attention
has been paid to throughput and load balancing.

Huang et al. [31] provided a blockchain-based
model for resource sharing in Fog nodes. The
proposed model actively used the blockchain
reward and penalty mechanism to share resources.
The Fog node behavior in resource sharing and
the degree of completion of the task in resource
sharing were packaged into blocks and stored in
the blockchain system to meet the transparency
feature. In the following, a differentiated game
method had been used to build a resource sharing
model and simulate the optimal resource sharing
strategy. One of the advantages of blockchain
technology in Fog computing architecture is the
creation of an appropriate level of security in an

unsafe environment. The results of this algorithm
have not been compared with other algorithms.

A new model of task scheduling according to
the role of containers was presented in the paper
[32]. This model was proposed to minimize task
completion time and maximize the number
of concurrent tasks for Fog node. The task
execution processing was divided into two sub-
steps: determining the tasks that were accepted
or rejected, and scheduling the tasks accepted in
the cloud or in the Fog. The proposed algorithm
had been compared with FT-FQ, FT-RE, DT-FQ
and DT-RE methods. An important feature of
this algorithm was the reduction of tasks delay.
In general, this algorithm provides a solution for
scheduling workflows, taking into account the
QOS factors requested by the user.

An optimization framework for Fog nodes
(FNs), data service operators (DSOs), and data
service subscribers (DSSs) for IoT Fog computing
was presented in the paper [33]. In this framework,
first, the Stackelberg game had been proposed
to solve the pricing problem of DSOs and FNs,
and then a many-to-many matching taked place
between FNs and DSSs. The simulation results
showed that all FNs, DSOs and DSSs could
operate close to their optimal and the proposed
framework was highly efficient compared to the
FNs-free mode. The results of this algorithm have
not been compared with the exact or heuristic
algorithms.

Josilo and Dan [34] had proposed a theoretical
model for the task allocation problem. In this
paper, Variational Inequality Theory was used to
compute an equilibrium task allocation in static
strategies. Based on this strategy, a decentralized
algorithm had been proposed for allocating the
computational tasks among nearby devices and
the edge cloud. The efficiency of the proposed
algorithm had been compared with an optimal
algorithm that uses global knowledge of system
status. The results showed a good level of efficiency
for the proposed algorithm. In this article, no
attention has been paid to the completion time.

An application scheduling technique based
on virtualization technology to find an effective
and efficient algorithm was presented in the
paper [35]. The algorithm could reduce energy
consumption and the average delay of real-time
applications in Fog computing networks. Four
task scheduling policies had been reviewed in a

Alireza Enami. et al./Intelligent Resource Allocation in Fog Computing: A Learning Automata Approach

 J. ADV COMP ENG TECHNOL, 7(1) Winter 2021 23

Fog node scheduler to examine their effectiveness.
The four algorithms were: First-Come-First-
Service (FCFS), Shortest-Job-First (SJF), Round-
Robin (RR) and Generalized-Priority (GP). The
simulation results showed that the FCFS algorithm
has 11%, 7.78%, 4.4%, and 15.1% improvement in
terms of energy consumption, average task delay,
network usage and execution time, respectively
compared to other algorithms. In this paper,
heuristic algorithms are not examined.

A method for assigning a dynamic resource
(DRAM) was presented in the paper [36]
to load balancing in the Fog environment.
Initially, a system framework for Fog computing
was presented, and the load balancing for
computational nodes was analyzed. Then, the
DRAM method was implemented based on
the allocation of static resource and dynamic
scheduling for Fog services. The DRAM algorithm
had four steps: Step 1: Fog service partition, Step
2: spare space detection for computing nodes,
Step 3: static resource allocation for Fog service
subset and Step 4: load-balance driven global
resource allocation. The simulation results
showed that the proposed algorithm outperforms
other algorithms in terms of average resource
utilization and average load balancing variance.
In this algorithm, the end time of each task is not
considered.

III. LEARNING AUTOMATA THEORY

A learning automaton [37],[38] is an
adaptive decision-making unit that improves
its performance by learning how to choose the
optimal action from a finite set of allowed actions
through repeated interactions with a random
environment. The action is chosen at random
based on a probability distribution kept over the
action set and at each instant the given action is
served as the input to the random environment.
The environment responds the taken action in
turn with a reinforcement signal. The action
probability vector is updated based on the
reinforcement feedback from the environment.
The objective of a learning automaton (LA)
is to find the optimal action from the action
set so that the average penalty received from
the environment is minimized. LA have been
found to be useful in systems where incomplete

information about the environment exists. LA are
also proved to perform well in complex, dynamic
and random environments with a large amount of
uncertainties.

The environment can be described by a triple
E={α,β,c}, where α={α1,α2,…,αr} represents the
finite set of the inputs, β={β1,β2,…,βm} denotes
the set of the values that can be taken by the
reinforcement signal, and c={c1,c2,…,cr} denotes
the set of the penalty probabilities, where the
element ci is associated with the given action
αi. If the penalty probabilities are constant, the
random environment is said to be a stationary
random environment, and if they vary with
time, the environment is called a non-stationary
environment. The environments depending on
the nature of the reinforcement signal β can be
classifiedinto P-model, Q-model and S-model.
The environments in which the reinforcement
signal can only take two binary values 0 and 1 are
referred to as P-model environments. Another
class of the environment allows a finite number
of the values in the interval [0, 1] can be taken by
the reinforcement signal. Such an environment is
referred to as Q-model environment. In S-model
environments, the reinforcement signal lies in the
interval [a,b].

LA can be classified into two main families
[37],[38]: fixed structure learning automata and
variable structure learning automata. Variable
structure learning automata are represented by a
triple <β,α,L>, where β is the set of inputs, α is
the set of actions, and L is learning algorithm. The
learning algorithm is a recurrence relation which
is used to modify the action probability vector.
Let αi(k) ∈ α and p(k) denote the action selected
by learning automaton and the probability
vector defined over the action set at instant k,
respectively. Let a and b denote the reward and
penalty parameters and determine the amount of
increases and decreases of the action probabilities,
respectively. Let r be the number of actions that
can be taken by learning automaton. At each
instant k, the action probability vector p(k) is
updated by the linear learning algorithm given
in Eq. 1, if the selected action αi(k) is rewarded
by the random environment, and it is updated as
given in Eq. 2 if the taken action is penalized.

Alireza Enami. et al./Intelligent Resource Allocation in Fog Computing: A Learning Automata Approach

24 J. ADV COMP ENG TECHNOL, 7(1) Winter 2021

pj(k+1)=pj(k)+a[1-pj(k)];for j=i
pj(k+1)=(1-a)pj(k); otherwise (1)
pj(k+1)=(1-b) p_j (k);for j=i
pj(k+1)=b/(r-1)+(1-b)pj(k); otherwise (2)

If a = b, the recurrence Eq. 1 and Eq. 2 are
called linear reward-penalty (LR-P) algorithm, if
a>>b the given equations are called linear reward-
∈penalty (LR-∈P), and finally if b = 0 they are called
linear reward-Inaction (LR-I). In LR-I, the action
probability vectors remain unchanged when the
taken action is penalized by the environment.

1. Variable Action-Set Learning Automata
A variable action set learning automaton

(VLA) is an automaton in which the number of
actions available at each instant changes with
time. It has been shown in [37] that a learning
automaton with a changing number of actions is
absolutely expedient and also ∈-optimal, when
the reinforcement scheme is LR-I. Such an
automaton has a finite set of n actions,
α={α1,α2,…,αr}. A={A1,A2,…,Am} denotes the set
of action subsets and A(k) ⊆ α is the subset of all
the actions can be chosen by the learning
automaton, at each instant k. The selection of the
particular action subsets is randomly made by an
external agency according to the probability
distribution Ψ(k)={Ψ1(k),Ψ2(k) ,…,Ψm(k)}
defined over the possible subsets of the actions,
where Ψi(k)=prob[A(k)=Ai|Ai ∈ A,i=2n-1]. Let
p���k� =prob[α(k)=αi|A(k),αi∈A(k)] denotes the

probability of choosing action αi, conditionedon
the event that the action subset A(k) has already
been selected and αi∈A(k) too. The scaled
probability p���k� isdefined as

p���k� � p��k�
��k� (3)

where K(k)=∑αi∈A(k)pi(k) is the sum of the
probabilities of the actions in subset A(k), and
pi(k)=prob[α(k)=αi].

The procedure of choosing an action and
updating the action probabilities in a VLA can be
described as follows. Let A(k) be the action subset
selected at instant n. Before choosing an action,
the probabilities of all the actions in the selected

subset are scaled as defined in Eq. 3. The
automaton then randomly selects one of its
possible actions according to the scaled action
probability vector p���k� . Depending on the

response received from the environment, the
learning automaton updates its scaled action
probability vector. Note that the probability of the
available actions is only updated. Finally, the
probability vector of the actions of the chosen
subset is rescaled as
p��� � �� � p���� � ��� ���� , for all αi ∈

A(k). The absolute expediency and ε-optimality
of the method described above have been proved
in [37].

IV. RESOURCE ALLOCATION ALGORITHM

Resource allocation is one of the most
important services of the system, which should
always be available to achieve the goals of Fog
computing. Resource allocation is the process of
distributing limited available resources among
applications based on predefined rules. According
to the reasons of resource allocation complexity,
as well as the characteristics of the heuristic
solutions, we have proposed an algorithm based
on variable action set learning automata to solve
this problem.

1- Problem Formulation
Suppose A={A1,A2,...,Am} is a set of

applications, so that m is the total number of
applications. Each application Ai consists of a
number of independent tasks that can be run

simultaneously: A� � �t��,t��,⋯ ,t���� . Each task

in the application is limited to a deadline; in other

words, D���
� indicates the deadline for the task t1

of the application Ai. Also, each of the tasks tl has
a response time feature:

Alireza Enami. et al./Intelligent Resource Allocation in Fog Computing: A Learning Automata Approach

 J. ADV COMP ENG TECHNOL, 7(1) Winter 2021 25

𝑅𝑅𝑅𝑅���
� � ���������������������������

� ���������������

 (4)

so that RT���
� � D���

� . Each application also

has deadline and response time features that are
defined as follows:

����R���� , RT��� ,⋯ , RT��
��� � RT�� (5)

����D��� , D��� ,⋯ , D��
�� � � D�� (6)

so that RT�� � D�� .
Suppose N={N1,N2,...,Nn} is a set of Fog nodes

and R={R1,R2,...,Rc} is the different types of
resources available to the Fog network. Each of
the Fog nodes has its own resources:
N� � �R��, R��,⋯ , R���� The Eq. 7 determines

how much each application needs from each

resource, so that R���
�� indicates how many task tl

from application Ai needs from resource p.

R���
� � � R���

��

������������

 (7)

In this method, two learning automata
are used to select applications and Fog nodes:
LAAPP={A1,A2,...,Am} with the action set of the
applications so that m is the total number of
applications and LAN={N1,N2,...,Nn} with the
action set of the Fog nodes so that n is the total
number of Fog nodes.

2. The proposed algorithm
The proposed learning automata-based

resource allocation (RALA) uses two learning
automata: a learning automata is related to
applications (LAAPP) and the other is related to
Fog nodes (LAN). The Eq.1 and Eq. 2 are used for
reward and penalty, so that a and b are reward
and penalty coefficients, respectively, and r is also
the number of actions (applications in LAAPP and
Fog nodes in LAN) in these equations.

The proposed algorithm has the following
steps:

Step1: Assigning probability to the LAAPP
action set.

Step2: Selecting an application according to
the LAAPP probability vector.

Step3: Assigning probability to the LAN action
set.

Step4: Selecting a Fog node according to the
LAN probability vector.

Step5: Allocating resources to the application
and running it.

Step6: Releasing the allocated resources.

The pseudo-code of the proposed algorithm is
shown in Fig. 2. In this algorithm, the probability
is firstly assigned to the LAAPP action set which is
a set of applications provided for execution. At
this step, all actions (applications) have an equal
probability. An application is then selected based
on the probability vector of LAAPP. If the selected
application has the shortest deadline among the
action set, then it will be rewarded according
to Eq. 1 and the algorithm will enter the next
step; otherwise, the selected application will be
penalized according to Eq. 2 and the algorithm
will be executed again from the application
selection step.

After selecting the application, the probability
must be assigned to the LAN action set. At this step,
all actions (Fog nodes) have an equal probability.
At this step, a Fog node is selected based on the
LAN probability vector, and the response time of
the application must be set. The response time is
equal to the sum of predicted execution time and
the delay time of the application. If the selected
Fog node can meet the requirements of the
resource and deadline of the selected application,
then it will be rewarded according to Eq. 1 and

Alireza Enami. et al./Intelligent Resource Allocation in Fog Computing: A Learning Automata Approach

26 J. ADV COMP ENG TECHNOL, 7(1) Winter 2021

the algorithm will enter the next step, otherwise
the selected Fog node will be penalized according
to Eq. 2 and the algorithm will run again from the
selection step on Fog node.

Fig.2. The pseudo-code of the proposed algorithm

If all the Fog nodes are penalized at this step,
then the selected application will be transferred
to the cloud, and the implementation of the
algorithm will be executed from the application
selection step. At this step, the resources of
selected Fog node should be allocated to the
selected application. In other words, resources
must be removed from the list of free resources on
Fog node and allocated to the application. After
the execution of the application is completed
by Fog node, then the application resources
will be released and will be added to the list of
free resources of Fog node, and Fog node will
be rewarded according to Eq. 1. The proposed
flowchart algorithm is shown in Fig. 3.

V. RESULTS

In order to evaluate the proposed algorithm,
we simulated a Fog environment that included
3 configurations (small scale, medium scale,
and large scale): A small scale Fog environment
includes 16 Fog nodes, 50 Fog devices, 1000
applications, 128 processors, 32 memories and 32
disks, a medium scale Fog environment including
32 Fog nodes, 100 Fog devices, 2000 applications
, 256 processors, 64 memories and 64 disks, and
finally a large scale Fog environment including
64 Fog nodes, 400 Fog devices, 8000 applications,
1024 processors, 256 memories and 256 disks.

Alireza Enami. et al./Intelligent Resource Allocation in Fog Computing: A Learning Automata Approach

 J. ADV COMP ENG TECHNOL, 7(1) Winter 2021 27

Fig. 3. The flowchart of the proposed algorithm

It is also assumed in all configurations that
the system has one data center. Each application
consists of a number of tasks. Each application
is divided into k tasks so that k is randomly
selected from U[1,2,3,4]. In each Fog device, the
new application generation rate follows a Poisson
distribution with an average rate [5,10,15,20].
Deadline of applications is achieved by a Normal
distribution with an average of 500 and a variance
of 100. Application execution time is obtained
by a Normal distribution with an average of 500
and a variance of 100. Processor computational

capacity is obtained by a Normal distribution
with an average of 1000 and a variance 150. The
memory needed for the application is obtained by
a Normal distribution with an average of 256 and
a variance of 64. The memory storage capacity by
applications is obtained by a Normal distribution
with an average of 2000 and a variance of 100.
Disk requirement of application is obtained by a
Normal distribution with an average of 256 and
a variance of 64. The disk storage capacity by
applications is obtained by a Normal distribution
with an average of 2000 and a variance of 100. The
Nominal bandwidth of the network is 100Mbps.
To improve the accuracy of the report's results,
each test was repeated independently 50 times
and the average results were presented. The
parameters of this simulation are summarized in
Table 1.

We performed all experiments on a desktop
PC with an Intel Pentium Core 2 Duo CPU T6600,
a clock rate of 2.20 GHz, 4BG of memory and
Windows 7 (64-bit).To demonstrate the efficiency
of the proposed algorithm (RALA), the obtained
results were compared with BLA [25], ACO
[26], GABVMP [27] and Random algorithms in
terms of makespan, average response time, load
balancing, and throughput.

The algorithms are simulated on iFogSim [39].
iFogSim simulation toolkit is developed upon the
fundamental framework of CloudSim. CloudSim
is one the wildly adopted simulators to model
cloud computing environments. Extending the
abstraction of basic CloudSim classes, iFogSim
offers scopes to simulate customized Fog
computing environment with large number of Fog
nodes and IoT devices (e.g. sensors, actuators).
However, in iFogSim the classes are annotated in
such a way that users, having no prior knowledge
of CloudSim, can easily define the infrastructure,
service placement and resource allocation
policies for Fog computing. iFogSim applies
Sense-Process-Actuate and distributed dataflow
model while simulating any application scenario
in Fog computing environment.

Alireza Enami. et al./Intelligent Resource Allocation in Fog Computing: A Learning Automata Approach

28 J. ADV COMP ENG TECHNOL, 7(1) Winter 2021

Table 1. Simulation Parameters

Parameter
Config #1

Small
Scale

Config #2
Medium

Scale

Config #3
Large
Scale

Number of Fog nodes 16 32 64
Number of Fog Devices 50 100 400

Total number of applications 1000 2000 8000
Number of processors 128 256 1024
Number of memories 32 64 256

Number of disks 32 64 256
Number of data center 1

Number of tasks per application Uniform distribution [1, 2, 3, 4]
Application generation rate Poisson distribution [5, 10, 15, 20]

Deadline of application Normal distribution (500,100) ms
Execution time of application Normal distribution (500,100) MI

Processor computational
capacity Normal distribution (1000, 150) MIPS

Memory requirement of
application Normal distribution (256,64) MB

Memory storage capacity Normal distribution (2000,100) MB
Disk requirement of application Normal distribution (256,64) GB

Disk storage capacity Normal distribution (2000,100) GB
Nominal bandwidth 100 Mbps

1. Makespan
One of the most important and common

optimization measures is "makespan reduction".
The makespan is a general indicator of efficiency
of the Fog system so that small values of makespan
indicate that the resource allocation is efficiently.
This metric is defined as the maximum execution
time of all submitted applications. In other words,
makespan is the completion time of the latest
application. Here, we measure the makespan in
milliseconds.

The simulation results of the proposed
algorithm (RALA) are presented in Fig. 4 under
different reward/penalty coefficients of 0.005, 0.01
and 0.1 in term of makespan. As can be seen, as
the coefficients increase, the makespan decreases
in small, medium and large configurations.
In small configuration, the makespan for the
coefficients of 0.005, 0.01 and 0.1 is 125, 110 and
98, respectively, and therefore the coefficient of
0.1 has a decrease of 27 units compared to the
coefficient of 0.005. In the medium configuration,
the makespan for the coefficients of 0.005, 0.01
and 0.1 is equal to 415, 380 and 310, respectively,
and therefore the coefficient of 0.1 has a decrease
of 105 units compared to the coefficient of 0.005.
In large configuration, the makespan for the
coefficients of 0.005, 0.01 and 0.1 is 1570, 1310
and 960, respectively, and therefore the coefficient
of 0.1 has a decrease of 610 units compared to the
coefficient of 0.005. Thus, as the configuration size
increases, makespan's rate of decline has increased,
since the algorithm convergence rapidly. It is

contradicts the philosophy of the existence of Fog
despite the reduction in makespan, because most
applications are transferred to the cloud.

0

200

400

600

800

1000

1200

1400

1600

1800

a=
b=

0.
00

5

a=
b=

0.
01

a=
b=

0.
1

a=
b=

0.
00

5

a=
b=

0.
01

a=
b=

0.
1

a=
b=

0.
00

5

a=
b=

0.
01

a=
b=

0.
1

Small Scale Medium Scale Large Scale
M

ak
es

pa
n(

m
s)

Reward/Penalty

Fig. 4. The average makespan for different reward (a)
and penalty (b) parameters in proposed algorithm.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

BL
A

A
CO

G
A

BV
M

P
Ra

nd
om

RA
LA BL

A
A

CO
G

A
BV

M
P

Ra
nd

om
RA

LA BL
A

A
CO

G
A

BV
M

P
Ra

nd
om

RA
LA

Small Scale Medium Scale Large Scale

M
ak

es
pa

n(
m

s)

Configuration

Fig. 5. The average makespan for different algorithms
under different configurations.

Fig.5 shows the simulation results of the
RALA algorithm, with reward and penalty
coefficients of 0.01 with the BLA [25], ACO [26],
GABVMP [27] and Random algorithms in term
of makespan. The RALA algorithm outperforms
other comparable algorithms due to the dynamic

Alireza Enami. et al./Intelligent Resource Allocation in Fog Computing: A Learning Automata Approach

 J. ADV COMP ENG TECHNOL, 7(1) Winter 2021 29

RALA scheduling as well as the use of applications
scheduling technique with a smaller response time
to meet their deadline. In all configurations, the
RALA algorithm differs most from the Random
algorithm because it hasn’t a specific strategy for
assigning applications to Fog nodes so that it is
170, 940, and 2570 in small, medium, and large
scales, respectively and therefore, the largest
difference occurred in a large scale, which is not
unexpected given the size of the configuration.
However, the proposed algorithm in medium
scale has the most improvement (71%) over the
Random algorithm. In all configurations, the
proposed algorithm has the least difference with
the BLA algorithm, and this is due to the use of
CPU and memory parameters in BLA algorithm
to assign applications to Fog nodes. The RALA
algorithm has the lowest improvement in small
scale with a size of 8% and the largest improvement
in large scale with a size of 21% compared to the
BLA algorithm. ACO and GABVMP algorithms
have similar functions due to the use of time
parameter in algorithm decisions. The RALA
algorithm has the lowest improvement compared
to the ACO algorithm in the small scale (27%)
and the highest improvement in the medium scale
(32%). Similarly, the proposed algorithm has the
lowest improvement compared to the GABVMP
algorithm in the large scale (33%) and the highest
improvement in the medium scale (38%).

2. Average Response Time
The response time is the interval between

providing an application and the start of the
response reception. A process mostly begins
to produce an output when the application
processing is continued. Thus, this criterion is
better than turn-around. Here, we measure the
average response time in milliseconds.

The simulation results of the proposed
algorithm (RALA) are presented in Fig. 6 under
different reward / penalty coefficients of 0.005,
0.01 and 0.1 in term of average response time. In
all three small, medium and large configurations,
the average response time at a= b= 0.01 coefficient
is 40, 210 and 920, respectively, which is less than
the other two coefficients, i.e. 0.005 and 0.1. In the
coefficient a=b=0.005 for small, medium and large
configurations is 45, 270 and 1150, respectively.
At the coefficient a=b=0.1, since the system
converges rapidly and also due to the transfer

of more applications to the cloud. Therefore,
receiving the first output from implementation
of the application for Fog devices is delayed, so
the average response time is the highest in all
three configurations in comparison with other
coefficients.

Fig.7 shows the simulation results of the
RALA algorithm, with reward and penalty
coefficients of 0.01 with the BLA [25], ACO
[26], GABVMP [27] and Random algorithms
in term of average response time. The proposed
algorithm outperforms other algorithms in all
3 configurations. As mentioned in the previous
subsection, this good function is due to the use
of dynamic scheduling technique and performing
applications with a smaller response time in
this algorithm. In all configurations, the RALA
algorithm has the least improvement over the
BLA algorithm compared to other algorithms, so
that it is 43%, 38% and 20% in small, medium and
large scales, respectively, and this is due to the
proximity of the two algorithm decision strategy,
because the BLA algorithm also uses CPU and
memory parameters to decisions. The difference
in average response time for RALA and ACO
algorithms is 45, 210 and 650 in small, medium
and large scales, respectively, with the largest
difference occurring in a large scale; however,
the highest improvement in the RALA algorithm
compared to the ACO algorithm occurred in the
small scale (53%) and the lowest improvement
in the large scale (41%). The improvement
percentage of the RALA algorithm compared to
the GABVMP algorithm is 58%, 59% and 44%
in small, medium and large scales, respectively,
so that the lowest improvement in a large scale
and the highest improvement occurred in a
medium scale. However, the biggest difference
in the average response time occurred in large
scale with 730. The RALA algorithm has the most
improvement in all configurations compared to
the Random algorithm, with 75%, 78%, and 57%
in small, medium, and large scales, respectively.

Alireza Enami. et al./Intelligent Resource Allocation in Fog Computing: A Learning Automata Approach

30 J. ADV COMP ENG TECHNOL, 7(1) Winter 2021

0

200

400

600

800

1000

1200

1400

a=
b=

0.
00

5

a=
b=

0.
01

a=
b=

0.
1

a=
b=

0.
00

5

a=
b=

0.
01

a=
b=

0.
1

a=
b=

0.
00

5

a=
b=

0.
01

a=
b=

0.
1

Small Scale Medium Scale Large Scale

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e(

m
s)

Reward/Penalty

Fig. 6. The average response time for different reward
(a) and penalty (b) parameters in proposed algorithm.

0

500

1000

1500

2000

2500

BL
A

A
CO

G
A

BV
M

P
Ra

nd
om

RA
LA BL

A
A

CO
G

A
BV

M
P

Ra
nd

om
RA

LA BL
A

A
CO

G
A

BV
M

P
Ra

nd
om

RA
LA

Small Scale Medium Scale Large Scale

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e(

m
s)

Configuration

Fig. 7. The average response time for different algorithms
under different configurations.

3. Load Balancing
Load balancing represents the distribution

of the workload allocated to the Fog nodes. A
uniform workload distribution shows the load
balancing only when all the Fog nodes have
the same computational capacities. However,
in case of different computational capacities,
the workload submitted to each Fog node must
be proportional to its capacity. In this case, the

standard deviation of the completion time (i.e., the
time at which a Fog node completes the execution
of its last application) of the Fog nodes stands for
the load balancing. Makespan and response time
are minimized, if the workload placed on the Fog
nodes is balanced. Load balancing increases as
the standard deviation of the completion time
decreases. Let T denotes the completion time of
all the Fog nodes. Load balancing is computed as

T� � ��
T� � ���� (8)

Where T� and σT denote the mean and

standard deviation of completion time T,
respectively. Here, we measure the load balancing
in percentage.

The simulation results of the proposed
algorithm (RALA) are presented in Fig. 8 under
different reward / penalty coefficients of 0.005, 0.01
and 0.1 in term of load balancing. As the value of the
coefficients increases, the load balancing in small,
medium, and large configurations decreases, and
this is due to the increased convergence rate of
the algorithm, which prevents the load balancing
from being performed correctly. As can be seen,
with increasing configuration size, the rate of
reduction of load balancing has increased, so that
in small scale, the difference in load balancing for
coefficients of 0.005 and 0.1 is equal to 7 units,
while it is equal to 23 units in large scale. In the
medium configuration, the load balancing for
coefficients of 0.005, 0.01 and 0.1 is equal to 92, 85
and 75, respectively, so that the load balancing for
the coefficient of 0.1 compared to the coefficient
of 0.005 has a decrease of 17 units.

The simulation results of the RALA algorithm,
with reward and penalty coefficients of 0.01 are
presented in Fig. 9 with the BLA[25], ACO [26],
GABVMP [27] and Random algorithms in term
of load balancing. Due to the dynamic scheduling
as well as the use of suitable Fog nodes to meet
the requirements of application resources,
the proposed algorithm outperforms other
algorithms. It is obvious that as the configuration
size increases, the load balancing tends to decrease.
In all configurations, the RALA algorithm has the

Alireza Enami. et al./Intelligent Resource Allocation in Fog Computing: A Learning Automata Approach

 J. ADV COMP ENG TECHNOL, 7(1) Winter 2021 31

most differences with the Random algorithm, so
that it is 36, 43 and 44 in small, medium and large
scales, respectively, and the largest improvement
is in large scale. In all configurations, the proposed
algorithm has the least difference with the BLA
algorithm. As mentioned earlier, this is due to the
proximity of the two algorithm decision strategy.
In small, medium and large configurations, the
difference between RALA and BLA algorithms
is 4, 10 and 16, respectively. The percentage
improvement of the RALA algorithm compared
to the BLA algorithm is 5%, 13% and 26% in
small, medium and large scales, respectively. As
it turns out, the biggest difference and the highest
percentage of improvement has occurred in large
scale. The improvement percentage of the RALA
algorithm compared to the GABVMP algorithm
is 21%, 63% and 63% in small, medium and large
scales, respectively. The biggest difference in
load balancing between RALA and GABVMO
algorithms has occurred in medium scale of
33. The difference between RALA and ACO
algorithms is 11, 21 and 27 in small, medium
and large scales, respectively, but the highest
improvement in the RALA algorithm compared
to the ACO algorithm occurred in the large scale
(53%) and the lowest improvement in the small
scale (14%).

0

20

40

60

80

100

120

a=
b=

0.
00

5

a=
b=

0.
01

a=
b=

0.
1

a=
b=

0.
00

5

a=
b=

0.
01

a=
b=

0.
1

a=
b=

0.
00

5

a=
b=

0.
01

a=
b=

0.
1

Small Scale Medium Scale Large Scale

Lo
ad

 B
al

an
ci

ng
(p

er
ce

nt
)

Reward/Penalty

Fig.8. The load balancing for different reward (a) and
penalty (b) parameters in proposed algorithm.

0

10

20

30

40

50

60

70

80

90

100

BL
A

A
CO

G
A

BV
M

P
Ra

nd
om

RA
LA BL

A
A

CO
G

A
BV

M
P

Ra
nd

om
RA

LA BL
A

A
CO

G
A

BV
M

P
Ra

nd
om

RA
LA

Small Scale Medium Scale Large Scale

Lo
ad

 B
al

an
ci

ng
(p

er
ce

nt
)

Configuration

Fig9. The load balancing for different algorithms under
different configurations.

4. Throughput
Throughput is another important criterion

that indicates the number of applications that are
processed per unit time. The simulation results of
the proposed algorithm (RALA) are presented in
Fig. 10 under different reward/penalty coefficients
of 0.005, 0.01 and 0.1, respectively.

As the coefficients increase, the throughput
in small, medium, and large configurations
decreases, since the algorithm convergence
rapidly, but it is not appropriate because it
contradicts the existential philosophy of Fog,
because most applications are transferred to the
cloud. In small configuration, the throughout for
the coefficients of 0.005, 0.01 and 0.1 are 850, 910
and 950, respectively. In medium configuration,
the throughout for the coefficients of 0.005, 0.01
and 0.1 are 1250, 1810 and 1915, respectively.
In the large configuration, the throughout for
the coefficients of 0.005, 0.01 and 0.1 are 6230,
7450 and 7820, respectively. The difference in
throughout for the coefficients of 0.005 and 0.1
in small, medium and large scales is 100, 665
and 1590, respectively, and therefore it can be
concluded that in large scale, most applications
transformed to the cloud.

The simulation results of the RALA algorithm
are presented In Fig. 11 with reward and penalty
coefficients of 0.01, with the BLA [25], ACO [26],
GABVMP [27] and Random algorithms in term
of throughput. In all configurations, the RALA

Alireza Enami. et al./Intelligent Resource Allocation in Fog Computing: A Learning Automata Approach

32 J. ADV COMP ENG TECHNOL, 7(1) Winter 2021

algorithm has the least improvement over the BLA
algorithm compared to other algorithms, so that it
is 5%, 19%, and 14% in small, medium, and large
scales, respectively, and the largest improvement
occurred in medium scale. In all configurations,
the RALA algorithm has the most differences
with the Random algorithm, so that it is 250,
890 and 3130 in small, medium and large scales,
respectively, and the largest difference occurred
in large scale that has not been unexpected
due to the configuration size. The difference in
throughput for RALA and ACO algorithms is 100,
600, and 940 in small, medium, and large scales,
respectively, with the largest difference occurring
in large scale, but the highest improvement in
the RALA algorithm compared to the ACO
algorithm occurred in medium scale (53%) and
the lowest improvement in small scale (12%).
The percentage improvement of RALA algorithm
over GABVMP algorithm is 15%, 56% and 19%
in small, medium and large scales, respectively,
so that the lowest improvement occurred in small
scale and the highest improvement occurred in
medium scale. However, the biggest difference in
the throughput occurred in large scale with a size
of 1240.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

a=
b=

0.
00

5

a=
b=

0.
01

a=
b=

0.
1

a=
b=

0.
00

5

a=
b=

0.
01

a=
b=

0.
1

a=
b=

0.
00

5

a=
b=

0.
01

a=
b=

0.
1

Small Scale Medium Scale Large Scale

Th
ro

ug
hp

ut

Reward/Penalty

Fig.10. The throughput for different reward (a) and
penalty (b) parameters in proposed algorithm.

0

1000

2000

3000

4000

5000

6000

7000

8000

BL
A

A
CO

G
A

BV
M

P
Ra

nd
om

RA
LA BL

A
A

CO
G

A
BV

M
P

Ra
nd

om
RA

LA BL
A

A
CO

G
A

BV
M

P
Ra

nd
om

RA
LA

Small Scale Medium Scale Large Scale

Th
ro

ug
hp

ut

Configuration

Fig.11. The throughput for different algorithms under
different configurations.

VI. CONCLUSION

The present study proposed a learning
automata-based algorithm to solve the resource
allocation problem in Fog computing. In this
method, two learning automata are used to
select applications (LAAPP) and Fog nodes (LAN).
Initially, the probability values are assigned to
the action set of LAAPP. Then an application is
then selected based on the LAAPP probability
vector. If the selected application has the shortest
deadline among the action set, then the algorithm
enters the next step, otherwise the selection
of the application takes place again. Next, the
probability values are assigned to the action set
of LAN. At this step, a Fog node is selected based
on the LAN probability vector, and the response
time of the application must be set. If the selected
Fog node is able to meet the requirements of the
resource and deadline of the selected application,
then the algorithm enters the next step; otherwise
the selection of the Fog node takes place again.
If all the conditions are met, then the selected
Fog node resources should be allocated to the
selected application. After the execution of the
application is completed by Fog node, then the
application resources will be released and will be
added to the list of free resources of Fog node.

Alireza Enami. et al./Intelligent Resource Allocation in Fog Computing: A Learning Automata Approach

 J. ADV COMP ENG TECHNOL, 7(1) Winter 2021 33

For the purpose of demonstrate the efficiency of
the proposed algorithm, several simulations have
been performed on three configurations: small,
medium and large scales. Finally, the results of
the proposed algorithm were compared with the
results of BLA, ACO, GABVMP and Random
algorithms. According to the obtained results,
the proposed algorithm outperforms the other
mentioned algorithms in terms of makespan,
average response time, load balancing and
throughput.

REFERENCES

1. R. Huang, Y. Sun, C. Huang, G. Zhao, Y. Ma. A survey
on fog computing. International Conference on Security,
Privacy and Anonymity in Computation, Communication
and Storage. Springer, 2019. p. 160-9.

2. R. Mahmud, R. Kotagiri, R. Buyya. Fog computing:
A taxonomy, survey and future directions. Internet of
everything. Springer, 2018. p. 103-30.

3. M. Ghobaei-Arani, A. Souri, A.A. Rahmanian.
Resource management approaches in fog computing: a
comprehensive review. Journal of Grid Computing. (2019)
1-42.

4. F. Bonomi, R. Milito, J. Zhu, S. Addepalli. Fog
computing and its role in the internet of things. Proceedings
of the first edition of the MCC workshop on Mobile cloud
computing, 2012. p. 13-6.

5. M. Mukherjee, L. Shu, D. Wang. Survey of fog
computing: Fundamental, network applications, and
research challenges. IEEE Communications Surveys &
Tutorials. 20 (2018) 1826-57.

6. H. Ghorashi, and M. Mirabi, An Effective Task
Scheduling Framework for Cloud Computing using NSGA-
II. Journal of Advances in Computer Engineering and
Technology, 2020. 6(3): p. 151-160.

7. M. Bozorgi Elize, and A. KhademZadeh, A Genetic
Based Resource Management Algorithm Considering
Energy Efficiency in Cloud Computing Systems. Journal of
Advances in Computer Engineering and Technology, 2017.
3(4): p. 203-212.

8. M. Davarpanah, , A review of methods for resource
allocation and operational framework in cloud computing.
Journal of Advances in Computer Engineering and
Technology, 2017. 3: p. 51-60.

9. C.-H. Hong, B. Varghese. Resource management
in fog/edge computing: a survey on architectures,
infrastructure, and algorithms. ACM Computing Surveys
(CSUR). 52 (2019) 1-37.

10. F. Xhafa, A. Abraham. Computational models and
heuristic methods for Grid scheduling problems. Future
generation computer systems. 26 (2010) 608-21.

11. K. Singh, A. Chhabra, A. GNDU. A Survey of
Evolutionary Heuristic Algorithm for Job Scheduling in
Grid Computing. International Journal of Computer Science
and Mobile Computing. 4 (2015) 611-6.

12. T. Remani, E. Jasmin, T.I. Ahamed. Residential load
scheduling with renewable generation in the smart grid: A
reinforcement learning approach. IEEE Systems Journal.
(2018).

13. M. Rezapoor Mirsaleh, M.R. Meybodi. Balancing
exploration and exploitation in memetic algorithms: a
learning automata approach. Computational Intelligence. 34
(2018) 282-309.

14. A. Rezvanian, A.M. Saghiri, S.M. Vahidipour, M.
Esnaashari, M.R. Meybodi. Recent advances in learning

Alireza Enami. et al./Intelligent Resource Allocation in Fog Computing: A Learning Automata Approach

34 J. ADV COMP ENG TECHNOL, 7(1) Winter 2021

automata. Springer, 2018.
15. M.M.D. Khomami, A. Rezvanian, M.R. Meybodi.

A new cellular learning automata-based algorithm for
community detection in complex social networks. Journal of
computational science. 24 (2018) 413-26.

16. H. Morshedlou, M.R. Meybodi. A new learning
automata based approach for increasing utility of service
providers. International Journal of Communication Systems.
31 (2018) e3459.

17. M. Hasanzadeh-Mofrad, A. Rezvanian. Learning
automata clustering. Journal of computational science. 24
(2018) 379-88.

18. M. Ranjbari, J.A. Torkestani. A learning automata-
based algorithm for energy and SLA efficient consolidation
of virtual machines in cloud data centers. Journal of Parallel
and Distributed Computing. 113 (2018) 55-62.

19. S.M. Vahidipour, M. Esnaashari, A. Rezvanian,
M.R. Meybodi. GAPN-LA: A framework for solving
graph problems using Petri nets and learning automata.
Engineering Applications of Artificial Intelligence. 77 (2019)
255-67.

20. E. Susmitha, B.R. Devi. Pipelined Learning
Automation for Energy Distribution in Smart
Grid. International Conference on E-Business and
Telecommunications. Springer, 2019. p. 732-42.

21. A. Yazidi, X. Zhang, L. Jiao, B.J. Oommen. The
hierarchical continuous pursuit learning automation: a novel
scheme for environments with large numbers of actions.
IEEE transactions on neural networks and learning systems.
(2019).

22. M. Jamshidi, M. Esnaashari, A.M. Darwesh, M.R.
Meybodi. Detecting Sybil nodes in stationary wireless sensor
networks using learning automaton and client puzzles. IET
Communications. 13 (2019) 1988-97.

23. A.M. Saghiri, M.D. Khomami, M.R. Meybodi.
Random Walk Algorithms: Definitions, Weaknesses, and
Learning Automata-Based Approach. Intelligent Random
Walk: An Approach Based on Learning Automata. Springer,
2019. p. 1-7.

24. A. Enami, J.A. Torkestani, A. Karimi. Resource
selection in computational grids based on learning automata.
Expert Systems with Applications. 125 (2019) 369-77.

25. S. Bitam, S. Zeadally, A. Mellouk. Fog computing job
scheduling optimization based on bees swarm. Enterprise
Information Systems. 12 (2018) 373-97.

26. E. Ghaffari. Providing a new scheduling method in
fog network using the ant colony algorithm. Collection of
Articles on Computer Science. (2019).

27. S.B. Akintoye, A. Bagula. Improving quality-of-
service in cloud/fog computing through efficient resource
allocation. Sensors. 19 (2019) 1267.

28. G. Li, Y. Liu, J. Wu, D. Lin, S. Zhao. Methods of
resource scheduling based on optimized fuzzy clustering in
fog computing. Sensors. 19 (2019) 2122.

29. J. Wang, D. Li. Task scheduling based on a hybrid
heuristic algorithm for smart production line with fog

computing. Sensors. 19 (2019) 1023.
30. W.-C. Yeh, C.-M. Lai, K.-C. Tseng. Fog computing

task scheduling optimization based on multi-objective
simplified swarm optimization. Journal of Physics:
Conference Series. IOP Publishing, 2019. p. 012007.

31. H. Wang, L. Wang, Z. Zhou, X. Tao, G. Pau, F.
Arena. Blockchain-Based Resource Allocation Model in Fog
Computing. Applied Sciences. 9 (2019) 5538.

32. L. Yin, J. Luo, H. Luo. Tasks scheduling and resource
allocation in fog computing based on containers for smart
manufacturing. IEEE Transactions on Industrial Informatics.
14 (2018) 4712-21.

33. H. Zhang, Y. Xiao, S. Bu, D. Niyato, F.R. Yu, Z.
Han. Computing resource allocation in three-tier IoT
fog networks: A joint optimization approach combining
Stackelberg game and matching. IEEE Internet of Things
Journal. 4 (2017) 1204-15.

34. S. Jošilo, G. Dán. Decentralized algorithm for
randomized task allocation in fog computing systems. IEEE/
ACM Transactions on Networking. 27 (2018) 85-97.

35. M. Mtshali, H. Kobo, S. Dlamini, M. Adigun,
P. Mudali. Multi-Objective Optimization Approach for
Task Scheduling in Fog Computing. 2019 International
Conference on Advances in Big Data, Computing and Data
Communication Systems (icABCD). IEEE, 2019. p. 1-6.

36. X. Xu, S. Fu, Q. Cai, W. Tian, W. Liu, W. Dou,
et al. Dynamic resource allocation for load balancing in
fog environment. Wireless Communications and Mobile
Computing. 2018 (2018).

37. M. Thathachar, B.R. Harita. Learning automata with
changing number of actions. IEEE Transactions on Systems,
Man, and Cybernetics. 17 (1987) 1095-100.

38. M. Thathachar, K. Narendra. Learning Automata: an
Introduction, 1989.

39. H. Gupta, A. Vahid Dastjerdi, S.K. Ghosh, R. Buyya.
iFogSim: A toolkit for modeling and simulation of resource
management techniques in the Internet of Things, Edge
and Fog computing environments. Software: Practice and
Experience. 47 (2017) 1275-96.

	Intelligent Resource Allocation in Fog Computing: A Learning Automata Approach
	Abstract
	I. INTRODUCTION
	II. RELATED WORKS
	III. LEARNING AUTOMATA THEORY
	IV. RESOURCE ALLOCATION ALGORITHM
	V. RESULTS
	1. Makespan
	2. Average Response Time
	3. Load Balancing
	4. Throughput

	VI. CONCLUSION
	REFERENCES

