
 J. ADV COMP ENG TECHNOL, 5(4) Autumn 2019

 This work is licensed under the Creative Commons Attribution 4.0 International Licence.

To view a copy o this licence, visit https://creativecommons.org/licenses/by/4.0/

A Version Numbering Scheme for Informational
Objects Used in VM Live Migration

Majid Tajamolian1, Mohammad Ghasemzadeh2

1- Computer Engineering Department, Yazd university, Yazd, Iran.
2- Computer Engineering Department, Yazd university, Yazd, Iran.(m.ghasemzadeh@yazd.ac.ir)

Received (2019-02-22) Accepted (2019-08-08)

Abstract: Various numbering schemes are used to track different versions and revisions of
files, software packages, and documents. One major challenge in this regard is the lack of an all-
purpose, adaptive, comprehensive and efficient standard. To resolve the challenge, this article
presents Quadruple Adaptive Version Numbering Scheme. In the proposed scheme, the version
identifier consists of four integers. These four numbers from Left to Right are called: "Release
Sequence Number", "Generation Number", "Features List Number", and "Corrections List Number"
respectively. In the article, special values are given for the quadruple numbers and their meanings
are described. QAVNS is an "Adaptive" scheme; this means that it has the capability to track the
different versions and revisions of files, software packages, project output documents, design
documents, rules, manuals, style sheets, drawings, graphics, administrative and legal documents,
and the other types of "Informational Objects" in different environments, without alterations in its
structure. The proposed scheme has the capability to monitor changes in the types of informational
objects, such as virtual machine memory, in the live migration process. The experimental and
analytical results indicate the desirability and effectiveness of the proposed scheme in satisfying
the desired expectations. The proposed scheme can become a common standard and successfully
applied in all academic, engineering, administrative, legislative, legal, manufacturing, industrial,
operational, software development, documentary and other environments. The standardization of
this scheme and its widespread usage can be a great help in improving everyone's understanding
of the numbering of versions & revisions.

Keywords: Quadruple Adaptive Version Numbering Scheme, Informational Object, Virtual
Machine Memory, Virtual Machines Live Migration.

I. INTRODUCTION

Cloud computing is one of the important
aspects of information technology in

recent years. Moei Emamqeysi et al. in their
article [1] quote from Chen et al. paper [2]:
"Cloud Computing from the perspective
of the National Institute of Standards and
Technology is a model which by using its users
will be able to receive configurable shared

resources such as networks, provider, storage,
application and services when they apply.
These sources with minimal management
effort or without any need for interaction with
a service provider, promptly can be prepared
and released".

To achieve "minimal management effort"
(as quoted above), cloud computing uses
various techniques such as Virtual Machines
Live Migration. In this field, there are many
approaches in selecting an appropriate Physical

How to cite this article:
Majid Tajamolian, Mohammad Ghasemzadeh. A Version Numbering Scheme for Informational Objects Used in VM Live
Migration. J. ADV COMP ENG TECHNOL, 5(4) Autumn 2019 : 245-254

https://creativecommons.org/licenses/by/4.0/

Majid Tajamolian et al. /A Version Numbering Scheme for Informational Objects Used in VM Live Migration.

246 J. ADV COMP ENG TECHNOL, 5(4) Autumn 2019

Machine (PM) as a destination for a migrating
VM. The PM ranking parameters include:
Performance efficiency, Communication cost
between VMs, Power consumption, Workload,
Temperature efficiency and Availability [3].
Datacenter operators heavily rely on live-
migration to perform maintenance operations
over production infrastructures [4].

One of the important issues in virtual
machines live migration is how to monitor
the changes of virtual machine memory in the
migration process and decide on how to migrate
based on it. In this regard, it is useful to have a
scheme that can efficiently display and track
virtual machine memory changes as the versions
of an informational object.

In the world of information technology,
different numbering schemes are used to track the
various versions of editions, software packages,
and documents. The structure of many of these
designs depends on the taste of the relevant project
managers. Due to the lack of standardization of
numbering schemes, there are many ambiguities
in the minds of individuals (especially audiences
outside of the projects). Also, the concepts found
in many of these schemes are only suitable
for a particular type of project output and are
inappropriate for other types. Also, because of
this lack of standardization, the definition of
precise and measurable criteria based on the
values that are available in the current versioning
schemes identifiers is not possible. This leads to
difficulty & imprecision of automation of some
of the manual procedures such as "the decision
making on how VM live migration should occur"
(i.e. the authors' research interest).

In this article, a new numbering scheme is
presented, which, along with the strengths of the
existing schemes, also covers their weaknesses
and is also adaptive (multipurpose applicable).
The scheme can be effectively used in the field of
our active research which is "Virtual Machines
Live Migration". Of course, the application of
numbering schemes in the field of virtual machines
and cloud computing is not unprecedented [5].

The following is an outline of this article: In
the section 2, a variety of existing schemes for
the version numbering are introduced. In the
section 3, the structure and operation of the
proposed scheme in details are presented. In the
section 4, the results of the implementation of the

proposed scheme in two real work environments
are reported and evaluated. At the end (section
5), conclusions and suggestions are presented.

II. AVAILABLE SCHEMES

Currently, many different version numbering
schemes are being used by software & other
digital content developers & vendors. They can
be divided into four broad categories:

1. Schemes with the order-based numeric
identifiers
2. Schemes with the identifiers based on the
publication date
3. Schemes with the alpha-numeric code
identifiers
4. Other miscellaneous schemes

1. Schemes with the order-based numeric
identifiers

These schemes are the most common type
in the software industry. In these schemes,
each version number is based on one or more
numerical levels that increase in order. In most
cases, going from left to the right, the value of
the digits is reduced as what occurs in a regular
decimal number. Of course, definitely there are
not just two decimal places in such schemes, but
there may be several levels, and also the separator
instead of the dot is one of the other characters
such as dash (-). If the changes are large in relation
to the previous version, the leftmost digits are
changed; if the changes are moderate, the middle
digits, if the changes are low, then the next digits,
and if too small, the rightmost digits will change.
The amount of change in the digits depends on
the publisher's opinion, and it is not certain that
it is only one unit. For example, when version
5.5 of the Internet Explorer 5.0 was released, it
suggests that the changes in the previous version
were relatively high. Another point to be taken
into account in these schemes is that the levels are
not necessarily single digit. For example, in the
Drupal project, we have the version number 7.61
[6].

Another approach in this category is to use
two major and minor sequential numbers, along
with an alpha-numeric string such as a, b , and rc
(Release Candidate) for the type of publication.
A "software release sequence" that uses this

Majid Tajamolian et al. /A Version Numbering Scheme for Informational Objects Used in VM Live Migration.

 J. ADV COMP ENG TECHNOL, 5(4) Autumn 2019 247

approach can be displayed as below:

0.7 → 0.8 → 0.9 → 1.0a1 → 1.0b1 → 1.0b2 → 1.0rc1 → 1.0

Figure 1: A Software Release Sequence that uses
AlphaNumeric approach

Other approaches like the following are also
included in this category (the items in [] means
they are optional):

major.minor[.build[.revision]]
major.minor[.maintenance[.build]]

Many open source projects use such schemes
[7]. In these schemes, like all of the above, the
definition of what change is "major" or "minor"
exactly depends on the publisher's opinion. What
defines "build" and that the difference between a
"revision" and a "minor change" again depends on
the publisher's perception. Therefore, the problem
of lack of a standard understanding between the
publisher and the audience is evident in these
schemes.

The latest effort in this category was presented
by Mr. Preston Werner, which is known as
"Semantic Versioning". His scheme is based on
a three-part structure, in the form of "version.
revision.change", or as is described in version
2.0.0 of his scheme, in the form of "major.minor.
patch" [8]. Though his scheme has solved many
problems with the other order-based schemes,
his proposed scheme still suffers from weaknesses
that in the followings we mention some of them:

• There is no description of the scheme's
application in non-software production
environments.

• It's not clear distinctly that in what
situations "minor" and "patch" fields will
be changed.

• Failure to distinguish between situations
in which a publication has both of minor
and patch changes simultaneously, and
in the event that only minor changes
occurred.

• Lacking the ability to inform audiences
enough about the maturity level of the
software package

• Unable to perform "Lexicographical
Ordering" on the name of the objects
containing their version ID. Note that

in many operating environments, the
Lexicographical Ordering is necessary for
objects and their respective files [9].

• Raemaekers et al. report that the current
mechanisms in Semantic Versioning for
signaling interface instability are not used
properly [10].

The "semantic versioning" scheme seems to be
just suitable for use in the production of software
that has the "Application Programming Interface"
(API) and has defined it accurately. Of course, it
should be noted that the mentioned scheme in
relation to "Dependency Management" and the
prevention of falling into the trap of "Dependency
Hell" has a positive impact on software projects,
which is why, despite the little time it has been
presented, much attention has been paid to it by
the activists in this field.

2. Schemes with IDs based on release date
In these schemes, the identifiers are related

to the release date. For example, the famous
WINE software project used the combination of
year, month, and day (like Wine 20040505) as a
version identifier [11]. The popular distribution
of GNU/Linux operating system, Ubuntu, also
uses the similar version ID scheme. For example,
Ubuntu 18.04 has been released in April 2018
[12]. Another example is the Street Fighter EX
computer game, which at the start shows its
version identifier as a date plus a geolocation code
(such as ASIA 961219).

Most of the time when using the date in the
version identifier, the scheme follows the ISO 8601
standard [13], [14]. Table 1 shows the months of
year and their ordinal values as mentioned in the
ISO 8601 standard:

Table 1: Calendar months & their ordinal values

 As part 2.3 of Annex B of the standard says,
date and time of day should follow formatting like

Majid Tajamolian et al. /A Version Numbering Scheme for Informational Objects Used in VM Live Migration.

248 J. ADV COMP ENG TECHNOL, 5(4) Autumn 2019

Table 2:
Table 2: Date and time of day format

Of course, in most of the versioning schemes

based on date and time, the "Basic format" is used
instead of the "Extended format".

Tables below comprise some other samples as
mentioned in part 1.3 of Annex B of the standard:

Table 3: Combinations of calendar date and local time

Table 4: Combinations of ordinal date and UTC of day

Table 5: Combinations of week date and local time

3. Alphanumeric-based identifiers
In this set of schemes, alphanumeric codes

are used to create the version identifier. For
example, a number of well-known Microsoft
company products, titled MS-Windows XP,
MS-Windows Me, MS-Windows Vista, and the
Flash MX product of Macromedia Company, are
mentioned.

Another example of this bunch of schemes can
be found in the popular distribution of the GNU/
Linux operating system called Debian. Although
this distribution uses major & minor sequence
numbers for its stable versions, but along with
them, it uses code names that are inspired by the
characters of "Toy Story" animation. For example,
at the time of composing this article, the last
stable version of the Debian distribution is 9.5

which also known as Stretch. The testing versions
of this distribution have identifiers based on the
date of issue, and its unstable version is always
called Sid (the so-called evil son of the neighbor
in the aforementioned animation) [15].

In most of these schemes, a specific and
uniform rule is not used and the promotional and
commercial aspects of the product are overcome
by scientific, uniform and standard logic.

4. Other misc. schemes
Of course, we also encounter with unusual

and miscellaneous schemes that mostly imply
some fantasy aspects. For example, the famous
TeX word processor uses a unique method.
After publishing version 3 of the software that it
has been achieved largely maturity and stability,
subsequent updates are displayed by adding a
digit to the end of the previous version number
with the aim of asymptotic approach to the value
of Pi number (Π). In fact, the actual version
number of the TeX software is the same as the
number of digits of its version identifier! At the
time of writing this article, the version number of
the software is 3.14159265.

Similarly, the version number of Metafont
interpreter software, which like TeX is published
by Professor Donald Knuth, is asymptotically
approaching to the number e. Currently the
version number for this software is 2.7182818.

Obviously, such schemes, in spite of their
sense of attractiveness and originality, are mostly
fancy, and do not make the audience aware of the
type and extent of changes in each version relative
to the previous version.

III. THE PROPOSED SCHEME

In order to overcome the problems described
in the previous section, we propose a quadruple
scheme for the numbering of the version
identifiers that is adaptable (multi-purpose
usable). "Adaptability" means that the scheme
has the capability to track the various versions
and revisions of files, software packages, project
output documentation, designs, rules, manuals,
style sheets, drawings, graphics, administrative
and legal documents, and the other similar things
in different environments, without changing
its structure. So from now on, in this article, in
order to emphasize the multipurpose usability,

Majid Tajamolian et al. /A Version Numbering Scheme for Informational Objects Used in VM Live Migration.

 J. ADV COMP ENG TECHNOL, 5(4) Autumn 2019 249

we will use the word "object" for all of the above.
We call our proposed scheme "QAVNS", which is
an acronym and stands for "Quadruple Adaptive
Version Numbering Scheme".

In our proposed scheme, QAVNS, numbering
is performed using four integer fields separated
by the "." (Dot character), and are named from
the left to the right "Release Sequence Number"
(RSN field), "Generation Number" (G field),
"Features List" (FF field) and "Corrections List"
(CCC field), respectively.

Production of an object begins with the
assignment of 0.0.0.0 as version ID to it. The zero
number at the position of the Release Sequence
Number indicates that this is the first creation
of the object. The zero number in the position
of Generation Number indicates that the object
is still in its early stages and does not have the
ability to be presented (even as experimental).
The zero number in the position of the Features
List field indicates that the object doesn't contain
the minimum (even incomplete) content or
functionality that is noticeable. The zero number
at the position of the Corrections List indicates
that no corrections have performed on the
current version of the object. By adding content
or features to it (without making corrections),
subsequent versions are 1.0.1.0, 2.0.2.0, 3.0.3.0,
4.0.4.0 and likewise. None of the above quadrants
are required to be single-digits; for example, after
version 15.0.9.0, we can reach 16.0.10.0.

Changes in each version to the previous
versions are referred to as the "Directed Delta" or,
in short, the "Delta". It means "a series of basic
change operations that if applied on one of the
versions, the next one is obtained". Another kind
of delta called "Symmetric Delta" is also defined
[16], which is not our objective here.

How the degree and type of changes made
to successive informational objects are detected,
and what sorting is done upon them, depends to a
great extent on the area of the informational object
usage. As an example, Bauml and his colleagues
have proposed a solution for automatic detection
and determination of version of software
components that are developed according to the
OSGi standard [17]. Of course, in this article, we
do not enter this category because of the general
and adaptive approach we have, and instead
provide general criteria for determining the
extent and type of changes made to information

objects and their impact on the object's version
identifier.

If none of the changes made to the object
are in the form of adding and/or modifying the
functionality or contents, but all are corrections
and fixings, instead of the number of the Features
List, only the number of Corrections List will be
bumped. For example, if after version 11.0.7.0 a
number of changes are made to just correct and
fix the object, the new version would be 12.0.7.1
and not 12.0.8.0 (which indicates the change only
in features and content). Similarly, if all changes
in the subsequent version are correction and
fixing, the Corrections List will be bumped again
and the next version will be 13.0.7.2.

If the changes made to the object related to the
previous version are a combination of "adding
and/or modifying the functionality or content"
and "correction and fixing", then the Features List
is bumped and the Corrections List is rolled to
"one". So for such a case in the above example,
we will have version 28.0.8.1 after the 27.0.7.15.
Note that in the above example, if the new
version changes related to the previous version
is restricted to the addition and/or modification
of the functionality or content of the object and
there is no change as the correction and fixing,
then after version 27.0.7.15 we will go to version
28.0.8.0; i.e. the Features List number will be
bumped and the Corrections List number will be
rolled to zero. By following this rule, it's easy to
see if the new version of the object contains what
kind of changes related to the previous version,
by comparing the new version with the previous.

• If only the corrections list number is
increased, it means that the new version of
the object has only a few corrections and
amendments to the previous version.

• If the features list number is increased
and the corrections list number is reset to
zero, it means that the new version of the
object compared to the previous version
only contains a number of changes of
the form of adding and/or modifying the
functionality or content.

• If the features list number is increased
and the corrections list number is reset
to one, it means that the new version of
the object, compared to the previous
version, contains a number of alterations
of the form of adding and/or changing the

Majid Tajamolian et al. /A Version Numbering Scheme for Informational Objects Used in VM Live Migration.

250 J. ADV COMP ENG TECHNOL, 5(4) Autumn 2019

functionality or content, as well as some
corrections and amendments.

Generation number change from zero to one
occurs when the first presentable generation
is available. What is meant by "presentable"
depends on organizational definitions. Then, if
the changes made to the object are substantial and
fundamental, it will lead to subsequent changes
to the Generation number. For example, from
version number 235.1.14.772 it goes to 236.2.0.0
version ID. It is important to note that if the
Generation number increases, the Features List
number and the Corrections List number must
be rolled to the zero.

Unlike some commercial schemes introduced
in the second section of the article, in our proposed
scheme, the amount of changes made to an object
does not affect the pace of changing the four fields
of version ID. Therefore, whatsoever the number
of corrected bugs between two successive versions
is high, the Corrections List number will increase
by only one unit. Correspondingly, whatsoever
the number of capabilities/contents added or
changed between two successive versions is high,
the Features List number only increases by one
unit. Also, whatsoever fundamental changes
are made between two sequential versions of an
object is high, the Generation number increases
by only one unit. We believe that the expression
of the amount of changes by the pace of changing
numbers is not an appropriate and exact idea.
Instead, providing "Change Log" reports along
with any version of an object can clearly tell
audiences how much change is made to the
previous version.

The change in the "Release Sequence Number"
is simply a unit increment in each version. This
number is in fact a sequential serial number, the
existence of which at the beginning of the version
identifier will have the following benefits:

• Specifies the number of submitted
versions of the object since its inception.

• Combined with the second field
(Generation number), it can indicates
the maturity of the object's content. For
example, compare an object with the
9.5.0.3 version ID with another object
with the 417.5.0.3 version ID. Although
both are from the fifth generation and have
the same "Features List" and "Corrections
List" fields, the comparison of the first

field of the two objects shows that the
second object is much more mature.

• When updating, the "Release Sequence
Number" field tells the user how many
releases exist between what he has and
what he wants to update. For example,
update from version 9.5.0.3 to 34.5.1.1,
which represents 25 intervals between
existing version and update version.

• If some of the points are observed, this
field can also play a facilitating role for
"lexicographical ordering".

So briefly, if we want to put the structure of
a version identifier as a model in the QAVNS
scheme, it's like the followings:

e0RSN.G.FF.CCC
There are three sets of changes upon

informational objects:

1. Correction and fixing errors of informational
object (we named them as set ε)
2. Adding and/or modifying the functionality
or content of informational object (we named
them as set λ)
3. Substantial and fundamental changes on
informational object (we named them as set
Ω)

Suppose Δi as the set of changes that are made
on version i of an informational object. Then we
have:

Δ� � �𝛿𝛿�| 𝛿𝛿� ∈ 𝜀𝜀 𝜀 𝛿𝛿� ∈ 𝜆𝜆 𝜀 𝛿𝛿� ∈ Ω�

Our proposed algorithm for changing of
QAVNS fields is shown in Figure 2.

IV. RELATED WORK & EXPERIMENTAL
RESULTS

The authors of this article are currently
researching virtual machines live migration. We
have used the proposed scheme for the numbering
of the virtual machine's main memory versions
(as an informational object) and tracking the type
and extent of its changes.

In the context of virtual machines live
migration, two strategies called “pre-copy” and
“post-copy” have already been presented; but
each of these strategies works well only in some

Majid Tajamolian et al. /A Version Numbering Scheme for Informational Objects Used in VM Live Migration.

 J. ADV COMP ENG TECHNOL, 5(4) Autumn 2019 251

circumstances. In our research, we present an
innovative approach which is based on the
concept of "Informational Object", assigning
QAVNS revision numbers, and observing its
changes.

In this approach, the total virtual machine

memory is considered as a QAVNS informational
object that is constantly changing. The changes in
the version number of the informational object
(virtual machine memory) indicate the type and
extent of the change. We have added an initial
step called "sampling stage" to the three steps
that Clark and colleagues have proposed for
the virtual machine migration process [18]. At
this stage, the behavior of the virtual machine is
monitored and the decision-making algorithm
we provide can detect the current behavior of the
virtual machine based on the results of sampling
stage. Then the virtual machine hypervisor
can automatically select the appropriate VM
migration strategy from both pre-copy and post-
copy options. In this regard, we have defined a
number of criteria named "length of sampling
stage", "virtual machine OS instance number",
"number of process changes in virtual machine"
and "number of modified memory pages", that
the decision-making algorithm works based on
their changes.

In order to provide an automated algorithm
for choosing a virtual machine live migration
method, we provide criteria for automatically
detecting virtual machine state. Based on the
concept of the "Informational Object" presented
in [2], we assume virtual machine's memory as an
informational object that is constantly changing
and can therefore have a "QAVNS Revision
Number" at any moment.

Assume that the MST (Migration Start Time)
constant represents the start time of the live
migration of virtual machine memory.

jiffies = count(TimerInterrupts) (1)

MST = jiffies at start of migration tas (2)

Figure 2: Algorithm for changing QAVNS fields

The suggested mapping of QAVNS fields in the
VM memory informational object is as follows:

The 0RSN field in the QAVNS scheme is
known as the "Release Sequence Number".
Given the nature of the virtual machine memory
informational object, we consider this field as
a sequence number that has a time nature and
its values are extracted from machine timer
interrupts. This field represents the number of
moments that have elapsed since the start of the
migration operation. Therefore, the 0RSN field of
the QAVNS scheme is mapped here as the "jiffies"
with the JS acronym.

The GG field in the QAVNS scheme is known
as the "Generation number". Given the nature
of the virtual machine memory informational
object, we consider this field to be the "Generation
Number of the virtual machine operating system".
Therefore, the GG field of the QAVNS scheme is
mapped here as the "Operating System Instance
Number" with the OSIN acronym.

The FF field in the QAVNS scheme is known
as the "Feature List Number". Given the nature
of the virtual machine's memory informational

Majid Tajamolian et al. /A Version Numbering Scheme for Informational Objects Used in VM Live Migration.

252 J. ADV COMP ENG TECHNOL, 5(4) Autumn 2019

object, we consider this field to be "indicator of
the volume of changes in processes of the virtual
machine". Therefore, the FF field of the QAVNS
scheme is mapped here as the "Process Change
Number" with the PCN acronym.

The CCC field in the QAVNS scheme is known
as the "Correction List Number". Given the nature
of the virtual machine's memory informational
object, we consider this field to be "number of
the modified memory pages". Therefore, the
CCC field of the QAVNS scheme is mapped here
as "Dirty Page Count Number" with the DPCN
acronym.

Therefore, the "Version Identifier Scheme"
for virtual machine memory as a QAVNS-based
informational object is:

JS.OSIN.PCN.DPCN (3)

The VM memory revision identifier is
displayed at the start of the sampling phase with
the index s and at the end of the sampling phase
with the index e. So we will have:

Revision identifier at the beginning of the
sampling phase:

JSs.OSINs.PCNs.DPCNs (4)

Revision identifier at the end of the sampling
phase:

JSe.OSINe.PCNe.DPCNe (5)
We claim that the following algorithm can

automatically detect the different operating
conditions of a virtual machine and choose
the appropriate approach for live migration
appropriately. Flowchart of the proposed method
and our decision making algorithm is shown in
Figure 3.

We simulate pre-copy, post-copy, and our
synthetic algorithms by coding on MATLAB and
GNU Octave platforms. Simulation shows that
using the proposed method and the proposed
algorithm can automatically prevent the
weaknesses of pre-copy & post-copy methods (if
used alone), though utilizing strengths of them in
the VM live migration process [19].

In this research, we have used 100 data sets

to be implemented in ten different categories of
behavior (each category contains 10 data sets).

The charts in Figure 4 to Figure 6 show the
results of the simulation of pre-copy and post-
copy methods on these ten categories of data
sets, respectively, for the "Average performance
degradation of applications", "Average data
transfer volume during migration" and "Average
time length of virtual machine migration" criteria:

Figure 3: Our decision making algorithm based on QAVNS
fields values

Figure 4: Average performance degradation of
applications in PreCopy, PostCopy & proposed methods

Majid Tajamolian et al. /A Version Numbering Scheme for Informational Objects Used in VM Live Migration.

 J. ADV COMP ENG TECHNOL, 5(4) Autumn 2019 253

Figure 5: Average data transfer volume during migration
in PreCopy, PostCopy & proposed methods

Figure 6: Average time length of virtual machine
migration in PreCopy, PostCopy & proposed methods

The Data Sets that we used in our simulation
have the structure that is shown in Table 6:

Table 6: Structure of Data Sets of our simulation

Header
VM_RAM (GB) , VM_Bandwidth (Gbps) ,
JS_Time_Length (ms) ,
VM_Workload_Percentage

Body

JS1, event_code, event_parameters

JS2, event_code, event_parameters

JS3, event_code, event_parameters

.

JSi, event_code, event_parameters

...

Table 7: Events that are defined in our simulation

Event Code Event Desc.

1 OS Reboot
2 Process Creat/Kill
3 Read Memory page
4 Write Memory page

Table 8 shows the parameters values of each
event in our used Data Sets:

Table 8: Parameters of each event in Data Sets
Event Code Event Parameters

1 -1 (no parameters)

2
1 (Create)

2 (Kill)

3 Page# for Read

4 Page# for write

The efficiency of the proposed approach is
shown in our simulation results. Figure 7 shows
number of VM migration fails in our proposed
method versus PreCopy & PostCopy methods.

Figure 7: VM live migration fails in the three methods

The scheme (QAVNS) has also been
successfully implemented in an academic research
environment and a knowledge-based company to
track and control technical and administrative
informational objects. The use of the new scheme
in both environments has led to solving the
problems of organizing the IDs of revisions and
versions.

In the course of the research, we also gradually
developed QAVNS to cover all of our needs as
a single scheme to systematize the identifier
of revisions and versions of various types of
informational objects. The objects we used
QAVNS on them in these two environments were:
software, technical documents, project reports,
administrative documents, contracts, manuals,
style sheets and graphic designs.

The experimental and analytical results
indicate the desirability and effectiveness of the
proposed scheme in meeting expectations. It was
also found that QAVNS training to employees
and peers in various activities in a short time is

Majid Tajamolian et al. /A Version Numbering Scheme for Informational Objects Used in VM Live Migration.

254 J. ADV COMP ENG TECHNOL, 5(4) Autumn 2019

feasible. In addition, this scheme can be used to
automate the selection of appropriate methods
for the "VM live migration".

V. CONCLUSIONS AND SUGGESTIONS

The proposed scheme (QAVNS) is a useful
tool for monitoring the type and extent of
changes in the memory of a virtual machine
(as an informational object) with the aim of
automated selection of a proper method for VM
live migration.

In addition, the proposed scheme can become
a common standard and applied successfully as
a comprehensive and competent scheme in all
administrative, operational, artistic, software
development, documentary, legislative, publishing
and other related areas. The standardization of this
scheme will be a great contribution to uniform
understandings of everyone about the numbering
of versions and revisions. It is suggested that
agencies, organizations, companies, educational
institutions and manufacturing institutions
introduce the QAVNS scheme as a comprehensive
standard and apply it at all organizational levels.

As a future work, it's suggested that QAVNS be
used as an alternative versioning scheme in other
research fields for tracking changes of different
informational objects and report its degree of
effectiveness.

REFERENCES

1. H. Moei Emamqeysi, N. Soltani, M. Robati, and M.
Davarpanah, “A review of methods for resource allocation
and operational framework in cloud computing,” J. of
Advances in Comput. Eng. and Technology (JACET), vol. 3,
no. 3, pp. 173–180, Aug. 2017.

2. Z. Chen and J. Yoon, “IT Auditing to Assure a Secure
Cloud Computing,” in 2010 6th World Congr. on Services,
2010, pp. 253–259.

3. S. R. Hosseini, S. Adabi, and R. Tavoli, “A Near Optimal
Approach in Choosing The Appropriate Physical Machines
for Live Virtual Machines Migration in Cloud Computing,” J.
of Advances in Comput. Eng. and Technology (JACET), vol.
1, no. 3, pp. 23–32, Oct. 2015.

4. V. Kherbache, É. Madelaine, and F. Hermenier,
“Scheduling Live Migration of Virtual Machines,” IEEE
Trans. on Cloud Computing, pp. 1–14, Sep. 2017.

5. M. Cavage, D. Pacheco, B. Cantrill, and N. Fitch,
“Versioning schemes for compute-centric object stores,”
Patent US9092238B2, 28-Jul-2015.

6. “drupal 7.61 ReleaseNotes.” [Online]. Available:

https://www.drupal.org/. [Accessed: 20-Nov-2018].
7. J. R. Erenkrantz, “Release management within open

source projects,” in Proc. ICSE’03 Int. Conf. on Software
Eng., Portland, Oregon, USA, 2003, pp. 51–55.

8. Tom Preston-Werner, “Semantic Versioning 2.0.0.”
[Online]. Available: http://semver.org/. [Accessed: 09-Jun-
2018].

9. A. M. Keller and J. D. Ullman, “A version numbering
scheme with a useful lexicographical order,” in Proc. 11th
Int. Conf. on Data Eng., 1995, pp. 240–248.

10. S. Raemaekers, A. van Deursen, and J. Visser,
“Semantic Versioning versus Breaking Changes: A Study of
the Maven Repository,” in IEEE 14th Int. Working Conf. on
Source Code Analysis and Manipulation (SCAM), Victoria,
BC, Canada, 2014, pp. 215–224.

11. “Wine Project History - WineHQ.” [Online].
Available: https://wiki.winehq.org. [Accessed: 17-May-
2018].

12. “Ubuntu 18.04 ReleaseNotes.” [Online]. Available:
https://wiki.ubuntu.com. [Accessed: 27-Oct-2018].

13. International Organization for Standardization,
“ISO 8601:2004 - Data elements and interchange formats
-- Information interchange -- Representation of dates and
times,” ISO Standard 8601, Dec. 2004.

14. Markus Kuhn, “A summary of the international
standard date and time notation.” [Online]. Available: http://
www.cl.cam.ac.uk/~mgk25/iso-time.html. [Accessed: 28-
May-2018].

15. “Debian Releases.” [Online]. Available: https://www.
debian.org. [Accessed: 30-Apr-2018].

16. R. Conradi and B. Westfechtel, “Version Models for
Software Configuration Management,” ACM Comput. Surv.,
vol. 30, no. 2, pp. 232–282, Jun. 1998.

17. J. Bauml and P. Brada, “Automated Versioning in
OSGi: A Mechanism for Component Software Consistency
Guarantee,” in Proc. 35th Euromicro Conf. on Software Eng.
and Advanced Applicat., Patras, Greece, 2009, pp. 428–435.

18. C. Clark et al., “Live migration of virtual machines,”
in Proc. of the 2nd conf. on Symp. on Networked Syst.
Design & Implementation, Berkeley, CA, USA, 2005, vol. 2,
pp. 273–286.

19. Majid Tajamolian, “A New Synthetic Method for
Virtual Machine Live Migration,” PhD. Dissertation (in
Persian), Yazd University, Yazd, Iran, 2019.

	A Version Numbering Scheme for Informational Objects Used in VM Live Migration
	Abstract
	I. INTRODUCTION
	II. AVAILABLE SCHEMES
	1. Schemes with the order-based numeric identifiers
	2. Schemes with IDs based on release date
	3. Alphanumeric-based identifiers
	4. Other misc. schemes

	III. THE PROPOSED SCHEME
	IV. RELATED WORK & EXPERIMENTAL RESULTS
	V. CONCLUSIONS AND SUGGESTIONS
	REFERENCES

