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Abstract: In this paper, chaotic dynamic and nonlinear control in a glucose-insulin system in 
types I diabetic patients and a healthy person have been investigated. Chaotic analysis methods of 
the blood glucose system include Lyapunov exponent and power spectral density based on the time 
series derived from the clinical data. Wolf's algorithm is used to calculate the Lyapunov exponent, 
which positive values of the Lyapunov exponent mean the dynamical system is chaotic. Also, a wide 
range in frequency spectrum based on the power spectral density is also used to confirm the chaotic 
behavior. In order to control the chaotic system and reach the desired level of a healthy person's 
glucose, a novel fuzzy high-order sliding mode control method has been proposed. Thus, in the 
control algorithm of the high-order sliding mode controller, all of the control gains computed by 
the fuzzy inference system accurately. Then the novel control algorithm is applied to the Bergman's 
mathematical model that is verified using the clinical data set. In this system, the control input is 
the amount of insulin injected into the body and the control output is the amount of blood glucose 
level at any moment. The simulation results of the closed-loop system in various conditions, along 
with the performance of the control system in disturbance presence, indicate the proper functioning 
of this controller at the settling time, overshoot and the control inputs. 

Keywords: Chaos, Glucose-Insulin Blood System, Lyapunov exponent, Sliding Mode Controller, 
Fuzzy Logic.

I. INTRODUCTION

Diabetes is one of the most common and 
most destructive chronic diseases in the 

world, which Until now, definitive therapies 
have not been identified and the patient will 
endure the illness until the end of his life. For 
this reason, it is necessary to organize a regular 
program to deal with its complications. The 
malignant nature of diabetes is that if it is not 
detected and controlled in a timely and correct 
way, it can threaten the health of various 
organs of the patient.

In recent years, many studies have been 
conducted on diabetes and its control. 
Here are some examples of studies done on 
diabetic patients in general. In 1979, Cobelli 
and colleagues presented a comprehensive 
non-linear model for studying the short-
term glucose regulation system [1]. In 1984, 
Salzsider and colleagues argued that in order 
to control the long-term regulation of blood 
glucose, control parameters for each diabetic 
patient should be estimated separately [2]. In 
1984, Wolf and his colleagues presented an 
algorithm to estimate the positive Lyapunov 
exponents from an experimental series of times 
[3]. In 1986, Wolf observed the phenomenon 
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of chaos with the Lyapunov exponent’s function 
[4]. In 1991 Fischer utilized the Bergman 
Minimal Model to minimize the difference in the 
concentration of blood glucose from a natural 
value using the objective function of the error-
squared integral [5]. In 2001 Mendel introduced 
a fuzzy logic-based uncertainty system [6]. In 
2002, Chase presented a proportional derivative 
controller using the Bergman model to control the 
level of diabetes in diabetic patients [7]. In 2003, 
Yoneda and Iokibe have been predicting blood 
glucose based on chaos and insulin regulation 
for diabetic patients [8]. In 2004, Ibbini and his 
colleagues proposed a close-loop optimal control 
method for the development of the Bergman 
model to improve the blood glucose status in 
diabetic patients [9]. In 2004, Katayama and Sato 
also investigated the blood glucose prediction 
system by chaotic method [10]. In 2006, Parisa 
Kaveh studied high-order sliding mode control 
for the blood glucose system [11]. In 2008, Parisa 
Kaveh, has regulated blood glucose system by a 
double-acting high order sliding mode controller 
[12]. In 2013, Sudabeh Taqian has presented a 
high order sliding mode controller by setting a 
fuzzy control signal constant [13]. In 2013, Kichler 
and his colleagues described the relationship 
between hemoglobin A1C in adolescents with 
type 1 diabetes mellitus with family-related chaos 
phenomena [14]. In 2014, Carlos examines that 
the biological diversity of glucose and insulin is 
a definitive component of chaos [15]. In 2015, 
Emanuel explored the parameters of the Bergman 
model on diabetic mice [16]. In 2016, Li Wenshi 
and Feng Yejia have investigated non-invasive 
blood glucose measurements based on chaotic 
analysis [17]. In the same year, Kostanzo her 
colleagues reviewed the evolutionary pattern of 
blood sugar in type 1 diabetic patients based on 
the phenomenon of chaos [18]. In 2017, Abdullah 
Idris Enagi and his colleagues presented a 
deterministic mathematical model of the diabetes 
mellitus disease [19]. In 2018, Sh. Asadi, and V. 
Nekoukar, presented an adaptive fuzzy integral 
sliding mode controller for BGL regulation in 
patients with type 1 diabetes [20]. In 2018, H. 
Heydarinejad and his colleagues proposed a 
combination of fractional order nonlinear control 
and sliding mode observer for blood glucose 
regulation in type 1 diabetes mellitus. [21]. 

In this research, in the first step, the behavior 

of time series was derived from patient sampling 
by Lyapunov exponent method which used Wolf 's 
algorithm and also the power spectral density 
method has been evaluated and their chaos was 
reviewed and confirmed. In the second step, the 
Minimal Bergman model is used in order to the 
modeling of these time series. Also, to validate 
this model was compared with input data and its 
error analysis was studied and finally a fuzzy high-
order sliding mode controller (FHOSMC) was 
designed to control the amount of insulin injected 
to the patients. In this paper, by presenting a novel 
method of a fuzzy inference system, in order to 
improve the control method presented in [11], 
to obtain constant values in a high-order sliding 
mode controller, this controller performs better 
than the above-mentioned high-order sliding 
mode controller.

II. CHAOTIC DYNAMICS ANALYSIS OF 
BLOOD GLUCOSE-INSULIN SYSTEM 

In this paper, the dynamics analysis of 
blood glucose-insulin system is based on data 
from blood glucose collected from a healthy 
person and diabetic patients. A healthy person 
is a 22-year-old man and three types 1 diabetic 
patient, who are an 18 years old man, a 20 years 
old man and a 22 years old woman, respectively. 
The data are collected from a medical-sports 
center. Also, these patients are differentiated by 
their body initial conditions, such as different 
nutrients and different levels of primary glucose 
are distinguished. Plus, to consider different 
physical characteristics of their bodies, different 
body parameters have resulted.

 

 

Fig. 1.  Blood glucose of a healthy person
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Fig. 2.  Blood glucose of patient 1
 

 
Fig. 3.  Blood glucose of patient 2
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Fig. 4.  Blood glucose of patient 3

It should be noted that these data are measured 
in the following way. In the beginning, 0.3 glucose 
unit was injected into the patient and the healthy 
person. During the 180 minute period, the blood 
glucose level of these people was measured and 
recorded. Time series for a healthy person and 
patients are in Figs. 1 to 4. Also, to prove the 
chaotic behavior of these data, the Wolf algorithm 
is used to calculate the Lyapunov exponents 
function and the power spectral density method.

As shown in Fig. 1, the healthy body, even 
though injected glucose in the first moment, 
secreted insulin and decrease blood glucose level 
naturally to the normal range of 70, but it can be 
seen in Figs. 2 to 4, the first patient's glucose level 
is in the range of 205 and the second patient is in 
the range of 190, and the third patient is in the 
range of 160 and their body cannot secrete the 
insulin which is required.

The nature of chaotic systems is irregular 
responses and stochastic states in time series, 
which, as shown in Figs. 1 to 4, these clinical 
data are chaotic. In order to illustrate this chaotic 
behavior, the Wolf method is used to calculate 
the Lyapunov exponents and the power spectrum 
density method. 

Wolf 's method is one of the most common 
methods for calculating the Lyapunov exponent. 
In this study, (1) is used to calculate the largest 
positive Lyapunov exponent:

𝜆𝜆� � 1
𝑁𝑁𝑁𝑁𝑁 � ���� 𝐿𝐿�

°
𝐿𝐿�

���

�
 

𝑁𝑁𝑁𝑁𝑁 � 𝑁𝑁� � 𝑁𝑁� 
                    (1)

Where M is the number of times that the loop 
is executed and repeated.

TABLE I
LYAPUNOV EXPONENT OF THE TIME SERIES OF 

THE WOLF METHOD
Healthy person Patient 1 Patient 2 Patient 3 

0.000235 �.05 � �0�� �� � �0�� 3.�5 � �0�� 
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If the Lyapunov exponent contains negative 
numbers, it indicates the existence of a constant 
equilibrium point in the nonlinear dynamical 
system. If the Lyapunov exponent is zero, 
it indicates that the distance between the 
trajectories is constant. Ultimately, the positive 
values of the Lyapunov exponent are chaotic 
nonlinear dynamics. The values obtained in Table 
I indicate that the Lyapunov exponent is positive. 
The positive of these exponents indicate the chaos 
of the time series.

The Power Spectral Density Function (PSD) 
shows the power of system energy changes in 
terms of frequency based on the Fourier series. 
In other words, this function shows at which 
frequencies the changes are strong, and at which 
frequencies the changes are weak. This function 
is obtained by (2) [6], [22] and [23].

𝑥𝑥���� � 1
√𝑇𝑇� 𝑥𝑥�𝑑𝑑������

�

�
𝑑𝑑𝑑𝑑 

𝑆𝑆����� � ��������|𝑥𝑥����|�� 
                  (2)

In Figs. 5 to 8, the PSD is observed for the 
healthy person and diabetic patients:
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Fig. 5.  Power spectrum density of the healthy person

 

 

Fig. 6.  Power spectrum density of patient 1
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Fig. 7.  Power spectrum density of patient 2
 

 

Fig. 8.  Power spectrum density of patient 3
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Due to the wide spectrum of frequency in 
the PSD function for the healthy person and 
the patients, chaotic behavior of the time series 
signals is proved.

III. MATHEMATICAL MODELING OF 
BLOOD GLUCOSE SYSTEM

The Bergman Minimal Model is a non-linear 
model that describes the relationship between 
glucose-insulin in the human body. This model 
is a very common model in research related to 
the analysis of blood glucose systems. The main 
advantage of this model is the simplicity of the 
structure, the ability to estimate the physiological 
parameters of the model using blood glucose and 
plasma insulin, which is obtained using Clinique 
data. The Bergman blood glucose dynamics is 
represented by (3) [11]:

𝐺𝐺� �𝑡𝑡� �  ����𝐺𝐺�𝑡𝑡� � 𝐺𝐺�� � 𝑋𝑋�𝑡𝑡�𝐺𝐺�𝑡𝑡� � ��𝑡𝑡� 
𝑋𝑋� �𝑡𝑡� �  ���𝑋𝑋�𝑡𝑡� � ���𝐼𝐼�𝑡𝑡� � 𝐼𝐼��                       
𝐼𝐼��𝑡𝑡� � ���𝐼𝐼�𝑡𝑡� � 𝐼𝐼�� � ��𝐺𝐺�𝑡𝑡� � ���𝑡𝑡 � ��𝑡𝑡�

        (3)

In the above equation, G(t) is blood plasma 
glucose concentration (mg/dl), X(t) effect of 
insulin on the net glucose disappearance (1/min) 
and I(t)  is the insulin concentration in plasma at 
time t(μU/ml). Gb and Ib are the basal pre-injection 
level of glucose and insulin in the blood, 
respectively. D(t)  Shows the amount of glucose 
absorbed in blood by food intake. n is the first 
order decay rate for insulin in plasma (1/min) and 
h is the threshold value of glucose above which 
the pancreatic β–cells release insulin(mg/dl), γ is 
the rate of the pancreatic β–cells’ release of insulin 
after the glucose injection with glucose 
concentration above the threshold 
(��

��  min�����
�� ���) . The term γ[G(t)-h]+  , acts as 

an internal regulatory function that formulates 
the insulin secretion in the body, which does not 
exist in diabetic patients. u(t) is the input control 
signal or, in fact, the amount of insulin injected 

from the outside of the body (μU/ml) [11]. 
Parameters p1 , p2 and p3 are respectively, the 

maximum initial value of the glucose-insulin 
interaction curve (mg/dl) , p2 the amount of 
glucose reduction in tissue in each insulin unit 
(1/min)  and p3 glucose increase after insulin 
movement [14].

In this section, in order to simulate open 
circuit simulation of the body's blood glucose, 
the parameters of Table II which are parameters 
of the healthy person and diabetic patients’ blood 
glucose, are used.

TABLE II
PARAMETER VALUES [13]

Patient 3 Patient 2 Patient 1 Normal  
0 0 0 0.0317 𝑝𝑝� 

0.0142 0.0072 0.02 0.0123 𝑝𝑝� 

9.94
� 10�� 

2.16
� 10�� 

5.3 � 10�� 4.92 � 10�� 𝑝𝑝� 

0.0046 0.0038 0.005 0.0039 𝛾𝛾 

0.2814 0.2465 0.3 0.2659 𝑛𝑛 

82.9370 77.5783 78 79.0353 ℎ 

70 70 70 70 𝐺𝐺� 

7 7 7 7 𝐼𝐼� 

180 200 220 291.2 𝐺𝐺� 

60 55 50 364.8 𝐼𝐼� 

 

The simulation results of the plasma glucose 
concentration are shown in Fig. 9.
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Fig. 9. Blood glucose concentration in healthy person 
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and patients

IV. BERGMAN MODEL VERIFICATION

In this section, in order to illustrate the 
adaptation of the simulation results of the 
Bergman model with the data from patients and 
healthy person, MATLAB is used as it presented 
in Fig. 10. The proper adaptation of the graph 
which resulted from the numerical solution of 
Bergman's mathematical model with the clinical 
data shows the validity of the modeling process 
performed.
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Fig. 10.  Bergman model Verification of patient 1 data

Also, the modeling error analysis was 
performed based on Root Mean Square Error 
(RMSE). This criterion is as (4)

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝑥𝑥�, 𝑥𝑥�� � �∑  ���� �𝑥𝑥�,� � 𝑥𝑥�,���
𝑛𝑛          (4)

The results of the error analysis in this 
modeling process and its validation are shown in 
Table III.

TABLE III
RMSE RESULTS

 Normal Patient 1 Patient 2 Patient 3 

RMSE  
5.902 x 10 ‐2 1.59143 1.59144 1.59141 

 

According to the results of Table III and Fig. 
10, it is proved that in a closed loop system, the 
Bergman model is fully compatible with the 
available data of the patients and the healthy 
person.

V. FUZZY HIGH-ORDER SLIDING MODE 
CONTROLLER DESIGN

The main goal in diabetes treatment is to 
maintain normal blood glucose levels. As shown 
in Fig. 11, obtaining a control signal, which is the 
rate of insulin injection, is the most important 
issue in regulating blood glucose levels in the body. 
In this research, the diabetic patient's body model 
is considered as a nonlinear model, so a nonlinear 
controller is designed to create a control signal. 
According to the block diagram, Fig. 11 shows 
the rate of insulin injection as a control signal by 
a pump to a diabetic patient. The input of control 
algorithm is the desired level of injectable insulin 
to the blood and the output should also be the 
desired level of glucose adjusted by the control 
method. Also, the purpose of this research is the 
development of the control strategy that yields 
to produce an appropriate control signal for the 
injection pump not to improve the dynamic 
model of the pump. Therefore, the dynamical 
model of the injection pump is not considered in 
this work.

 

 

Fig. 11.  Closed loop control system using FHOSMC
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The system in the Bergman equation can be 
rewritten in the form of the space state as follows

�
𝑥𝑥�� � ����𝑥𝑥� � ��� � 𝑥𝑥�𝑥𝑥� � ��𝑡𝑡�         
𝑥𝑥�� � ���𝑥𝑥� � ���𝑥𝑥� � ���                         
𝑥𝑥�� � ���𝑥𝑥� � ��� � ��𝑥𝑥� � ���𝑡𝑡 � ��𝑡𝑡�

 

                          (5) 

In (5), the trace error is defined as the difference 
between the concentration level of glucose and its 
base value in the blood of the diabetic patient in 
the form of relation (6):

� � �� � ��𝑡𝑡� � �� � ��                        (6)

For the system of order three according to 
the dynamical equation (5), after calculating the 
derivative of order three in the form of (7), the 
system equation is written as the conventional 
equation in the sliding mode control system.

𝑥𝑥���� � ��𝑥𝑥𝑥 𝑥𝑥� � ��𝑥𝑥�𝑢𝑢�𝑥𝑥�   (7)

The sliding variable is also designed as (8)

� � 𝑒𝑒� � ��𝑒𝑒� � ��𝑒𝑒    (8)

In (8), the values c1,c0 are real-valued constants 
and are chosen to optimize the behavior of the 
system. In order to investigate the sliding mode, 
by deriving from (8), the sliding variable is 
obtained as (9):

𝜎𝜎� � �⃛�𝑒 � �1𝑒𝑒� � �0𝑒𝑒�                             (9)

Also, by combining and simplifying the 
equations mentioned above, the sliding variable 
can be expressed as (10)

𝜎𝜎� � ��𝑡𝑡� � �3𝑥𝑥1��𝑡𝑡�                       (10)

Which we have from (10)

𝜓𝜓�𝑡𝑡� � ���𝑥𝑥𝑥 𝑡𝑡� � ��𝑒𝑒� � ��𝑒𝑒�                   (11)

In order to stabilize the sliding mode control 
system, ψ̇(t) must be reduced by a positive amount 
[11].

|𝜓𝜓� ���| � �                                   (12)

It is clear from (5), (6) and (7) that the sliding 
surface is zero, and in fact, the system dynamics is 
placed on a sliding mode, and thus, an appropriate 
control input can be design for (5). Given the 
dynamical system introduced in (5), the control 
function u(t) is obtained as (13) [11]:

� � 𝑁�𝛼𝛼�|𝑆𝑆|
�
�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑆𝑆� �𝑁𝛽𝛽� � 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑆𝑆��� 

𝛼𝛼� � ���� � ���√𝑁𝑁
𝛽𝛽� � ���� � ���𝑁𝑁𝑁𝑁𝑁         (13)

In the control structure of the high-order 
sliding mode, according to [11], the coefficients 
α1 and β1 are considered as fixed numbers. For 
the exact adjustment of these coefficients, no 
proper solution has been found, and its values are 
considered mainly in terms of trial and error. 

In this study, in order to achieve better 
control results and to reduce the disturbance and 
unwanted factors as well as to more precisely 
determine the amount of u, a fuzzy inference 
system to determine the coefficients α_1 and 
β_1 have been used. In this fuzzy system, the 
input is error value and the derivative of the 
error. The error rate is the difference between the 
level of glucose in the body and the amount that 
is desired, and the desired amount of glucose is 
considered to be 70 approximately for a healthy 
person. After the fuzzy inference between the 
error values and the control parameter values, the 
output of the fuzzy system consists of the values 
of α1 and β1.
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In the fuzzy section, the control input is the 
error between the glucose reference value and the 
instantaneous and derived error, and the output 
is the amount of insulin injected. To obtain the 
amount of insulin injected, a fuzzy inference 
system is used, which results in a more accurate 
calculation of the control coefficients α1 and β1 
values. Fig. 12 shows the input and output of the 
fuzzy block. In the model presented in [13], only 
one of the constant coefficients (k) in the control 
signal of the fuzzy system is used, whereas in this 
study, the dual fuzzy control system is presented 
which both of the constant control signal 
coefficients α1 and β1 is obtained simultaneously 
with the fuzzy inference method, and as a result, 
the blood glucose level is reached to desire point 
faster and more accurate.

 

 
Fig. 12.  Fuzzy block inputs and outputs

The fuzzy controller block changes the 
parameters of the control system in the limited 
range so that the stability of the closed-loop 
system is guaranteed.

VI. SIMULATION RESULTS

In this section, a fuzzy high-order sliding 
mode controller and a high-order sliding mode 
controller are simulated in closed loop mode. 
This simulation was performed for a healthy 
and diabetic patient based on the parameter's 
value in Table II. Thus in order to observe the 
stability of this controller against disturbances, all 
simulations have been performed in both cases 
with and without disturbance.

1. Simulation without disturbance
In Figs. 13, 14 and 15, the controllers’ 

performance on the body of a healthy person and 
the diabetic patient is given without consideration 
of disturbance. The following diagrams describe 
the responses of the high-order sliding mode 
controller with the HS label and the responses of 
the fuzzy high-order sliding mode controller with 
the FHS label.

 

 

Fig. 13.  Blood glucose level of a healthy and type 1 
diabetic patient

 

 

Fig. 14.  Insulin effect on glucose disappearance of a 
healthy and type 1 diabetic patient
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Fig. 15.  Control signal of a healthy and type 1 diabetic 
patient

As shown in (13) and (14), the fuzzy high-
order sliding mode controller is superior to the 
high-order sliding mode controller in terms of 
response time, the configuration of the system 
variables as well as control input.

2. FHOSMC performance and stability
In order to evaluate the performance of fuzzy 

high-order sliding mode controller and high-
order sliding mode controller, the ISE and IAE 
errors have been used, as well as the steady-state 
error and the settling time of the closed-circuit 
system response. In Table IV, a comparison of the 
controllers’ performance for the diabetic patient's 
physical parameters in the absence of disturbance 
is presented.

For this purpose, the criteria for ISE and IAE 
errors are used in the form of (14) and (15).

��� � ����𝑑𝑑��𝑑𝑑𝑑𝑑                           (14)

                         (15)

TABLE IV
CONTROLLER FUNCTION IN DIABETIC PATIENT 

WITHOUT DISTURBANCES
Error in (s) HOSMC FHOSMC 
Settling time 218.7 200 

Steady state error 0.01 0.01 

ISE�� 10�� 850 811 

IAE�� 10�� 10.2 9.18 

 

To study the robustness of the designed 
control system and the effect of disturbance on 
the function of the controllers on the diabetic 
patient's body, the disturbance D(t) = 0.5 e-0.05t 
has been applied to the controllers. In fact, the 
disturbance function D(t) is the amount of 
glucose mathematical model which is transferred 
to the body by eating food. In Figs. 16, 17 and 18, 
the fuzzy high-order sliding mode controller for 
a diabetic patient in the pre and post-disturbance 
action has been investigated. Whereas, the low 
impact of this disturbance against the designed 
controller and proper stability in contrast with 
unwanted factors and ultimately robustness of 
fuzzy high-order sliding mode structure is shown.

 

 

Fig. 16.  Blood glucose level of a healthy and a diabetic 
patient pre and post disturbance
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Fig. 17.  Insulin effect on glucose disappearance of 
a healthy and type 1 diabetic patient pre and post 

disturbance
 

 

U
c

Fig. 18.  Control signal of a healthy and type 1 diabetic 
patient pre and post disturbance

Table V shows the controllers’ performance 
comparison for the diabetic patient's physical 
parameters in presence of the disturbance. 

TABLE V
CONTROLLER FUNCTION IN DIABETIC PATIENT 

WITH DISTURBANCES

Error in (s) HOSMC FHOSMC 
Settling time 220.9 201.4 

Steady state error 0.01 0.01 

ISE�� 10�� 883 855 

IAE�� 10�� 10 9.5 

 

As the results presented in Tables IV and V 
show, the presence of disturbance does not have 
a significant effect on the performance of this 
controller, so we conclude that the designed fuzzy 
high-order sliding mode controller is resistant to 
disturbances and unwanted agents.

VII. CONCLUSION

In this paper, Wolf 's algorithm was used 
to calculate the time series of the Lyapunov 
exponents in order to analyze the blood glucose-
insulin system's behavior in diabetic patients. 
These time series are samples taken from diabetic 
patients and healthy person, which indicates 
that the positivity of the Lyapunov exponents is 
the chaotic dynamics of the systems. Also, the 
power spectral density function method was 
used to study the type of behavior of these time 
series. The study, with both methods, ended with 
a single result that was chaotic in this system. 
Then, the Minimal Bergman model was used to 
model these time series. In order to confirm the 
modeling process, the results of the numerical 
solution of the Bergman model equations with the 
clinical data were compared, and their correlation 
and RMSE analysis criterion indicate that the 
model is compatible. In the following, a novel 
fuzzy high-order sliding mode controller was 
used to control the system. The simulation results 
of this controller with the high-order sliding 
mode controller designed in [11] were compared 
and the performance of the feedback system in 
different conditions Reviewed. Comparing the 
results of the proposed control systems, even in 
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the presence of disturbances, indicates the high 
performance of the fuzzy high-order sliding 
mode control system, as well as the robustness 
of the controller against disturbances. Thus, the 
responses of the fuzzy high-order sliding mode 
control system resulted in a reduction of about 
10% at the settling time a reduction of 11% in 
steady state error compared to the high-order 
sliding mode controller. Therefore, the results of 
the control system indicate a high-speed fuzzy 
high-order sliding mode controller in order to 
close the blood glucose level to the optimum 
level in diabetic patients, so using this intelligent 
controller can be very efficient in artificial 
pancreas structure for diabetic patients Type I.
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