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Abstract — There are several different methods 
to make an efficient strategy for steganalysis of 
digital images. A very powerful method in this area 
is rich model consisting of a large number of diverse 
sub-models in both spatial and transform domain 
that should be utilized. However, the extraction of 
a various types of features from an image is so time 
consuming in some steps, especially for training 
phase with a large number of high resolution 
images that consist of two steps: train and test. 
Multithread programming is a near solution to 
decreasing the required time but it’s limited and 
it ‘snot so scalable too. In this paper, we present 
a CUDA based approach for data-parallelization 
and optimization of sub-model extraction 
process. Also, construction of the rich model is 
analyzed in detailed, presenting more efficient 
solution. Further, some optimization techniques 
are employed to reduce the total number of GPU 
memory accesses. Compared to single-thread and 
multi-threaded CPU processing, 10x-12x and 3x-
4x speedups are achieved with implementing our 
CUDA-based parallel program on GT 540M and it 
can be scaled with several CUDA cards to achieve 
better speedups. 

Index Terms — CUDA, GPU, Parallelization, 
Rich models, Steganalysis.

I.  INTRODUCTION

With ever-increasing growth of electronic 
information and communications, it is 

important to design methodologies for enhancing 
the security of exchanged information. One 
of these methodologies is stegonagraphy that 
is a procedure to hide some secret data into 
a carrier multimedia such as image, audio or 
video. In fact, the steganography is derived 
from the Greek words “stegos” meaning “cover” 
and “grafia” meaning “writing” defining it as 
“covered writing” [1]. The most important goal 
of the stegonagraphy is secret communication. 
Other similar technology for embedding data 
into multimedia is watermarking, however the 
major aim of the watermarking is protection of 
intellectual property through the embedded data 
which is usually a signature to signify origin or 
ownership of the multimedia [2]. 

As carrier multimedia, digital images are the 
most popular because of their frequency on the 
Internet. One the most important property of 
the image stegonagraphy is imperceptibility. It 
means that human visual system should not be 
able to recognize significant differences between 
original image and the image after embedding 
secret information. 

On the contrary, steganalysis is a procedure 
to estimate existence of the secret data in the 
image. For keeping invisibility, there is no 
specific sign demonstrating the embedded data 
and consequently, it seems the steganalysis is 
an impossible task. But statistical analysis of the 
images without the embedded data shows that 
there is a significant correlation between adjacent 
pixels [3]. Therefore, absence of the correlation 
may demonstrate existence an embedded secret 
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message. 
In fact, steganalysis is a process of reverse 

engineering. For this, a huge set of basic 
statistical criteria called feature are extracted 
from the questionable image [4]. The features are 
utilized in a two phases process called learning. 
The phases are called train and test, respectively.

In the training phase, a large number of clear 
and stego images are analyzed, to recognize the 
features which are modified due to embedding 
data. So, the values of the features are computed 
for a set of clear and stego images. The results 
(images, features and values) are considered as 
training set and delivered by a classifier. In the 
training phase, some parameters are generated 
to utilize for classification in the test phase. The 
strategy for selecting the features and classifier is 
very critical to attain the best results. 

Various algorithms are given in literature to 
extract the useful features and classification of 
the images into clear or stego categories [3-8]. 
Fridrich and Kodovský have presented a fully 
comprehensive approach for steganalysis of the 
images in the spatial domain [9]. In the approach, 
first a rich model of noisy residuals is constructed. 
The model is based on the difference of a pixel 
and its adjacent pixels. The difference of the 
pixels is considered as a noise and histogram of 
the adjacent differences are investigated for clear 
and stego images. Then, Ensemble classifier is 
used for the classification process. In Fridrich’ 
scheme, a wide variety of forms for selection 
of the adjacent pixels with various weights are 
introduced, so that each of them is applicable 
to identify a specific stegonagraphy algorithm. 
Therefore, a large number of residual matrices 
are generated and then co-occurrence histograms 
of the residuals are calculated in vertical and 
horizontal direction and next, the co-occurrence 
matrices are symmetrized. The philosophy of the 
symmetry is that a large number of sub-model 
are generated, so that a lot of them have zero 
value and thus they should be symmetrized. After 
symmetry, some useful features are extracted 
from the image. Fridrich and Kodovský have 
demonstrated that the framework is efficiently 
works when a secret message is embedded in the 
spatial domain of an image by steganographic 
algorithms like HUGO [10], edge-adaptive 
algorithm by Luo et al. [11], and optimally-coded 
ternary ± 1 embedding. So, the approach is also 
called Spatial Rich Model (SRM). As mentioned, 
SRM is a comprehensive approach and for each 

stegonagraphy algorithm, some sub-models are 
selected to recognize the stego image. On the 
other hand, the diversity of models causes a so 
time consuming task for the learning phase. In 
fact, universality and comprehensiveness of 
the Fridrich’s approach results in an acceptable 
performance, however the extraction of the 
features leads to a computationally intensive 
process, especially when the resolution and 
number of learning images are increased. 

To accelerate time consuming algorithms, 
parallel systems can be considered as an exciting 
option. Graphics Processing Unit (GPU) as a 
highly parallel, multithreaded and many-core 
architecture can be applied by user for heavy 
computational algorithms. To address the issue, 
NVIDIA Corporation introduced Compute 
Unified Device Architecture (CUDA) as a 
general purpose parallel computing architecture 
with a new parallel programming model and 
instruction set architecture [12]. In fact, CUDA 
is an extended model of standard C language for 
parallel computing that allows the user to program 
own algorithms on GPU easily. Comprehensive 
information about parallel programming with 
CUDA can be found in [12, 13]. 

It is notable that the data-level parallelization 
should be performed for implementing 
an algorithm on GPU, getting acceptable 
performance. Image processing algorithms due to 
their parallel nature are suitable cases, however it 
is important to design an efficient parallelization 
approach based on the GPU architecture [14-20]. 
In this paper, we provide some parallelization 
techniques and a CUDA based implementation 
for SRM steps. 

The paper is structured as follows. In section 
II, the proposed scheme for data parallelization of 
SRM is explained. Also, the details of our GPU 
implementation and optimization techniques are 
provide in Section III. Speedup results by the 
presented parallel approach are given in Section 
IV. Finally, the paper is concluded in Section V.

 

II. THE PROPOSED PARALLELIZATION 
SCHEME FOR GENERATING SUB-

MODELS

In SRM algorithm proposed by Fridrich [9], 
4 steps are required to generate 34671 features 
or sub-models from a gray-scale image. By 
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analyzing the SRM algorithm (refer to Section 4 
for more details), it can be found that steps 1 and 
2 are dominant parts of the process. Furthermore, 
the steps 1 and 2 are dependent on the image 
sizes and their execution time increases with 
higher resolution images. However the output 
of step 2 (co-occurrence values) can be a vector 
with a constant length and consequently step 3 
and 4 are completely independent of the image 
sizes and consequently, compared to the total 
execution time of the SRM, the execution time 
of the steps 3 and 4 can be ignored, especially for 
high resolution images.  Thus, we need to propose 
parallelization techniques only for two first steps 
of the SRM. Our proposed techniques for an 
gray-scale image of size M×N are described in 
the following sub-sections.

A. Extraction of a Residual Vector R Containing   
     458×M×N Elements From an Image

In the first step, 458 residual matrices each of 
size M×N are generated from and input image 
matrix of size M×N. In other word, for each pixel, 
458 different values are calculated as residuals. 
Different form for selection of adjacent of pixels, 
different orders and quantization values results in 
such diversity. In fact, a residual of a pixel can be 
defined as quantized difference of the pixel value 
from some its adjacent pixels (refer to [9] for more 
details). Statistic information of the residuals can 
lead to detect the existence a secret message in the 
image. To calculate a specific residual, the process 
is the same for different pixels. For example, to 
calculate the first kind of residual, the value of 
each pixel is subtracted from its right neighbor 
(see Fig. 1), and then truncation and quantization 
are performed. The process should be repeated 
for all pixels of the image. So, the first step can 
be so time consuming and we propose a pixel-
level parallelization for the step. In other word, 
one CUDA thread is defined for each pixel and 
consequently there are M×N parallel threads, so 
that each thread calculates 458 different residuals 
for each pixel. Totally, 458 residual matrices are 
generated and we put their elements into a vector. 
In the proposed scheme, all residuals generated 
from all pixels are placed together in the vector 
R. Fig. 2 exhibits the placement of different 
residuals in vector R.

B. Computing Horizontal and Vertical  
     Co-occurrences

In this step, two horizontal and vertical co-
occurrence matrices are generated for each 
residual matrix. For this, number of occurrences 
for different possible patterns of the elements in a 
residual matrix is computed along the horizontal 
and vertical directions and then the result is 
normalized. According to the algorithm proposed 
by Fridrich [9], the elements of residual matrices 
are integer values between -2 and 2. On the other 
hand, the considered patterns are 4 symbols (e.g. 
-2 1 2 0), and consequently there are 625 different 
patterns. In this saturation, for horizontal co-
occurrence, we should calculate that how many 
times each pattern is happened along horizontal 
direction. Similar procedure is performed to 
compute the vertical co-occurrence matrix. As a 
result, for each residual matrix, one horizontal co-
occurrence matrix and one vertical co-occurrence 
matrix are constructed, so that we consider a 
625-element vector to place the elements of each 
co-occurrence matrix. Since, the computation of 
co-occurrence arrays is a same process for all 
residuals, a residual-level parallelization scheme 
is proposed for the step 2. It means that in this 
step, 458 CUDA threads are considered and each 
thread is responsible for calculation of horizontal 
and vertical co-occurrences of a residual matrix. 

Also, in the step 2, the horizontal co-
occurrence matrices form the vector C_H 
containing 458×625 elements and the vertical 
co-occurrence matrices form the vector C_V 
containing 458×625 elements. Fig. 3 shows the 
placement of horizontal co-occurrences in C_H 
or vertical co-occurrences in C_V. In the step 2, 
each thread processes its corresponding residuals 
(M×N elements of vector R) and calculates 625 
elements of vector C_H and 625 elements of 
vector C_V.

Fig. 1. The first kind of residual
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As a result, by performing step 2, the 
vectors C_H and C_V (each of size 458×625) 
are produced. The obtained values should be 
symmetrized in steps 3 and 4. The number of 
elements of C_H and C_V are constant for each 
input image with arbitrary size, and consequently 
the execution time of the step 3 and 4 are not 
increased, with high resolution images.

III. CONSIDERATIONS AND OPTIMIZATION 
TECHNIQUES FOR OUR GPU IMPLEMENTATION

As mentioned, many processing cores are 
provided by the modern GPUs. However, the 
utilization of the GPU cannot guaranty reduction 
of the processing time in all cases. The main 
factors enhancing performance of a GPU-based 
process can be listed as follows:

• There is a potential to invent an efficient 
data-level parallelization approach.

• The data communications between the 
parallel threads must be reduced, as possible.

• Also, the total number of memory accesses 
must be reduced and instead, registers can 
be utilized as possible. The modern GPU 
architectures provide a significant number of 
registers for threads to store date which are 
frequently used. The registers are very faster than 
global memory of the GPU. More utilization of 
the registers can lead to enhance the performance. 

• Finally, superiority of the GPU is revealed 

when the process is CPU bound instead of 
memory bound.

With respect to the mentioned factors, 
we provide some solutions to enhance the 
performance of the GPU program as follows.

• In the first step, 458 different kinds of the 
residuals can be calculated for each pixel. On the 
other hand, for each pixel, it is necessary to read 
some neighbor values from the memory. The fact 
imposes a huge number of repetitive memory 
accesses, leading significant performance 
degradation. To resolve the issue, we propose 
that at begin of residual extraction process, the 
values of the required neighbor pixels are read 
from the global memory and then registered to be 
used in the calculations.   

• If consecutive memory demands of the 
running threads exceed capability of the GPU, 
then the kernel has been stopped and then 
a message is appeared for the user (Display 
driver stopped responding and has recovered). 
In these cases, we are forced to reduce the 
number of parallel threads. It means the degree 
of parallelization should be reduced and the 
kernel can be called serially to process all data. 
The maximum number of parallel threads is 
dependent on specifications of the GPU such as 
memory bandwidth and also number of memory 
accesses required for each thread. In step 2 of the 
SRM algorithm, there are 458 parallel threads, 
such that each thread attempts to read M×N 
elements from the global memory and write 625 
elements to the global memory. This amount of 

Fig. 2. Placement of different residuals of an image of size M×N

Fig. 3. Placement of co-occurrence values in a vector
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memory accesses (458 × (M×N×625)) is not 
supported, even by state of the art GPUs. In 
this situation, we should reduce the number of 
parallel threads that run the kernel calculating co-
occurrences and then kernel is serially invoked in 
a loop to process all of residuals. As the number 
of parallel threads decrease, the more number 
of iterations is needed. In this work, we propose 
that the number of parallel threads is defined 
parametric via determining CUDA Grid and 
CUDA block sizes. As a result, we can adjust the 
degree of parallelization in respect to available 
GPU. Consequently, our scheme can be adapted 
with various models of GPUs.

   
IV.  EXPERIMENTAL RESULTS

The proposed parallelization scheme for the 
SRM algorithm was implemented on NVIDIA’s 
GPU using CUDA 7.5. Our GPU model is 
Geforce GT 540M that contains 1GB global 
memory and 64 CUDA cores with frequency of 
1.3 GHz. To compare performance of the parallel 
implementation with serial implementation on 
a General Purpose Processor (GPP), the SRM 
algorithm was coded by using single thread C 
language and implemented on a PC with CPU 
Intel Pentium 4. Moreover, a multi-threaded 
version is implemented on intel core-i7 processor 
using OpenCL framework. Note that all programs 
were executed with 200 iterations and average 
results are reported. 

Timing analysis for the single-thread serial 
implementation of the SRM algorithm is 
performed and the detailed results are provided 
in Table I.

Table I: Execution time of different steps of the SRM 
algorithm (C implementation)

Image size    Step1 
(second) 

   Step2 
(second) 

  Step3 
(second) 

   Step4 
(second) 

256×256    14.671 5.692    0.005    0.392 

512×512   56.052 22.64    0.005    0.392 

As can be seen in Table I, the execution times 
of steps 3 and 4 are not variable with different 
sizes of the input image and also ignorable 
compared to the first steps. Furthermore, the 
execution times of two first steps are proportional 
to the square of image size and consequently they 
are so time consuming when the image size is 
increased. 

Table II lists the execution times of the serial 
and the proposed parallel implementation of the 
SRM for steps 1 and 2. Note that in Table II, 
data transfer overhead is not considered and the 
results are only pure processing times.  

As can be shown in Table II, using our CUDA 
implementation, for step 1 (as the most time 
consuming step) 101x-114x times speedups 
are obtained. Also, 4 times speedup is achieved 
for step 2, where the number of parallel thread 
has been limited. This reduction in speedup 
demonstrates the impact of memory bottleneck 
on the achieved performance. For further 
performance evaluation of the proposed CUDA-
based approach, the execution times of the multi-
threaded CPU implementation are also provided 
in Table II. The proposed CUDA-based approach 
attains almost 49.9x-53.5x and 2x-2.3x speedups 
over the multi-threaded CPU implementation for 
the steps 1 and 2, respectively.

Furthermore, the performance of a CUDA 
program can be affected by the dimensions of 
CUDA grid and CUDA block. To implement the 
proposed parallel scheme on Geforce GT 540M, 
optimal dimensions for steps 1 and 2 (leading 
results listed in Table II) are given in Table III.

Here, M and N are the image sizes. It can be 
found that it is feasible to run M×N parallel threads 
for the step 1. However, in our implementations 
on Geforce GT 540M, M and N are less than 
or equal to 512. Furthermore, the used GPU is 
capable to execute only 128 threads for step 2, 
where a huge number of memory accesses is 
required.

In our scheme, for computing rich models, an 
image matrix should be transmitted from CPU 
memory to the GPU memory and then steps 1 and 
2 should be performed by the GPU cores. Next, 
the results are written back to the CPU memory, 
performing steps 3 and 4. Considering execution 
times of 4 steps as well as the data transmitting 
overhead, the total required times and acquired 
actual speedups for constructing rich models are 
listed in Table IV.

Table IV reveals that the actual speedups 
obtained by our proposed scheme are about 10x 
and 12x for gray-scale images of size 256×256 
and 512×512 respectively. Also, in compared 
with multi-threaded CPU implementation, our 
scheme reaches up to 5x-6.2x speedups for 
gray-scale images of size 256×256 and 512×512 
respectively.   

In fact, with reduction of parallelization degree 
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in step 2 (due to memory access constraint), the 
overall performance of the parallel scheme is 
degraded, significantly. However, due to the 
excellent results of the step 1, the proposed 
scheme is efficient for computing rich models 
which is a computationally intensive process.

 

V. CONCLUSIONS AND FURTHER WORKS

Steganalysis of digital images requires a 
learning process, where thousands stego or clear 
images are analyzed, to extract the features 
that can show existence of a secret message in 
an image. When the number and dimensions 
of the images are increased, significant growth 
is seen in the processing time. Furthermore, a 
comprehensive approach for steganalysis extracts 
more than 34000 features for each image [9].

To address the illustrated problem, a 

parallelization scheme for the algorithm 
introduced in [9] was presented in this article. 

We discussed that the algorithm has 4 steps, 
such that execution times of two last steps are 
ignorable compared to two others. Thus, we 
offered a pixel-level parallelization scheme for 
step 1, so that M×N parallel threads are defined 
to compute the residuals. To optimize CUDA 
implementation of the step, we suggested that 
before calculating residuals, each pixel and its 
adjacents are registered, significant reducing in the 
total number of memory accesses. Furthermore, 
we offered a residual-level parallelization 
scheme for step 2, so that 458 parallel threads are 
defined to compute the co-occurrences. Also, we 
demonstrated that in the implementation, due to 
memory bandwidth constraints, we should use 
the limited number of parallel threads for the step 
2.  

Experimental results showed that our 

Table II: Time comparison of serial and parallel implementations of steps 1 and 2 of the SRM algorithm

Image 
size 

Step 1 (second) Step 2 (second) 

Single 
thread 

on
CPU 

Multi 
threaded 
on CPU 

Proposed 
parallel scheme 
on GPU using 

CUDA 

Speedup 
GPU over 

single-
thread CPU 

Speedup 
GPU over 

multi-
threaded 

CPU 

Single 
thread on 

CPU 

Multi 
threaded 
on CPU 

Proposed 
parallel scheme 
on GPU using 

CUDA 

Speedup 
GPU over 

single-thread 
CPU 

Speedup 
GPU over 

multi-
threaded 

CPU

256×256 14.67 6.85 0.128 114.61 53.52 5.692 2.93 1.42 4.01 2.06 

512×512 56.05 27.46 0.55 101.91 49.93 22.64 13.01 5.61 4.04 2.32 

Table III: Optimal dimensions of CUDA grid and CUDA block in this work
Step 1 Step 2 

      grid    block    grid    block 

M/8 - N/16     8-16     4-1       8-4 

Table IV: Total execution time (including overheads) of serial and proposed parallel implementations to construct rich 
models

Image 
size 

Single thread on   
CPU (second) 

Multi threaded on 
CPU (second) 

Proposed parallel 
scheme on GPU using 

CUDA (second) 

Speedup GPU 
over single-
thread CPU 

Speedup GPU 
over multi-

threaded CPU 

256×256 20.76 10.19 2.04     10.18 4.99 

512×512 79.19 40.87 6.59 12.01 6.2 
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proposed parallelization scheme offers more 
than 101x speedup for the step 1 and   about 4x 
speedup for the step 2. In total, with considering 
data transmission overheads, our parallel 
implementation achieves 10x and 12x speedups 
for gray-scale images of size 256×256 and 
512×512 respectively. Moreover, our proposed 
CUDA-based approach is superior to multi-
threaded CPU implementation.

The utilized GPU model for our 
implementations in this work was Geforce GT 
540M. It is evident that with state of the art and 
more power full GPUs, a significant growth in 
achieved speedups are expected, especially for 
the step 2, where the number of parallel threads 
can be increased. 

The steganalysis methodology presented in 
[9] is efficient for steganography algorithms that 
address spatial domain. For future work, we will 
introduce parallelization methods to accelerate 
a steganalysis algorithm that address frequency 
domain.

Further, a hardware and parallel architecture 
will be designed for the steganalysis process. The 
architecture can offer a significant throughput 
and will be implemented on FPGA.
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