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Abstract — Proportional + Integral + Derivative 
(PID) controllers are widely used in engineering 
applications such that more than half of the 
industrial controllers are PID controllers. There 
are many methods for tuning the PID parameters in 
the literature. In this paper an intelligent technique 
based on eXtended Classifier System (XCS) is 
presented to tune the PID controller parameters. 
The PID controller with the gains obtained by the 
proposed method can robustly control nonlinear 
multiple-input–multiple-output (MIMO) plants 
in any form, such as robot dynamics and so on. 
The performance of this method is evaluated 
with Integral Squared Error (ISE) criteria which 
is one of the most popular optimizing methods 
for the PID controller parameters. Both methods 
are used to control the ball position in a magnetic 
levitation (MagLev) system and the performance 
of controllers are compared. Matlab Simulink 
has been used to test, analyze and compare the 
performance of the two optimization methods in 
simulations.

Keywords — Artificial Intelligence; Extended 
classifier system; Magnetic levitation; PID 
controller tuning

 I. INTRODUCTION

Proportional + integral + derivative (PID) 
controllers are extensively used in the industry. In 
2001, it was estimated that more than 90% of all 
control loops involved PID controllers [1]. Today 
this proportion decreased to more than 50% but 
still PID controller is the most popular controller 
in the industry. The simplicity, transparency, 
reliability and high efficiency are the most 
important reasons for this widespread popularity 
[2].In the absence of underlying process 
knowledge, a PID controller has traditionally 
been considered to be the best controller [3]. 
The drawbacks of this control technique, mostly 
for nonlinear systems, include the difficulty in 
selecting appropriate controller gains, a procedure 
which usually referred to as tuning. The difficulty 
usually lies in the fact that if the controller gains 
are set too small, the control objective may never 
be reached, whereas the selection of excessively 
large controller gains may result in system 
instability [4]. When a mathematical model 
of a system is available, the parameters of the 
controller can be basically determined. However, 
when a mathematical model is not available the 
parameters must be determined experimentally. 
Controller tuning is the process of determining 
the PID parameters which generate the desired 
output. Controller tuning allows for optimization 
of a process and minimizes the error between the 
process output and its desired value (i.e. the set 
point).

One of the most well-known criteria for 
optimizing the PID parameters is the integral 
of the squared error (ISE) criteria since the 
relevant integral can easily be evaluated in the 
frequency domain. This criteria is used when the 
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mathematical model of the system is available 
[5].

There are several methods in the literature for 
tuning the PID parameters, which include some 
modern techniques. Ang et al presented a modern 
overview of functionalities and tuning methods, 
software packages and commercial hardware 
modules [6]. Pyung et al presented asystematic 
method to select gains of a discrete PID controller 
[7]. Coelho et al used a chaotic optimization 
approach based on Lozi map for tuning the 
PID parameters [8]. He et al presented a new 
optimal PI/PID controller tuning algorithms via 
LQR approach [9].Awouda et al demonstrated 
an efficient method of tuning the PID controller 
parameters using the optimization rule for ITAE 
performance criteria [10].Bagis presented an 
efficient and fast tuning method based on a 
modified generic algorithm structure to find the 
optimal parameters of the PID controller [11]. 
And Stephen et al formulate multi-input multi-
output proportional integral derivative controller 
design as an optimization problem [12].

There are many methods to control ball 
position in the magnetic levitation that presented 
in the literature. These controllers include 
classical PID, feedback linearization, state 
feedback etc. In this paper, first the ISE criteria 
for PID tuning is applied to magnetic levitation 
(MagLev) system, referred to as ISE-PID system. 
This controller is designed within MATLAB. 
Next a new PIDtuning method based on artificial 
intelligence is presented. XCS (eXtended 
Classifier System) approach is used to adjust 
the parameters.The position of the ball in the 
magnetic levitation system is controlled by XCS 
tuned PIDgains, referred to as XCS-PID system.
This method is implemented in the system 
using MATLAB programming and Simulink. 
Finallytheperformances of ISE-PID and XCS-
PID systemsare compared.

The paper is outlined as follows: In Section 2 a 
general description of magnetic levitation system 
and its mathematical model is described. Details 
of XCS algorithm are presented in Section 3. The 
simulations to achieve the objectives of the paper 
are presented in Section 4 and finally concluding 
remarks are presented in Section 5.

II. MAGNETIC LEVITATION AND 
MATHEMATHICAL MODEL

Magnetic levitation (MagLev) is a system 
using electromagnetic forces to suspend a 
ferromagnetic object in the air without any 
contact. The electromagnetic forces overcome the 
effect of gravity and provide stable equilibrium 
of the object.

In this section we describe the physical system 
briefly, which is the foundation of this research, 
followed by corresponding mathematical model 
of MagLev. By assuming linear characteristics of 
used materials, the magnetization density solely 
on the magnetic field density [13]. The beneath 
function can approximate magnetic flux

𝜆𝜆𝜆𝜆(𝑡𝑡𝑡𝑡) ≜ 𝜆𝜆𝜆𝜆�𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡),𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)� = 𝐿𝐿𝐿𝐿�𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)�. 𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡)           (1)

where i(t) indicates the current through the 
solenoid, and x(t) denotes the displacement of 
levitation object compared to solenoid bottom. 
L(x) indicates the total inductance and by 
assumption of being a function of x(t) has the 
following form [14]

𝐿𝐿𝐿𝐿(𝑥𝑥𝑥𝑥) = 𝐿𝐿𝐿𝐿1 +
𝐿𝐿𝐿𝐿0

1 + (𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)
𝑎𝑎𝑎𝑎 )

                     (2)

where L0 = L(0) - L(∞) ,  L1=L(∞) and a is a 
constant coefficient.

According to the electromagnetic theory [12], 
the magnetic co-energy,W is described by:

𝑊𝑊𝑊𝑊(𝑡𝑡𝑡𝑡) = � 𝜆𝜆𝜆𝜆�𝑖𝑖𝑖𝑖,̅ 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)�𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖̅
𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡)

0
            (3)

By inserting (1) and (2) into (3), we conclude:

𝑊𝑊𝑊𝑊(𝑡𝑡𝑡𝑡) =
1
2
�𝐿𝐿𝐿𝐿1 +

𝐿𝐿𝐿𝐿0

1 + �𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)
𝑎𝑎𝑎𝑎 �

� 𝑖𝑖𝑖𝑖2(𝑡𝑡𝑡𝑡)                 (4)

The magnetic force, f(t) is obtained from the 
magnetic co-energy by

𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡) =
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡)
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎

                                  (5)
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By neglecting the air friction, the dynamics of 
the levitation object is determined by Newton’s 
second law as

𝑚𝑚𝑚𝑚
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥2(𝑡𝑡𝑡𝑡)
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡2 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 −

1
2

𝐿𝐿𝐿𝐿0 𝑖𝑖𝑖𝑖2(𝑡𝑡𝑡𝑡)

𝑎𝑎𝑎𝑎 �1 + 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)
𝑎𝑎𝑎𝑎 �

2       (6)

where m and g denotes the mass of the 
levitation object and the gravity acceleration 
respectively.

Denote the coil resistance as R and the input 
voltage to the coil asu(t). From circuit analysis of 
the electromagnet part, we have

𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡𝑡𝑡) +
𝑑𝑑𝑑𝑑(𝐿𝐿𝐿𝐿(𝑥𝑥𝑥𝑥)𝑅𝑅𝑅𝑅(𝑡𝑡𝑡𝑡))

𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡                         (7)

By substituting Eq. (2) into the above Eq. (7), 
we have:

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡)
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

=
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅(𝑡𝑡𝑡𝑡)

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(0) + 𝑎𝑎𝑎𝑎1𝑅𝑅𝑅𝑅(𝑡𝑡𝑡𝑡)
𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡)

+
�𝑎𝑎𝑎𝑎 + 𝑅𝑅𝑅𝑅(𝑡𝑡𝑡𝑡)��𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(0) + 𝑎𝑎𝑎𝑎1𝑅𝑅𝑅𝑅(𝑡𝑡𝑡𝑡)�

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎0
𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡)

𝑑𝑑𝑑𝑑𝑅𝑅𝑅𝑅(𝑡𝑡𝑡𝑡)
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

+
𝑎𝑎𝑎𝑎 + 𝑅𝑅𝑅𝑅(𝑡𝑡𝑡𝑡)

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(0) + 𝑎𝑎𝑎𝑎1𝑅𝑅𝑅𝑅(𝑡𝑡𝑡𝑡)
𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡)

           (8)

Eqs. (6) and (8) describe the mathematical 
model of Magnetic Levitation system. This 
model is used for simulation of the response of 
the physical system. Before the simulation of the 
system we determine the specific coefficients used 
in the model. These coefficientsare chosenfrom a 
real existing system [15] and represented in Table 
1.

By using the coefficients in Table 1, the 
magnetic levitation system is simulated in 
MATLAB. Fig. 1 shows simulator is used for 
applying our method of control to the MagLev 
system.

Table 1. Constant coefficients.
Description Symbol Value Unit

coil inductance L(0) 2 × 10−3 H

coil resistance R 0.8 Ω

mag. inductance L0 16.7 × 10−3 H

mag. ind.coeff. a 1.18 m

mass of object m 4.16 × 10−3 Kg

 

Fig. 1. Simulation of the MagLev system.

III. XCS (ExTENDED CLASSIFIER 
SYSTEM)

The XCS is a rule-based system in which 
each rule has a condition, action and set of 
parameters: prediction, fitness, prediction error 
and experience. The complete set of rules form 
the population. The rules whose conditions match 
the input data form a match set. In the match set 
each rule has an action and the different actions 
available in the match set, form the action set. A 
roulette wheel mechanism is used to choose an 
action. Then the action is sent to the environment 
and according to the system response a reward 
is received. Reinforcement learning is applied to 
the action set to update the parameters according 
to the reward. A genetic algorithm runs on the 
population to guide the search for better rules.
XCS learns repeatedly in order to evolve the rule 
population [16, 17].

Step1. XCS initialize the population with 
2000 rules randomly. The condition part of each 
rule is the position of ball and the action is the 
PID gains.

Step2. At each stagethe system receives the 
ball position as an input and forms the match set 
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[M].
Step3. If [M] contains less than qmin 

mindifferent actions covering classifiers are 
created with a condition that matches the current 
input and a random action is selected from among 
those not in [M]. Specially, each attribute in the 
condition of covering classifier is set to # with a 
probability of P# and to the corresponding input 
symbol, otherwise.

Step4. For each action a in [M], XCS computes 
the system prediction P(a), which is an estimate 
of the payoff that the system expects when action 
a is performed. It is computed by the fitness-
weighted average of all matching classifiers that 
specify action a.

𝑝𝑝𝑝𝑝(𝑎𝑎𝑎𝑎) =
∑ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 𝑝𝑝𝑝𝑝 × 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 𝐹𝐹𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.𝑎𝑎𝑎𝑎=𝑎𝑎𝑎𝑎∧𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐∈[𝑀𝑀𝑀𝑀]

∑ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 𝐹𝐹𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.𝑎𝑎𝑎𝑎=𝑎𝑎𝑎𝑎∧𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐∈[𝑀𝑀𝑀𝑀]

                (9)

where cl.a is the action, cl.p is the prediction 
and cl.F is the fitness of classifier cl. The different 
values of P(a) form the prediction array. XCS 
selects an action by roulette wheel mechanism 
and the rules that indicate the selected action 
form the action set.

Step5. XCS selects a classifier from the action 
set by a fitness-proportionate roulette wheel. The 
selected classifier is sent to the environment.

Step6. At the end of each stage, the position 
of ball is considered as the initial position for the 
next stage and steps 1 to 5 are repeated.

Step7. After five stages, the overall response 
is compared with the system that is tuned by ISE 
method. If two response parameters, settling time 
and overshoot, was enhanced, the reward R is 
returned to the five selected classifiers.

Step8. The experience of selected classifiers 
is updated as follows:

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ← 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 1                (10)

XCS uses the reward R to update the 
parameters of the selected classifiers. Initially, 
the classifier prediction is updated as follows:

� 𝑝𝑝𝑝𝑝 ← 𝑝𝑝𝑝𝑝 +
𝑅𝑅𝑅𝑅 − 𝑝𝑝𝑝𝑝
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝 <
1
𝛽𝛽𝛽𝛽

𝑝𝑝𝑝𝑝 ← 𝑝𝑝𝑝𝑝 + 𝛽𝛽𝛽𝛽(𝑅𝑅𝑅𝑅 − 𝑝𝑝𝑝𝑝) 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
           (11)

where β (0<β<1) denotes the learning rate. 
Next, the prediction error is updated:

� 𝜀𝜀𝜀𝜀 ← 𝜀𝜀𝜀𝜀 +
(|𝑅𝑅𝑅𝑅 − 𝑝𝑝𝑝𝑝| − 𝜀𝜀𝜀𝜀)

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝 <

1
𝛽𝛽𝛽𝛽

𝜀𝜀𝜀𝜀 ← 𝜀𝜀𝜀𝜀 + 𝛽𝛽𝛽𝛽(|𝑅𝑅𝑅𝑅 − 𝑝𝑝𝑝𝑝| − 𝜀𝜀𝜀𝜀) 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
           (12)

The update of classifier fitness F is slightly 
more complex. First, the classifier accuracy κand 
the classifier relative accuracy κ’ are computed 
as

𝜅𝜅𝜅𝜅 = �
1 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝜀𝜀𝜀𝜀 < 𝜀𝜀𝜀𝜀0

𝛼𝛼𝛼𝛼 �
𝜀𝜀𝜀𝜀
𝜀𝜀𝜀𝜀0
�
−𝜐𝜐𝜐𝜐

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
                       (13)

𝜅𝜅𝜅𝜅 = �
1 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝜀𝜀𝜀𝜀 < 𝜀𝜀𝜀𝜀0

𝛼𝛼𝛼𝛼 �
𝜀𝜀𝜀𝜀
𝜀𝜀𝜀𝜀0
�
−𝜐𝜐𝜐𝜐

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
                     (14)

The parameter ε0 (ε0>0) controls the tolerance 
for prediction error ε; the parameter α (0<α<1) and 
the parameter υ (υ>0) are constants controlling 
the rate of decline in accuracy κ when ε0 is 
exceeded. If the prediction error ε is below the 
threshold ε0 the classifier is said to be accurate (it 
has accuracy=1); otherwise, the accuracy κ drops 
off quickly, dependent on the values of α and υ. 
The accuracy values of the rules in the action 
set of each stage are used to calculate relative 
accuracy κ’. Finally, classifier fitness is updated 
toward the classifier’s current relative accuracy 
as follows:

𝐹𝐹𝐹𝐹 ← 𝐹𝐹𝐹𝐹 + 𝛽𝛽𝛽𝛽(𝜅𝜅𝜅𝜅′ − 𝐹𝐹𝐹𝐹)                         (15)

Step9. If the average time since the last GA 
to the classifiers exceeds a threshold qGA, a GA 
is applied to the set of classifiers which formed 
the action set in each stage. The GA selects two 
parental classifiers with probability proportional 
to their fitness inversely. Two offspring are 
generated by crossing and mutating the parents. 
Two classifiers with highest experience and 
lowest fitness are deleted from the population and 
the offspring are inserted to the population.

IV. RESULTS AND SIMULATION STUDY

The mathematical dynamic model of the 
magnetic levitation system as well as the PID 
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controller has been developed in MATLAB 
Simulink for simulation. The Kp,Ki and Kd 
parameters of the PID controller which used 
in the Simulink have been generated by using 
the MATLAB programming (XCS algorithm). 
The XCS-PID system use five different PID 
controllers for one initial situation. These PID 
controllers are selected among of hundreds of 
PID controllers which have maximum strength. 

To adjust classical PID controller gains, ISE 
criteria is used. Due to this criteria PID gains are 
chosen as Kp=1455, Ki=2314 and  Kd=26 for the 
MagLev system. These gains are constant along 
the whole ten 10 second simulation and for every 
initial situation. Response of the MagLev system 
with this PID controller for four different initial 
situations is shown in Figs. 2-5. Subsequently we 
run our XCS algorithm offline, then we used the 
attained PID controllers for our simulation and the 
consequent responses will be shown for the same 
initial situations. The system simulation with the 
XCS-PID tuning shows smaller overshoot and 
better settling time rather to ISE-PID.

In the first simulation, we put the levitation 
mass5 centimeters below the solenoid. Responses 
of the ISE-PID and XCS-PID systems will be 
shown by dashed lines and solid lines respectively 
in the figures. Parameters of the five rules chosen 
for the controller are listed in Table 2.

Table 2. Parameters of chosen rules in five stages
N Rule Strength Predic

tion Error Experience

1 636 731.99772 50 2.00e-323 14930

2 1122 623.81954 50 2.00e-323 12570

3 737 392.19494 50 2.00e-323 13719

4 309 385.12840 50 2.00e-323 13564

5 347 425.14672 50 2.00e-323 13823

And so on for three another initial situations 
we used same approach and the figures will show 
performances.

 

Fig. 2. The levitaion mass control by using ISE criteria 
(dashed line), settling time is 0.7112 (s) and overshoot is 
7.5153%. and by using XCS algorithm (solid line) settling 
time is 0.5782 (s) and overshoot is 0.0605%.

 

Fig. 3. The levitaion mass control by using ISE criteria  
(dashed line), Settling time is 0.6902 (s) and overshoot is 
7.0263%. and by using XCS algorithm (solid line) settling 
time is 0.5484 (s) and overshoot is 0.0543%.

 

Fig. 4. The levitaion mass control by using ISE criteria 
(dashed line), Settling time is 0.6514 (s) and overshoot is 
7.5935%. and by using XCS algorithm (solid line) settling 
time is 0.5619 (s) and overshoot is 0.0757%.

Fig.5. The levitaion mass control by using ISE criteria 
(dashed line), Settling time is 0.7112 (s) and overshoot is 
7.5153%. and by using XCS algorithm (solid line) settling 
time is 0.5782 (s) and overshoot is 0.0605%.
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V. CONCLUSION

An eXtended Classifier System (XCS) 
was presented which was used to tune the PID 
controller parameters offline. The PID controller 
was then applied to control the ball position in a 
magnetic levitation system. During the training 
phase, the PID parameters were selected by the 
XCS system according to the ball position. The 
closed loop response of the presented method 
was compared with the system in which the PID 
parameters were tuned by integral of squared of 
error (ISE) criteria. At the end of training mode, 
the responses were compared where the XCS 
system led to a better performance having less 
overshoot and less settling time.
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