
 Journal of Advances in Computer Engineering and Technology, 3(1) 2017

Dynamic Replication based on Firefly Algorithm
in data Grid

Mehdi Sadeghzadeh1

Received (2016-06-19)
Accepted (2017-01-16)

Abstract - In data grid, using reservation is
accepted to provide scheduling and service quality.
Users need to have an access to the stored data in
geographical environment, which can be solved
by using replication, and an action taken to reach
certainty. As a result, users are directed toward
the nearest version to access information. The
most important point is to know in which sites
and distributed system the produced versions are
located. By selecting a suitable place for versions,
the versions having performance, efficiency
and lower access time are used. In this study, an
efficient method is presented to select the best place
for those versions created in data grid by using the
users’ firefly algorithm which is compared with two
algorithms. Results show that firefly algorithm has
better performance than others.

Index Terms - data grid, data replication, firefly
algorithm.

I. INTRODUCTION

GRID technology which its first steps taken
from 1996 for the next generation Internet,

is the result of cooperative efforts of America
state universities, scientific centers as well as
individual companies. This phenomenon with the
best and fast search possibilities, and very high
speed and strong possibilities for all types of
scientific research is considered as a competent
alternative for the internet. Internet network
provides the processed information to the people
but grid gives raw information, computing
power, sensors and laboratory systems and it
converts internet from a static environment to a
programmable and dynamic environment. On the
other hand, grid technology, in contrast to the web
which is a service for exchanging information
in internet, is a software service for sharing
computing power and data storage space between
computers connected to the internet and its final
target is creating a global broad computing and
information.

Grid computing, for the first time, was
presented about the distributed resource and
solved complicated problems in dynamic
environment for scientific problems. [1] Grid is
a heterogeneous distributed environment. Grid
computing is a software and hardware structure
providing cheap comprehensive and stable
availability to the existing computing resources in
the network based on the descriptions presented
later by different people for grid. Resource
subscription problem and problem solving are
considered in grid. The most important problem
proposed here is resource subscription. It is
worth mentioning that resource subscription does
not mean direct file exchange but the possibility

1- Department of Computer Engineering, Mahshar Branch,
Islamic Azad University, Mahshahr, IRAN.(sadegh_1999@
yahoo.com)

32				 Journal of Advances in Computer Engineering and Technology, 3(1) 2017

of easy availability to the network computers and
using computing power and other feasibilities by
which the intended subscriptions are considered.
[2]

In this study, the data grid is investigated and
a new method is proposed for file management
and placing version for the purpose of increasing
efficiency and confidence in data grid.

II. LITERATURE REVIEW

As far as Grid is concerned, in addition to
users, jobs also need different data accessibility.
Nay work could be the applicant of several files.
Certainly, if the requested work was in local
place, i.e. in the site, the response time could
be zero. Otherwise, the requested file must be
transferred from the site to the requested place. In
[3] three algorithms introduced for the problem
of data placement:

1) Greedy Algorithm: In this method, a version
selected until the optimal solution is found. In the
first step, each site is evaluated individually and
selected by the less cost (TC1). Then, the second
version is selected by comparing to the first
version and finally (TC2) it becomes minimal.
The process is continued until j was found in
such a way that (TCj-1<TCj<TCj+1). In this case,
the final cost equals to TCj and j is the number of
versions.

2) Centralized Area Algorithm. In comparison
to the previous method, this algorithm is different
in selecting the best candidate of any step by the
greedy method. In this method, the existing traffic
of each site is calculated in its site neighborhood.
Then, the selected sites are determined by the
most numbers of requests and its final cost is
calculated (TC1). Then, it is operated as greedy
algorithm.

3) Output Density Maximum Algorithm: In
this method, the sites are selected by maximum
density and in any stage, the final cost is
calculated. This operation is repeated until a
special condition is reached.

In [4] without considering the storage resource
cost of different networks such as (loop, tree, etc)
optimal algorithm and efficiency are presented
for data placement and in [5] the dynamic method
is presented based on availability weight of any
version. Chang prioritized any version according
to the weight and the files used more previously,
are applied more now. There are two types of
propagation in Grid including static and dynamic

type.
Foster and Ranganathan [6] proposed six

distinct replica strategies : (No Replica, Best
Client, Cascading Replication, Plain Caching,
Caching plus Cascading Replica and Fast
Spread) for multi-tier Data Grid. The results of
simulations indicate that different access pattern
needs different replica strategies. Cascading and
Fast Spread performed the best in the simulations.
Also, the authors combined different scheduling
and replication strategies.

Rahman et al. [7] proposed an algorithm for
replica selection by using a simple techniques
called K-Nearest Neighbor (KNN). The KNN
rule choose the best replica for a file by using
previous file transfer logs. They also suggested
a predictive way to estimate the transfer time
between sites and decreased the prediction error
as reported by using Neural Network techniques.
Accordingly, one site can request the replica from
a site which has minimum transfer time.

In [8] the authors presented a data replication
strategy that has a provable theoretical
performance guarantee and can be implemented
in a distributed and practical manner. They also
proposed a distributed caching strategy, which
can be easily adopted in a distributed system such
as Data Grids. The key point of their distributed
strategy is that when there are several replicas,
each Grid site keeps track of its closest replica
site. This can dramatically enhance Data Grid
performance because transferring large-sized files
is time and bandwidth consuming [9]. The results
of simulation demonstrated that the distributed
replication algorithm significantly outperforms
a popular existing replication strategy under
various network parameters.

Tang et al. [10] presented Simple Bottom-
Up (SBU) and Aggregate Bottom-Up (ABU)
strategies to improve the average data access
response time for a multi-tier data grid. The main
idea of the two strategies is to store a replica to
nodes close to its requesting clients when the file’s
access rate is higher than a pre-defined threshold.
SBU uses the file access history for each node,
but ABU aggregates the file access history for a
system. With ABU. A node transmits aggregated
historical access records to its top tiers, and the
top tiers do the same until these records reach
the root. The results show that ABU improves
job response time and bandwidth consumption
better than those of SBU because its aggregation
capability.

Journal of Advances in Computer Engineering and Technology, 3(1) 2017					 33

Andronikou et al. [11] proposed a set of
interoperable new data replication strategies that
take into account the infrastructural constraints
as well as the ‘importance’ of the data. The
presented system is scalable and the strategies
can be easily implemented on a Grid environment
to provide fast execution. The proposed QOS-
aware dynamic replication strategy determines
the number of replicas required based on data
request, content importance and requested QOS.
It also places of the new replicas within the Grid
environment according to the network bandwidth
and the overhead that the replication technique
presents. It can handle the dynamicity of the Grid
system by increasing or decreasing the set of data
replicas based on the number and the geography
of the data demands.

Lee et al. [12] presented an adaptive data
replication strategy for a star-topology Data
Grid, called the Popular File Replicate First
algorithm (PFRF). It periodically computes file
access popularity to track the changes of users’
access behaviours, and then replicates popular
files to suitable clusters/sites to adapt to the
variation. They considered several types of files
access behaviors, including Zipf-like, geometric,
and uniform distributions, to evaluate PFRF.
The simulation results demonstrate that PFRF
can reduce average job turnaround time and
bandwidth consumption.

Saadat et al. [13] presented a new dynamic data
replication strategy which is called Pre-fetching
based Dynamic Data Replication Algorithm in
Data Grids (PDDRA). PDDRA predicts future
requires of Grid sites and pre-replicates them
before needs are requested. This prediction is
done based on the past file access history of the
Grid sites. So when a Grid site requests a set
of files, it will get them locally. The simulation
results show that this strategy improves in terms
of job execution time, effective network usage,
number of replications, hit ratio and percentage
of storage filled.

Taheri et al. [14] proposed a new Bee
Colony based optimization strategy, called Job
Data Scheduling using Bee Colony (IDS-BC).
IDS-BC has two collaborating operations to
efficiently schedule jobs onto computational
elements and replicate data sets on storage
elements in a system so that the two independent,
and in many cases conflicting, objectives (i.e.
make-span and transfer time of all data files) of
such heterogeneous systems are concurrently

decreased. Three tailor-made test Grids varying
from small to large are applied to evaluate the
performance of JDS-BC and compare it with
other strategies. Results showed that JDS-BC’s
superiority under different operating scenarios.
JDS-BC also presented a balanced decision
making behavior, where it occasionally relaxes
one of its objectives (e.g. transfer time) to obtain
more from optimizing the other one (e.g. , make
span).

Mansouri and Dastghaibyfard [15] presented
a Dynamic Hierarchical Replication (DHR)
strategy that store replica in suitable sites where
the particular file has been accessed most, instead
of storing file in many sites. It also decreases
aceess latency by selecting the best replica when
different sites hold replicas. The proposed replica
selection strategy chooses the best replica location
for the users’ running jobs by considering the
replica requests that waiting in the storage and
data transfer time. The simulation results show,
it has less job execution time in comparison with
other strategies especially when the Grid sites
have comparatively small storage size.

Mansouri and Dastghaibyfard [16] presented
a Modified Dynamic Hierarchical Replication
(MDHR) replaces replicas based on the last time
the replica was requested, number of access, and
size of replica. MDHR selects the best replica
location from among the many replicas based
on response time that can be determined by
considering the data transfer time, the storage
access latency, the replica requests that waiting
in the storage queue, the distance between nodes
and CPU process capability. Simulation results
utilizing the OptorSim show MDHR achieves
better performance overall than other strategies
in terms of job execution time, effective network
usage and storage usage.

The purpose of static propagation is load
balance optimization and certain ability which
is propagated in different places during data
initiation and does not change by load amount
alteration. Grid environment is a dynamic one and
static method is not optimal in this environment
while it is used due to its algorithm facility.

In dynamic method is more efficient than static
method, as the existing resources are considered
as a current mode while it has not been used due
to the complexity of foundation. In this case, the
decision made for data propagation operations
is based on factors such as file size, network
delay, system certain liability, network band

34				 Journal of Advances in Computer Engineering and Technology, 3(1) 2017

and network delays and in [6] a combination of
greedy and genetic methods have been used.

III. FIRFLY ALGORITHM

Firefly Algorithm is a type of algorithm
obtained from nature and collective smart
algorithm which is presented by yang (2008).
This algorithm is a modern technique based
on collective behaviors inspired from firefly
collective intelligence, which is a type of artificial
intelligence method for the social behaviors
in the nature based on collective behaviors in
neutralized and self-organized foundations.
Fireflies generate rhythmic and short beams.
Optical patterns of each firefly are differentiated
from other patterns. Fireflies use these beams
for two main reasons including pair attraction
process and attracting hunt. Moreover, these
beams are used as a protection mechanism for
fireflies. Rhythmic beams and rate of radiation
and interval rate between light signals lead to
the absorption of two genders. Any particle of
a firefly in multidimensional search space is
updated by absorbing dynamically based on the
knowledge of firefly and its neighbors.

Firefly optimization algorithm could be stated
as follows: [17]

•	 All fireflies are single- gender and the
factor of pairs’ attractiveness is not related
to their gender.

•	 Each firefly attracts all fireflies and is
attracted by all fireflies.

•	 Attractiveness is related to their glow.
Therefore, for any pair of firefly, a worm
with less light attracted toward a worm
with more light. Attractiveness power
is related to their beam and the light
intensity is decreased by increasing the
distance between two fireflies. If a firefly
is not brighter than others, their movement
performed randomly.

•	 Brighter firefly moves randomly (all
fireflies could not attract them).

•	 Firefly brightness is determined by
objective function value. The problem of
light intensity could be determined easily
by target function.

•	 Firefly particles are randomly distributed
in search space based on the above
principles, and two main parts exist in
firefly algorithm, attracting firefly and
movement toward the attracted firefly.

General form of firefly algorithm is shown in
the Figure 1.

As it is evident from the figure, at first, primary
coordination, light intensity rate and the distance
between fireflies are determined in the search
area. The search procedure in firefly algorithm
is as follows: any firefly compared with others
individually. If any firefly has less light than the
compared one, it moves toward a firefly with
more light (the problem of finding maximum
point) and this process leads to the centralization
of the particles around a particle with more light.
Also, if there is a particle with more light in the
next generation of algorithm, the particles move
toward other particles again with more light. The
search stages must be generated related to the
maximum number of generation.

Firefly algorithm
Initialize algorithm parameters:
MaxGen: the maximum number of generations
Objective function of f () ,where T

dxxxX),,,(21 =
Generate initial population of fireflies or

niX i ,,2,1, =
Define light intensity of iI at iX via)(iXf
While (t<MaxGen)
For i=1 to n (all n fireflies);
For j=1 to n (all n fireflies)
If (ij II >), move firefly i towards j; end if
Attractiveness varies with distance r via Exp[γr2]
Evaluate new solutions and update light intensity;
End for j;
End for i;
Rank the fireflies and find the current best;
End while;
Post process results and visualization;
End procedure.

Fig. 1. Firefly algorithm

IV. PROPOSED ALGORITHM

Suppose that Grid environment is taken place
with the following elements and parameters:

•	 M: The site with computing elements and
separated storing in an election network
with point to point topology.

•	 Si ; th rate of site(i) storing capacity (
Mi ≤≤1)

•	 C(i,j) the cost of relation between Site i
to site j

•	 N The file with the names Nooo ,,, 21 

and volumes KOOO ,,, 21  and (
NK ≤≤1)

Journal of Advances in Computer Engineering and Technology, 3(1) 2017					 35

 Rik: number of site i requests for reading the
file k.

Wik: number of site i requests for writing file k.
Pk: For any file, there are several versions in

the sites and main version of the file Ok has been
shown with Pk .

RSk: Per any version Ok , the information is by
RSk.

In order to compatibility among versions, and
due to the change of Ok versions, alterations are
sent to Pk and then are operated from Pk toward
other versions.

Sik : The closest site is costly consisted of Ok
version toward site i

Suppose that Grid environment was an M×N

Matrix shape
A) Xik = 1 , if main version existed in site i.
B) Xik = 0 , if main version didn’t exist in site

i.
In order to find an appropriate and optimal

method in relation to the costs, the calculation of
cost function is very important.

The main purpose here is to reach the least
final cost as follows:

Minimize TC(X) (1)

Here, there are two limitations for the Matrix
X.

The total volume of the files and the existing
versions in site i should not be more than site i
capacity.

∑
=

≤
N

K
iKiK SOX

1
for all Mi ≤≤1 (2)

Therefore, the cost of reading and writing
regarding to RS are as follows. [18]

1=pKX for all NK ≤≤1 (3)

1 1 1 1
() (,)

M N M N

ik ik k ik
i k i k

R RS R o c i R
= = = =

= = ϒ∑∑ ∑∑ (4)

()
1 1 1 1 1

() , (,)
M N M N N

ik ik ik k ik
i k i k i k

W RS W W O C i P C P j
= = = = = =

 
= = + 

 
∑∑ ∑∑ ∑

 					 (5)

Equation (4) indicates the final costs of
reading all files in Grid theatrically.

It should be noted that site Sik responds to
those reading applications having the least cost.
In this study, the closest node was considered.

In equation (5), the writing cost is consisted
of two stages including writing in Pk and the cost
of publication from Pk to all sites including Ok
versions.

() () ()TC RS R RS W RS= + (6)

Figure 2 proposed the algorithm initiated
by an initial population in which any of these
particles represents a solution. Finally, creating
a solution is generated until a specified time is
expired. During the generation of any particle,
the superiority has been found by those particles
in any generation obtained from the best places
by using their personal experience and collective
intelligence. Finally, any particle has revealed its
place by any load. Here, in order to satisfy the
constraints, the adjustment function was used.
Adjustment algorithm code can be observed in
Figure 3. Finally, the best particle is selected as
the best solution.

Particle firefly()
{

For (p=1 ; p<= swarm-size;p++)
{ Generate particle Xp randomly

Generate initial xij
Xp= adjustment(Xp) }

Do {
For each particleXp {
Calculate fitness value of Xp using (1)

If fitness value is better then the best fitness
value {
Choose the particle with the best fitness value
For each particle Xp {
Generate particle xij

Update particle position
Xp= adjustment (Xp)
}
}
}
While (one of the termination condition is not satisfied)
Return best particle
}

Fig. 2. Proposed algorithm.

Journal of Advances in Computer Engineering and Technology, 3(1) 2017					 36

Particle adjustment (particle Xp)
For each file
j=(((p(k)-1)*N)+k);

Xpj=1;
}

s=1;
for each site i { if constraint no satisfy

j=(((i-1)*N)+1);
g=i*N;
while j<=g

if((a(j)==1)&&(i~=p(j-(i*N)+N)))
calculate ∆ci(j-iN+N)
diff1(s)=ch;
diff2(s)=j;
s=s+1;

end
end

end
sort(diff1)

while sum<=s(h)
j=diff2(s1);
x(j)=0;
s1=s1+1;

end
end

Fig. 3. Adjustment Algorithm.

V. SIMULATION

The method of showing ability of an algorithm
is evaluated according to other algorithms.

This process is performed by the aid of
simulation. In this study, MATLAB software was
used for simulation. Our algorithm was compared
by other similar ones by using propagation
method such as pso and simulated annealing.
The simulated Data have 10 to 150 nodes. The
network structure is E-shaped and node cost is
between 1to 10 indicating the interval among the
packets for reaching the objective. The least and
most value of files is 2k byte, and 7 megabyte,
respectively. The numbers of various process is
between 50 to 450. The initial site is considered
randomly and the file volume is considered to be
25% to 90%.

Figure 4 Results of the mentioned algorithm
simulations in networks shown with different
sizes.

Figure 5 indicates the middle rate of efficiency
for mentioned algorithm in different modes with
various parameters.

Fig. 4. The rate of final cost optimization with different

network size.

 Fig. 5. The rate of algorithm final efficiency in different
networks.

VI. CONCLUSION

Some experts in this field believe that Grid
technology is regarded as the second chance of
internet and has developed very fast and every
days, new issues are proposed or has expanded
the existing discussions. Data generation in a
distributed system is a method which guarantees
efficiency optimization of systems. In Data
generation, we need number and place of
determining versions. In this study, by using cost-
based method, a new algorithm was presented.
The supposed algorithm presents more optimized
results for investigated algorithms.

Journal of Advances in Computer Engineering and Technology, 3(1) 2017					 37

REFERENCES

[1] Foster I., Kesselman C, 2004, The Grid Blueprint for
a new computing infrastructure. Morgan Kaufman.

[2] Tanenbaum A S., Van Steen M., 2007, Distributed
systems Principles and Paradigms. Prentice Hall.

[3] Yang m., Fei Z. , 2003, A Model for Replica
placement in Content Distribution Networks for
Multimedia Application, IEEE international conference on
communication, Vol. 1, pp. 557-561.

[4] Wolfson o., Milo, A, 1991, The Multicast Policy and
Its Replicated Data Placement, ACM Transaction Database
systems, Vol. 16, No.1, pp. 181-205.

[5] Chang R, Chang H. , 2008, A dynamic weighted
data replication strategy using access-weights in data grids.
Journal of Supercomputing.45: pp. 277-295.

[6] Ranganathan K. and Foster I, 2001, Identifying
dynamic replication strategies for a high-performance
data grid, Proceedings of International Workshop on Grid
Computing, pp. 75–86.

[7] Rahman R. M., Barker K. and Alhajj R., 2008,
Replica selection strategies in Data Grid, Journal of parallel
and distributed computing, Vol. 68, pp. 1561-1574 .

[8] Nukarapu D. T. , Tang B., Wang L., Lu S., 2011,
Data replication in data intensive scientific applications with
performance guarantee, IEEE Transactions on parallel and
distributed system, Vol. 22, No. 8, pp. 1299-1306.

[9] Chevenak A., Schuler R, Ripeanu M., Amer M. A.,
Bharathi S. , Foster I. and Kesselman C., 2009, The Globus
replica location service: design and experience, IEEE
Transaction on parallel and distributed systems, Vol. 20, pp.
1260-1272.

[10] Tang M., Lee B. S. , Yao C. K., and Tang X. Y.,
2005, Dynamic replication algorithm for the multi-tier Data
Grid, Future generation computer systems, Vol. 21, No. 5,
pp. 775-790.

[11] Andronikou V. , Mamouras K., Tserpes K., Kyriazis
D. and Varvarigou T., 2012, Dynamic Qos-aware data
replication in Grid environments based on data importance,
Future generation computer systems. Vol. 28, No.3, pp. 544-
553.

[12] Lee M. C., Leu F. Y., and Chen Y., PFRF, 2012, An
adaptive data replication algorithm based on startopology
Data Grids, Future generation computer systems, Vol. 28,
No. 7, pp. 1045-1057.

[13] Saadat N., Rahmani A. M., 2012, PDDRA: A new
pre-fetching based dynamic data replication algorithm in
Data Grids, Future generation computer systems, Vol. 28,
No.4, pp. 666-681.

[14] Taheri J., Lee Y. C., Zomaya A. Y. and Siegel H.
J., 2013, A Bee Colony base doptimization approach for
simultaneous job scheduling and data replication in Grid
environments, Computers & Operations Research, Vol.40,
No.6, pp. 1564-1578.

[15] Mansouri N. and Dastghaibyfard H., 2012, A
dyamic replica management strategy in Data Grid, Journal
of network and computer applications, Vol.35, No.4, pp.

1297-1303.
[16] Mansouri N. and Dastghaibyfard H., 2014,

Improving Data grids performance by using modified
dynamic hierarchical replication strategy, Iranian journal of
electrical &electronic engineering, Vol.10, No.1, pp. 27-37.

[17] Yang, x.s., 2009, firefly algorithm for multimodal
optimization, in: stochastic Algorithm foundations and
applications, SAGA, lecture notes in computer science.

[18] Manghui Tu, Member, Ieee, Peng Li, I-Ling Yen,
Member, Ieee, Bhavani Thuraisingham, Fellow, Ieee,
And Latifur Khan, Member, IEEE, 2010 , Secure Data
Objects Replication In Data Grid , IEEE Transactions On
Dependable And Secure Computing, Vol. 7, No. 1.

Journal of Advances in Computer Engineering and Technology, 3(1) 2017					 38

