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Abstract Bifurcations and chaotic behaviors of dust

acoustic traveling waves in magnetoplasmas with non-

thermal ions featuring Cairns–Tsallis distribution is

investigated on the framework of the further modified

Kadomtsev–Petviashili (FMKP) equation. The FMKP

equation is derived employing the reductive perturbation

technique (RPT). Bifurcations of dust acoustic traveling

waves of the FMKP equation is presented. Using the

bifurcation theory of planar dynamical systems, two new

analytical traveling wave solutions for solitary and periodic

waves are derived depending on the parameters a; a1; q; l

and U. Considering an external periodic perturbation, the

chaotic behavior of dust acoustic traveling waves is

investigated through quasiperiodic route to chaos. The

parameter q significantly affects the chaotic behavior of the

perturbed FMKP equation.

Keywords Dusty plasma � Traveling wave � Chaotic

behavior � Quasiperiodic route to chaos

Introduction

The physics of dusty plasmas is an important topic of

growing research which has gained more and more interest

over the last few decades not only from the academic point

of view, but also from the view of its new aspects [1] in

space and modern astrophysics, semiconductor technology,

fusion devices, plasma chemistry, crystal physics, and

biophysics. In 1989, Goertz [2] discussed collective effects

in dusty plasmas which affect various waves, such as

density waves in planetary rings and low-frequency plasma

waves. The authors described briefly the possibility of

charged grains forming a Coulomb lattice. Low tempera-

ture dusty plasmas is used in manufacturing of chips and

material processing [3, 4] in industry, which is one of the

greatest impacts on our everyday lives. Recently, a number

of laboratory experiments [5–7] have demonstrated that

highly ordered dust structures, i.e., dusty plasma crystals

are formed when Cc � 170. Because of different types of

dust charged grains in a plasma, a number of different

wave modes are introduced, for example, dust acoustic

mode [8], dust ion acoustic mode [9], dust lattice mode

[10], Shukla–Varma mode [11], dust Berstain–Green–

Kruskal mode [12] and dust drift mode [13]. Rao et al. [8]

investigated the existence of a new extremely low-phase

velocity dust acoustic waves (DAW) in an unmagnetized

dusty plasma. Many experimental and theoretical obser-

vations performed by Angelo [14], Barkan et al. [15, 16],

Nakamuro et al. [17] have confirmed the linear and non-

linear phenomena of both DAW and DIAW. Tomar et al.

[18] studied the reflection of ion acoustic soliton in an
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inhomogeneous dusty plasma having two temperature

electrons. Sabetkar and Dorranian [19] investigated the

effect of obliqueness and external magnetic field on the

characteristics of dust acoustic solitary waves in dusty

plasma with two temperature nonthermal ions. El-Hanbaly

et al. [20] studied the propagation of linear and nonlinear

dust acoustic waves in a homogeneous unmagnetized,

collisionless and dissipative dusty plasma consisted of

extremely massive, micron-sized, negative dust grains.

Tomar et al. [21] also investigated the evolution of solitons

and their reflection and transmission in a plasma having

negatively charged dust grains. Sabetkar and Dorranian

[22] investigated the nonextensive effects on the charac-

teristics of dust acoustic solitary waves in magnetized

dusty plasma with two temperature isothermal ions. Dor-

ranian and Sabetkar [23] studied the nonlinear dust

acoustic solitary waves in a dusty plasma with two non-

thermal ion species at different temperatures. The authors

showed the effects of nonthermal coefficient, ions tem-

perature, and ions number density on the amplitude and

width of soliton in dusty plasma. Shahmansouri and Tri-

beche [24] investigated nonlinear dust acoustic (DA) shock

waves in a nonextensive charge varying complex plasma

and found that the influence of nonextensive particles and

dust charge fluctuation affect the basic properties of the

collisionless DA shock wave drastically. Shahmansouri

and Mamun [25] carried out a theoretical investigation to

study the basic properties of dust acoustic (DA) shock

waves in a magnetized nonthermal dusty plasma containing

cold viscous dust fluid, nonthermal ions, and nonthermal

electrons. Shahmansouri and Borhanian [26] reported the

nonlinear aspects of nonplanar dust acoustic (DA) solitary

waves in an unmagnetized complex plasma comprising of

cold dust grains, kappa-distributed ions as well as

electrons.

There are some astrophysical and space plasmas envi-

ronments containing particles with distribution functions

which are quasi-Maxwellian up to the mean thermal

velocities and present non-Maxwellian nonthermal tails

when the particles gain high velocities and energies

[27–29]. These types of plasmas are known as nonthermal

plasmas which are observed in Mercury, in the solar wind,

Saturn and in the Magnetospheres of the Earth [29, 30].

Tribeche et al. [31] generalized the model of Cairns et al.

[32] and outlined a physically meaningful nonextensive

nonthermal velocity distribution. They [31] studied the ion

acoustic solitary waves in a plasma with nonthermal elec-

trons featuring Tsallis distribution (Cairns–Tsallis).

Recently, Williams and Kourakis [33] re-examined the

Cairns–Tsallis model for ion acoustic solitons and con-

cluded that the parameters q and a must be in the ranges

0� a\0:25 and 0:6\q\1 subject to the physical cutoff

imposed by the monotonicity condition a ¼ ð2q�1Þ
4

.

There are many important nonlinear dynamical systems

in physics, chemistry and biology which clearly display

different types of regular and chaotic behaviors depending

upon the strength of control parameters, initial conditions,

nature of external perturbation, and so on. Thus, to identify

whether a given motion of a dynamical system is periodic

or quasiperiodic or chaotic, one needs to perform quanti-

tative measures in addition to the various qualitative fea-

tures. Using numerical computations, some perturbed

nonlinear evolution equations (Sine-Gordon, KdV and

Schrodinger equations) have been investigated [34, 35].

But it is important to note that the presence of external

perturbations introduces different dynamic behaviors like

quasiperiodic behavior and chaotic behavior. Thus, addi-

tion of an external perturbation to a nonlinear integrable

wave equation may provide quasiperiodic and chaotic

motions. Considering an external perturbation, many

authors have investigated chaos through different routes,

such as, period doubling route [36] to chaos, quasiperiodic

route [37] to chaos, crisis route [38] to chaos and inter-

mittency route [39] to chaos.

Recently, Samanta et al. [40] studied bifurcations of

dust ion acoustic traveling waves in a magnetized dusty

plasma with a q-nonextensive electron velocity distribu-

tion using bifurcation theory of planar dynamical systems

for the first time in the literature. Later on, a number

works [41–45] on bifurcations of nonlinear waves in

plasmas have been reported through perturbative and

nonperturbative approaches. Saha and Chatterjee [46]

studied propagation and interaction of dust acoustic multi-

soliton in dusty plasmas with q-nonextensive electrons

and ions. Very recently, Saha et al. [47] investigated the

dynamic behavior of ion acoustic waves in electron–

positron–ion magnetoplasmas with superthermal electrons

and positrons in the framework of perturbed and non-

perturbed Kadomtsev–Petviashili (KP) equations. Ghosh

et al. [48] investigated the dynamic structures of ion

acoustic waves in an unmagnetized plasma with

q-nonextensive electrons and positrons applying the

bifurcation theory of planar dynamical systems. Sahu

et al. [49] studied the quasiperiodic behavior in quantum

plasmas due to the presence of bohm potential. Zhen et al.

[50] studied dynamic behavior of the quantum ZK equa-

tion in dense quantum magnetoplasma. But bifurcation

and chaotic behaviors of nonlinear waves in plasmas on

the framework of FMKP equation have not been reported

to the best of our knowledge.

In this work, our aim is to investigate the bifurcation and

chaotic behaviors of dust acoustic traveling waves in

magnetoplasmas with nonthermal ions featuring Cairns–

Tsallis distribution on the framework of FMKP equation
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using bifurcation theory of planar dynamical systems. We

derive two new analytical solutions for solitary and peri-

odic waves of the FMKP equation. Considering an external

periodic perturbation, we study the chaotic behaviors of the

perturbed FMKP equation through quasiperiodic route to

chaos in the mentioned plasmas. In this case, we restrict the

parameter ranges 0� a\0:25 and 0:6\q\1 based on the

study [33].

The remaining part of the paper is organized as follows.

In the next section, we consider model equations and then

derive the FMKP equation. Following this, we obtain a

dynamical system of the FMKP equation after which

bifurcations of phase portraits are obtained. In the subse-

quent section, two analytical traveling wave solutions of

the FMKP equation are derived. Before the concluding

section, we discuss the chaotic behavior of the perturbed

FMKP equation. The study is concluded in the final

section.

Basic equations

We consider a plasma model whose constituents are

dynamic dust particles and nonthermal cold ions featuring

Tsallis distribution in the presence of an external static

magnetic field M ¼ x̂M0 acting along the x-axis, where x̂ is

an unit vector along the x-axis. The normalized continuity,

momentum and Poisson’s equations are as follows:

on

ot
þr:ðn ~UÞ ¼0; ð1Þ

o ~U

ot
þ ð ~U:rÞ ~U ¼r/� ~U � x̂; ð2Þ

r2/ ¼a1ðn� niÞ; ð3Þ

where a1 ¼ r2

k2, r ¼ Cs

X is the dust gyroradius, k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ti=4pe2n0zd0

p

is the Debye length, Cs ¼ ðTi=mÞ1=2
is the

dust acoustic velocity, X ¼ eM0

mc
is the dust gyrofrequency, c

is the speed of the light, m is the mass of dusts and zd is the

number of the charge residing on the dust grains, so that the

charge of the dust qd ¼ �ezd with e is the elementary

charge. / is the plasma potential. n and ~U denote number

density and velocity of dust particles, respectively. We

assume that the wave is propagating in the xy-plane. Here,

ni0, and n0 are, respectively, the unperturbed number

densities of ions and dust particles. The dust velocity ~U ¼
ðu; v;wÞ is normalized to dust acoustic speed Cs ¼

ffiffiffi

Ti
m

q

and

plasma potential / is normalized to Ti=e. Space variables

and time are normalized to the dust gyroradius r and

inverse of the dust gyrofrequency X, respectively.

The nonextensive nonthermal velocity distribution [31]

function is given by:

fiðvxÞ ¼ Cq;a 1 þ a
v4
x

v4
ti

� �

1 � ðq� 1Þ v2
x

2v2
ti

� �

1
q�1

;

where vti ¼ ðTi=miÞ1=2
is the ion thermal velocity, Ti is the

ion temperature, mi is its mass, and Cq;a is the constant of

normalization which is given by the following expressions:

Cq;a ¼ ni0

ffiffiffiffiffiffiffiffiffi

mi

2pTi

r Cð 1
1�q

Þð1� qÞ5=2

Cð 1
1�q

� 5
2
Þ½3aþð 1

1�q
� 3

2
Þð 1

1�q
� 5

2
Þð1� qÞ2�

for � 1\q\1;

and

Cq;a ¼ ni0

ffiffiffiffiffiffiffiffiffi

mi

2pTi

r Cð 1
q�1

þ 3
2
Þðq� 1Þ5=2ð 1

q�1
þ 3

2
Þð 1

q�1
þ 5

2
Þ

Cð 1
q�1

þ 1Þ½3aþð 1
q�1

þ 3
2
Þð 1

q�1
þ 5

2
Þðq� 1Þ2�

for q[1:

Here, a is a parameter determining the number of non-

thermal ions present in the model, q stands for the strength

of nonextensivity, and C is the standard Gamma function.

For q[1, the distribution function exhibits a thermal

cutoff on the maximum value allowed for the velocity of

the ions, given by

vmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ti

miðq� 1Þ

s

;

beyond which no probable states exist.

Integrating the nonthermal velocity distributed function

fiðvxÞ over all velocity space, one can obtain the ion density

[31] as:

ni ¼ ni0 1 �M
e/
Ti

� �

þ N
e/
Ti

� �2
 !

1 � ðq� 1Þ e/
Ti

� �� � 1
q�1

þ1
2

;

where M ¼ � 16aq
ð5q�3Þð3q�1Þþ12a and N ¼ 16aqð2q�1Þ

ð5q�3Þð3q�1Þþ12a :

In the limiting case, when q ! 1, the above ion density

reduces to the nonthermal ion density of Cairns et al. [32]

as

ni ¼ ni0 1 þ 4a
1 þ 3a

e/
Ti

� �

þ 4a
1 þ 3a

e/
Ti

� �2
 !

� exp � e/
Ti

� �

;

and in the case, when a ¼ 0, the ion density reduces to the

nonextensive ion density [51] as

ni ¼ ni0 1 � ðq� 1Þ e/
Ti

� �� � 1
q�1

þ1
2

:

The normalized ion number density [31] is given by

ni ¼ ð1 �M/þ N/2Þf1 � ðq� 1Þ/g
1

q�1
þ1

2;

where M ¼ � 16aq
ð5q�3Þð3q�1Þþ12a and N ¼ 16aqð2q�1Þ

ð5q�3Þð3q�1Þþ12a :
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Equations (1)–(3) can be written in components form as:

on

ot
þ oðnuÞ

ox
þ oðnvÞ

oy
¼ 0; ð4Þ

ou

ot
þ u

o

ox
þ v

o

oy

� �

u ¼ o/
ox

; ð5Þ

ov

ot
þ u

o

ox
þ v

o

oy

� �

v ¼ o/
oy

� w; ð6Þ

ow

ot
þ u

o

ox
þ v

o

oy

� �

w ¼ v; ð7Þ

o2

ox2
þ o2

oy2

� �

/ ¼ a1 n� ð1 �M/þ N/2Þf1 � ðq� 1Þg
1

q�1
þ1

2

h i

:

ð8Þ

Derivation of the FMKP equation

We employ the reductive perturbation technique (RPT) to

derive the Kadomtsev–Petviashili(KP) equation. According

to the RPT, the independent variables are stretched as:

Y ¼ �2y;

g ¼ �ðx� VtÞ;
s ¼ �3t;

8

>

<

>

:

ð9Þ

where V denotes the phase velocity of dust acoustic wave

along the x-axis in magnetoplasmas with nonthermal ions

featuring Tsallis distribution, and � is a small parameter

which characterizes the strength of the nonlinearity. The

dependent variables in the above relations are expanded as:

n ¼ 1 þ �2n1 þ �4n2 þ � � �
u ¼ �2u1 þ �4u2 þ � � �
v ¼ �3v1 þ �5v2 þ � � �
w ¼ �3w1 þ �5w2 þ � � �
/ ¼ �2/1 þ �4/2 þ � � �

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð10Þ

Substituting the Eqs. (9)–(10) into the system of Eqs. (4)–

(8) and equating the coefficient of lowest order of �, one

can obtain the phase velocity as

V2 ¼ 1

ðaþMÞ ; ð11Þ

where a ¼ qþ1
2

.

Considering the coefficient of next order of �, we obtain

the KP equation as:

o

og
o/1

os
� A/1

o/1

og
þ B

o3/1

og3

� �

þ C
o2/1

oY2
¼ 0; ð12Þ

where A ¼ V
2P
½3P2 � 2Q�; B ¼ V

2Pa1
; C ¼ V

2
; with

P ¼ aþM, b ¼ ðqþ1Þð3�qÞ
8

and Q ¼ bþ N þ aM:

The KP equation (12) depends onAwhich is a function of a
and q. In Fig. 1, it is shown thatA may be positive or negative

depending on different values ofqwith fixed value ofa ¼ 0:1,

but there is a critical point at which A ¼ 0; which can provide

an infinite growth of the amplitude of the solitary wave

solutions and periodic wave solutions of Eq. (12) which

breaks down the validity of the RPT. In this case,q is called the

critical parameter with critical value q ’ 0:8751. Thus, the

exact solutions of the Eq. (12) do not exist at the points which

are very near to the critical values of the critical parameters. In

this situation, the KP equation is unable to describe the non-

linear wave phenomena in this dusty plasma. So to describe

the nonlinear wave features near or around or at A ¼ 0, we

extend the study and want to obtain satisfactory solutions near

and around the critical value. Therefore, we consider more

higher order nonlinear equation to achieve the desired results.

We proceed for the modified Kadomtsev–Petviashili

(MKP) equation by considering higher order coefficients of

�. We consider the same set of stretched coordinates but the

previous expansions of the dependent variables are not

valid. Therefore, we consider a set of new expansions of

the dependent variables as follows:

n ¼ 1 þ �n1 þ �2n2 þ �3n3 þ � � �
u ¼ �u1 þ �2u2 þ �3u3 þ . . .

v ¼ �2v1 þ �3v2 þ �4v3 þ . . .

w ¼ �2w1 þ �4w2 þ �6w3 þ . . .

/ ¼ �/1 þ �2/2 þ �3/3 þ . . .:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð13Þ

Substituting the above expansions (13) along with the same

stretched coordinates (9) into Eqs. (4)–(8) and equating the

coefficients of different powers of � and eliminating n3;w3

and /3, one can obtain the following equation:

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

q

A

Fig. 1 A is a function of q when a ¼ 0:1
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o

og
o/1

os
� A

oð/1/2Þ
og

� D/2
1

o/1

og
þ B

o3/1

og3

� �

þ C
o2/1

oY2
¼ 0;

ð14Þ

where the coefficients A, B and C are same as the coeffi-

cients of the KP equation and D ¼ 3V
2P
ðRþ 2P3 � 3PQÞ

with R ¼ K þ bM þ aN. It is clear that for the critical

values of the parameters A may equal to zero and the

Eq. (14) reduces to the following MKP equation:

o

og
o/1

os
� D/2

1

o/1

og
þ B

o3/1

og3

� �

þ C
o2/1

oY2
¼ 0; ð15Þ

If A is at the same order of �, but not zero, we derive the

FMKP equation using the same stretched coordinates and

same expansions as the MKP equation:

o

og
o/1

os
�A/1

o/1

og
�D/2

1

o/1

og
þB

o3/1

og3

� �

þC
o2/1

oY2
¼ 0: ð16Þ

Formation of dynamical system

To investigate all traveling wave solutions of the FMKP

equation (16), we transform it to a dynamical system by

introducing a new variable v as follows:

v ¼ ðlgþ mY � UsÞ; ð17Þ

where l and m are the cosines of the angles made by wave

propagation with g-axis and Y-axis, respectively. Here, U is

the speed of dust acoustic traveling wave. Substituting

wðvÞ ¼ /1ðg; Y ; sÞ into the FMKP equation (16) and then

integrating twice, the FMKP equation (16) takes the form

Bl4
d2w
dv2

þ ðCm2 � lUÞw� Al2

2
w2 � Dl2

3
w3 ¼ 0: ð18Þ

Then, Eq. (18) can be written as the following dynamical

system:

dw
dv

¼ z;

dz

dv
¼

ðlU � Cð1 � l2Þ þ Al2

2
wþ Dl2

3
w2Þw

Bl4
:

8

>

>

>

>

<

>

>

>

>

:

ð19Þ

The system (19) represents a planar Hamiltonian system

with the following Hamiltonian function:

Hðw; zÞ ¼ z2

2
� 1

12Bl4
6ðlU � Cð1 � l2ÞÞ þ 2Al2wþ Dl2w2
	 


w2:

ð20Þ

The system (19) is a planar dynamical system with

parameters a; a1; q; l and U. It is interesting to note that the

phase orbits defined by the vector fields of Eq. (19)

determine all traveling wave solutions of the FMKP

equation (16). Thus, we investigate bifurcations of phase

portraits of Eq. (19) in the ðw; zÞ phase plane as the

parameters a; a1; q; l and U are varied. In this case, we

consider a physical system for which only bounded trav-

eling wave solutions are meaningful. Therefore, our

attention is to study only bounded traveling wave solutions

of the FMKP equation (16). It is known that a solitary wave

solution of Eq. (16) corresponds to a homoclinic orbit of

Eq. (19). A periodic orbit of Eq. (19) corresponds to a

periodic traveling wave solution of Eq. (16). The bifurca-

tion theory of planar dynamical systems [52, 53] plays an

important role in this study.

Phase plane analysis

In this section, we investigate the bifurcations of phase

portraits of Eq. (19). When ABbl 6¼ 0 and lU 6¼ Cð1 � l2Þ,
then there are three equilibrium points at E0ðw0; 0Þ,
E1ðw1; 0Þ and E2ðw2; 0Þ, where w0 ¼ 0, w1 ¼ 3

2Dl2
f�Al2

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2l4

2
� 4Dl2

3
ðlU � Cð1 � l2ÞÞ

q

g and w2 ¼ 3
2Dl2

f�Al2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2l4

2
� 4Dl2

3
ðlU � Cð1 � l2ÞÞ

q

g.

Let Mðwi; 0Þ be the coefficient matrix of the linearized

system of Eq. (19) at an equilibrium point Eiðwi; 0Þ. Then,

we have

J ¼ detMðwi; 0Þ ¼ ðCð1 � l2Þ � lUÞ
Bl4

� 1

Bl2
fAwi þ Dw2

i g:

ð21Þ

By the theory of planar dynamical systems [52, 53], we

know that the equilibrium point Eiðwi; 0Þ of the planar

dynamical system (19) is a saddle point when J\0 and the

equilibrium point Eiðwi; 0Þ of the planar dynamical system

(19) is a center when J[ 0:

If 2lU[Vð1 � l2Þ; 3P2\2Q, Rþ 2P3\3PQ,
5
7
\q\1; 0� a\0:25; 0\l\1, and a1 [ 0, then the sys-

tem (19) has three equilibrium points at E0ðw0; 0Þ,
E1ðw1; 0Þ and E2ðw2; 0Þ, where w0 ¼ 0, w1 [ 0 and w2\0:

The equilibrium point E0ðw0; 0Þ is a saddle point, E1ðw1; 0Þ
and E2ðw2; 0Þ are centers. There is a pair of homoclinic

orbits at E0ðw0; 0Þ surrounding the centers E1ðw1; 0Þ and

E2ðw2; 0Þ (see Fig. 2).

Using the above analysis, we have shown the phase

portrait of Eq. (19) in Fig. 2 depending on some special

values of the parameters a; a1; q; l and U. It is seen that

there is a pair of homoclinic orbits at the equilibrium point

E0ðw0; 0Þ surrounding two centers at the equilibrium points

E1ðw1; 0Þ and E2ðw2; 0Þ in Fig. 2. For these pair of

homoclinic orbits of the dynamical system (19), the FMKP
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equation has dust acoustic compressive and rarefactive

solitary wave solutions.

In Fig. 3, we have presented one limit cycle about the

center E1ðw1; 0Þ of the dynamical system (19) for l ¼
0:7; a ¼ 0:1; a1 ¼ 0:1; q ¼ 0:8 and U ¼ 1. Corresponding

to the limit cycles about the center E1ðw1; 0Þ of the

dynamical system (19), we get a family of periodic wave

solutions of the FMKP equation (16). In Fig. 4, we have

presented the periodicity of Z based on system (19) with

the same values of parameters as Fig. 2 and in Fig. 5, we

have shown the periodicity of w based on system (19) with

the same values of parameters as Fig. 2. We can obtain

similar results in case of equilibrium point E2ðw2; 0Þ.

Analytical traveling wave solutions

In this section, using the planar dynamical system Eq. (19)

and the Hamiltonian function Eq. (20), we derive analyti-

cal traveling wave solutions for solitary waves and periodic

waves of the FMKP equation (16) depending on the

parameters a; a1; q; l and U. It should be noted that
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Fig. 2 Phase portrait of Eq. (19) for l ¼ 0:7; a ¼ 0:1; a1 ¼ 0:1; q ¼
0:8 and U ¼ 1
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Fig. 3 Phase projection of system (19) with the same values of

parameters as Fig. 2
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parameters as Fig. 2
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cnðX1n; k1Þ is the Jacobian elliptic function [54] with the

modulo k1.

(1) Corresponding to the pair of homoclinic orbits at

E0ðw0; 0Þ surrounding the centers E1ðw1; 0Þ and

E2ðw2; 0Þ (see Fig. 2), the FMKP equation (16) has

a pair of the solitary wave solutions (compressive

and rarefactive types):

wðvÞ ¼ � 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 1 � b2
1

9a1c1

� �

r

sin 2
ffiffiffiffi

a1

c1

q

v

� �

þ b1

6a1

;
ð22Þ

where a1 ¼ lU�Cð1�l2Þ
Bl4

, b1 ¼ A
2Bl2

and c1 ¼ D
3Bl2

.

(2) Corresponding to the family of periodic orbits

about E2ðw2; 0Þ (see Fig. 2), the FMKP equation

(16) has a family of the periodic traveling wave

solutions:

wðvÞ ¼ a2B1 þ b2A1 � ða2B1 � b2A1ÞcnðX1v; k1Þ
B1 þ A1 � ðB1 � A1ÞcnðX1v; k1Þ

;

ð23Þ

where A1 ¼a2
2þa2c2þd2;B1 ¼b2

2þb2c2þd2;X1 ¼
ffiffiffiffiffiffiffiffiffiffiffi

� D
6Bl2

q

and k1 ¼ða2�b2Þ2�ðA1�B1Þ2

4A1B1
with a2;b2;c2 and

d2 are roots of the equation hþ 1
12Bl4

ð6ðlU�Cð1�
l2ÞÞþ2Al2wþDl2w2Þw2 ¼� D

12Bl2
ða2�wÞ ðw�b2Þ

ðw2þc2wþd2Þ, satisfying a2[b2; and c2
2�4d2

\0;h2ðh2;0Þ, h2 ¼Hðw2;0Þ.
Sabetkar and Dorranian [22] investigated dust acoustic

solitary waves (DASWs) in a magnetized four component

dusty plasma and showed that due to electron nonexten-

sivity, their dusty plasma model admitted positive

potential as well as negative potential solitons. Dorranian

and Sabetkar [23] also investigated the dust acoustic

solitary waves in a dusty plasma on the frameworks of the

KP and modified KP equations. The authors obtained the

compressive and rarefactive solitary wave solutions in

terms of sechðv
w
Þ for some special values of the physical

parameters. But in this work, we have obtained a new

form of the compressive and rarefactive solitary wave

solutions (22) and periodic wave solution (23) in terms of

the Jacobean elliptic function. Thus, the dust acoustic

compressive and rarefactive solitary waves of our work

have been supported by the works [22, 23] reported in the

literature.

Quasiperiodic route to chaos

In this section, we study the quasiperiodic and chaotic

behaviors of the perturbed system given by:

dw
dv

¼ z;

dz

dv
¼

lU�Cð1� l2ÞþAl2

2
wþDl2

3
w2

� �

w

Bl4
þ f0 cosðxvÞ;

8

>

>

>

>

>

<

>

>

>

>

>

:

ð24Þ

where f0 cosðxvÞ is an external periodic perturbation, f0 is

the strength of the periodic perturbation and x is the fre-

quency. It is to be noted that the difference between system

(19) and system (24) is that only external periodic pertur-

bation is added with system (24). Furthermore, existence of

f0 cosðxvÞ in system (24) is a root that can turn system (19)

into the chaotic state.

In Fig. 6, we have presented phase portrait of the per-

turbed system (24) for l ¼ 0:7; a ¼ 0:1; a1 ¼ 0:1; q ¼ 0:8;

U ¼ 1, f0 ¼ 0:02 and x ¼ 1 with initial condition

ðw0; z0Þ ¼ ð1:72; 0:0001Þ: It is found that the perturbed

system (24) has quasiperiodic motion even if the external

periodic perturbation is considered. Thus, a quasiperiodic

motion of the system (24) is observed with incommensu-

rable periodic motions and the trajectory in the phase space

winds around torus filling its surface densely. In Figs. 7

and 8, we have presented the quasiperiodicity of Z and w,

respectively, based on the system (24) with the same values

of parameters as Fig. 6. If we increase strength of the

periodic perturbation and consider f0 ¼ 1 with the same

values of other parameters, then the perturbed system (24)

shows chaotic motions. In Fig. 9, we have presented the

phase portrait of the perturbed system (24) for
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Fig. 6 Phase portrait of the perturbed system (24) for

l ¼ 0:7; a ¼ 0:1; a1 ¼ 0:1; q ¼ 0:8;U ¼ 1, f0 ¼ 0:02 and x ¼ 1 with

initial condition ðw0; z0Þ ¼ ð1:72; 0:0001Þ
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l ¼ 0:7; a ¼ 0:1; a1 ¼ 0:1; q ¼ 0:8;U ¼ 1, f0 ¼ 1 and

x ¼ 1 with same initial condition as Fig. 6. In Figs. 10 and

11, we have presented the chaotic motions of Z and w,

respectively, based on the system (24) with same values of

parameters as Fig. 9. Thus, the developed chaotic motions

occur (see Figs. 9, 10, 11) and the solutions ignore the

periodic motions and represent random sequences of

uncorrelated oscillations. Hence, the strength of the peri-

odic perturbation plays a crucial role for the development

of the quasiperiodic motion of the perturbed system (24)

and transition from quasiperiodic motion to chaotic motion

of the system (24). Thus, it is observed that the perturbed

plasma system shows chaotic behavior through quasiperi-

odic route to chaos which is an important observation in

this study.

Conclusions

In this paper, we have derived the FMKP equation for dust

acoustic waves in magnetoplasmas with nonthermal ions

featuring Cairns–Tsallis distribution. Applying the
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Fig. 9 Phase portrait of the perturbed system (24) for

l ¼ 0:7; a ¼ 0:1; a1 ¼ 0:1; q ¼ 0:8;U ¼ 1, f0 ¼ 1 and x ¼ 1 with

initial condition ðw0; z0Þ ¼ ð1:72; 0:0001Þ
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bifurcation theory of planar dynamical systems to the

FMKP equation, we have presented the existence of soli-

tary and periodic traveling waves through phase plane

analysis. Two new analytical solutions for the solitary

waves (compressive and rarefactive) and periodic waves

are obtained depending on parameters a; a1; q; l and U.

Considering an external periodic perturbation, the

quasiperiodic and chaotic behaviors of dust acoustic waves

are studied through numerical computations. The presence

of the parameters q; a; and a1 affects significantly on

bifurcation of traveling wave solutions of the FMKP

equation, the quasiperiodic and chaotic behaviors of the

perturbed FMKP equation. It should be noted that for same

set of values of parameters a; a1; q; l and U, the unperturbed

FMKP equation has solitary and periodic wave solutions,

but the perturbed FMKP equation shows the quasiperiodic

and chaotic behaviors based on the strength of the external

periodic perturbation. It is also important to note that the

dust acoustic waves of the perturbed FMKP equation rep-

resent the chaotic motions through quasiperiodic route to

chaos.
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