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Abstract The variational method within the Hamiltonian

formalism of QFT using Darewych reformulated model

has been used for scalar particles and antiparticles

interacting through a scalar mediating field. We have

investigated the relativistic effects such as virtual anni-

hilation interactions and retardation effects for rela-

tivistic two-, four-, and six-body wave equations in

scalar QFT. Approximate ground-state solutions have

been studied for different strengths of coupling, for both

massive and massless mediating fields where the virtual

annihilation terms or retardation effects in the wave

equations have been included or eliminated.

Keywords Relativistic � Wave equations � Bound state �
Virtual annihilation interactions � Retardation effects

Introduction

The study of few- or many-body systems in relativistic

quantum field theory (QFT) is of fundamental interest and

has played a major role in the progress of modern physics.

It contributes to the development of our idea about the

nature of particle interactions. For example, we can men-

tion that the thorough study of the spectrum of the

hydrogen atom was an early test of the theory of quantum

electrodynamics (QED). The Bethe–Salpeter (BS) formal-

ism [1, 2] is the traditional tool for analyzing relativistic

bound state, but this method is hard to implement and is all

but intractable for systems that contain more than two

particles. The study of two-body bound states using BS

equation in the ladder approximation has been known as

the Wick–Cutkosky model (WC) [3, 4].

The relativistic quantum-mechanical treatment of bound

states of a particle in a given field is principally based on the

Dirac and Klein–Gordon equations. The Dirac equation is

suitable for particles, like electrons, with spin 1/2 and the

Klein–Gordon equation is used to solve problems of particles

without spin likepþ orp�:TheKlein–Gordonequation is also
called the scalar equation of relativistic quantum mechanics.

An important problem in quantum field theory has been

the description of relativistic n-body scalar particles wave

equations or n-body scalar particles and antiparticles wave

equations (spin-0 bosons), including the interactions, from

the underlying Lagrangian. In previous works by Emami-

Razavi [5, 6], it has been demonstrated that, by employing

a reformulated model in QFT proposed by Darewych

[7, 8], formulas concerning relativistic n-body wave

equations for scalar particles and/or antiparticles can be

obtained (see also [9]). It has also been proven that using

Darewych’s formalism [7, 8] relativistic n-fermion wave

equations (particles and antiparticles; spin-1/2) in quantum

electrodynamics can be obtained [10, 11]. One of the

appealing features of having n-body wave equations for-

mula is that we can explicitly write the relativistic wave

equations for an arbitrary number of n including the

interactions. Therefore, one can easily write, for example

four- or six-body wave equations, and thereupon one can

perform different calculations (employing various
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numerical methods) to study relativistic effects such as

retardation effects or virtual annihilation interaction terms.

In this paper we study the effects of inclusion or

exclusion of retardation terms or virtual annihilation

interactions for relativistic two-, four- and six-body scalar

particles and antiparticles which interact through a scalar

mediating field which can be massless (l ¼ 0) or massive

(l=m ¼ 0:15). The case of two-body system has been

investigated before [12, 13]. However, we remind it again

here to better follow the four- and six-body cases. In this

work the coupling constant that shows the strength of the

interaction is presented by the symbol a which is related to

another constant g by the relation a ¼ g2=16pm2: a can

vary from a relatively small coupling (such as a� 0:1) to

strong coupling numbers such as a� 1:

Our calculations show that even though the retardation

effects or virtual annihilation interactions can be small

effects relative to Yukawa interactions at low coupling for

the two-, four-, and six-body systems, for large values of a
(0:4\a� 1) the magnitude of the contribution of virtual

annihilation terms and retardation effects augments for the

ground-state energy solutions of the systems under study.

The presentation of the manuscript is as follows. The

first section is the introduction. The second section is about

variational methods and the reformulated scalar model.

The relativistic wave equations, virtual annihilation inter-

actions and retardation effects are reminded in the fol-

lowing section. In the subsequent section, the results of

approximate ground-state energy solutions for various

cases have been discussed. Concluding remarks have been

presented in the last section. Appendix contains some

formulas and examples concerning relativistic wave

equations.

Variational methods and the reformulated model

From a practical point of view, the variational method is

independent of the magnitude of the coupling constant

strength, contrary to perturbation theory which usually

depends on expansion of some small parameters. The

variational methods in Hamiltonian QFT is similar to

Schrödinger type of representation of few-body systems,

and can easily be applied to systems of more than two

bodies [14].

The variational methods have been moderately used in

QFT since the construction of realistic trial states can be a

difficult task. The variational approach to the treatment of

relativistic bound states has received increasing attention

since the early papers on the variational methods in QFT

(see, for examples, [15, 16]). We should note that the

variational approach is basically as good as the trial states

we use [17–19].

As pointed out before, the variational method is only

as good as the trial states that we use. In the functional

formulation we are restricted mainly to wave functionals

of Gaussian type, due to the difficulty of handling ana-

lytically non-Gaussian functional integrals. Another

possible approach that we can employ is to expand the

trial state on a Fock-space basis. For example, the

Tamm’s work [20] is along these lines, though it was not

formulated variationally. In this paper, we have applied

the approach given by Darewych [7] to particle–an-

tiparticle bound states in the scalar Yukawa model. In

this model, we have assumed that particles or antiparti-

cles have no spin. This means that they are scalar par-

ticles or antiparticles. Moreover, the mediating fields

which act between particles–antiparticles are also scalar

mediating fields.

In Ref. [6] simple trial states have been employed to

obtain the n-body wave equations in the scalar QFT by the

variation method. Thereupon, one can easily write the

relativistic wave equations for the two-, four-, and six-body

systems. The equations have the Schrödinger non-rela-

tivistic limit, with Yukawa potentials in the event of a

massive mediating scalar field or Coulombic interparticle

potentials on condition of having a massless mediating

scalar field. Ground-state energy solutions of the equations

have been approximately calculated for various strengths

of the coupling. A comparison of various cases have been

considered where virtual annihilation terms and/or retar-

dation effects have been included or excluded for our dif-

ferent systems under study.

For the sake of completeness and having a self-con-

tained paper it is better to recall some of the main points

from previous works [12, 13]. The Lagrangian density for

scalar particles which interact via a mediating scalar field is

L ¼ om/�ðxÞom/ðxÞ � m2/�ðxÞ/ðxÞ þ 1

2
omvðxÞomvðxÞ

� 1

2
l2v2ðxÞ � g/�ðxÞ/ðxÞvðxÞ;

ð2:1Þ

where g indicates the coupling constant. We are working in

the unit �h ¼ c ¼ 1: m is the mass of particle or antiparticle.

/ and /� present the field associated with the particle and

antiparticle, respectively. vðxÞ designates the mediating

field which can be massless (i.e., l ¼ 0), (cf. [3]), or

massive ðl 6¼ 0Þ.
The Lagrangian density obtained in the reformulated

model is (see [7] or [17])
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L ¼ om/�ðxÞom/ðxÞ � m2/�ðxÞ/ðxÞ

þ 1

2
omv0ðxÞomv0ðxÞ

� 1

2
l2v20ðxÞ � g/�ðxÞ/ðxÞ v0ðxÞ

þ 1

2

Z
dx0qðxÞDðx� x0Þqðx0Þ;

ð2:2Þ

where dx0 ¼ dt d3r, qðxÞ ¼ �g/�ðxÞ/ðxÞ; v0ðxÞ denotes

the free field and Dðx� x0Þ indicates a covariant Green

function in a way that we have

ðomom þ l2ÞDðx� x0Þ ¼ d3þ1ðx� x0Þ: ð2:3Þ

As it has been mentioned, for example, in [7] or [12, 13]

the theories based on (2.1) and (2.2) are equivalent in the

sense that they lead to the same invariant matrix elements

in different orders of perturbation theory. The Lagrangian

density (2.2) can be written as:

L ¼ om/�ðxÞom/ðxÞ � m2/�ðxÞ/ðxÞ
� g/�ðxÞ/ðxÞ v0ðxÞ

þ 1

2

Z
dx0qðxÞDðx� x0Þqðx0Þ;

ð2:4Þ

where we have suppressed the free part of the Lagrangian

in the above equation. As a matter of fact, one should note

that the trial states, jwni, that we employ (see Eq. (3.1)) are

insensitive to Hv (Eq. 2.7) and HI1 (Eq. 2.8 ) in the sense

that hwnj : Ĥv : jwni ¼ 0 and hwnj : ĤI1 : jwni ¼ 0 for the

current choice of trial states. The total Hamiltonian of our

scalar systems under study is ĤðtÞ ¼
R
dNx ĤðxÞ; where the

Hamiltonian density, ĤðxÞ; has been provided in

Eqs. (2.5)–(2.10).

We can write down the Hamiltonian density [7], [14] as

follows:

HðxÞ ¼ H/ðxÞ þ HvðxÞ þ HI1ðxÞ þ HI2ðxÞ; ð2:5Þ

where

H/ðxÞ ¼ p/� ðxÞ p/ðxÞ þ r/�ðxÞ � r/ðxÞ þ m2 /�ðxÞ/ðxÞ;
ð2:6Þ

HvðxÞ ¼
1

2
p2v0 þ

1

2
ðrv0Þ

2 þ 1

2
l2v20; ð2:7Þ

p/� ¼ oL
o _/

¼ _/�; p/ ¼ oL
o _/� ¼ _/ and pv0 ¼ oL

o _v0
¼ _v0 are con-

jugate momenta,

HI1ðxÞ ¼ g/�ðxÞ/ðxÞv0ðxÞ; ð2:8Þ

HI2ðxÞ ¼ � g2

2

Z
dx0 /�ðxÞ/ðxÞDðx� x0Þ/�ðx0Þ/ðx0Þ;

ð2:9Þ

where we indicate dx ¼ dNx dt in N spatial plus time

dimensions and

Dðx� x0Þ ¼
Z

dk

ð2pÞNþ1
e�ik�ðx�x0Þ 1

l2 � k2 þ i�
; ð2:10Þ

where dk ¼ dNþ1k and k2 ¼ kmkm.

To indicate our notation, we quote the usual decompo-

sition of the fields in N þ 1 dimensions:

/ðxÞ ¼
Z

dNq
1

½ð2pÞN2xq�
1
2

½AðqÞe�iq�x þ ByðqÞeiq�x�

ð2:11Þ

v0ðxÞ ¼
Z

dNp
1

½ð2pÞN2Xp�
1
2

½dðpÞe�ip�x þ dyðpÞeip�x�;

ð2:12Þ

where xq ¼ ðq2 þ m2Þ
1
2, Xp ¼ ðp2 þ l2Þ

1
2, q � x ¼ qmxm and

qm ¼ ðq0 ¼ xq; qÞ.
The momentum-space operators, Ay;A;By;B obey the

usual commutation relations, the non-vanishing ones are

½AðpÞ;AyðqÞ� ¼ ½BðpÞ;ByðqÞ� ¼ dNðp� qÞ; ð2:13Þ

½dðpÞ; dyðqÞ� ¼ dNðp� qÞ: ð2:14Þ

The vacuum state j0i is designated by

Apj0i ¼ Bpj0i ¼ dkj0i ¼ 0. The Hamiltonian is normal

ordered (specified by :Ĥ:) since we are not interested in

vacuum-energy matters in this work.

In the Hamiltonian formalism we wish to find solutions

of the equation

P̂
bjWi ¼ QbjWi; ð2:15Þ

where P̂
b ¼ ðĤ; P̂Þ indicates the energy–momentum oper-

ator and Qb ¼ ðE;QÞ presents the energy–momentum

eigenvalue. The above equation usually cannot be solved

analytically. Hence, we should find some approximation

solutions. Thereupon, we apply the following variational

principle

dhWtrialj : Ĥ � E : jWtrialit¼0 ¼ 0; ð2:16Þ

where jWtriali is a suitable trial state with adjustable pa-

rameters or functions. We set the time t ¼ 0 for the

calculations.
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Relativistic wave equations, virtual annihilation
terms and retardation effects

For the sake of completeness and to have a self-contained

manuscript it is better to recall some main points of the n-

body scalar particle and antiparticle relativistic wave

equations in Ref. [6]. In the reformulated scalar QFT

variational model simple trial states have been used (see

Eq. 3.1) where n ¼ n1 þ n2 (n1: number of particles and n2:

number of antiparticles, n1 ¼ n2 or n2 ¼ n1 � 1Þ. One

should note that since we are studying here the two-, four-,

and six-body systems the total number of particles and

antiparticles in the present paper is even. We have for (n/2)

particles and (n/2) antiparticles the following simple trial

state [6]:

jwni ¼
Z

dNp1d
Np2d

Np3d
Np4. . .d

Npn�1d
Npn

Gðp1;p2;p3;p4; . . .;pn�1;pnÞ
� Ayðp1ÞByðp2ÞAyðp3ÞByðp4Þ � � �Ayðpn�1ÞByðpnÞj0i;

ð3:1Þ

where G is normalizable to unity and it should be a well-

behaved function with adjustable parameters. The matrix

element for the rest-plus-kinetic energy of the n-body

system is

hwnj : Ĥ/ � E : jwni ¼
Z

dNp1d
Np2 � � � dNpn G�ðp1; p2; . . .;pnÞ

� Gðp1; p2; . . .;pnÞ½xp1 þ xp2 þ � � � þ xpn � E�
ð3:2Þ

The matrix elements related to the interactions of our system

have nðn� 1Þ=2 terms (all of them present attractive nature,

i.e., gravity-like). We have also n2=4 terms (when n is an

even number) analogous to virtual annihilation terms (in-

teraction among the particle and antiparticle pairs).

The matrix element for the interaction of the system

under study has the following form [6]:

hwnj : ĤI : jwni ¼ ½G1� þ ½G2� þ � � � ½Gnðn�1Þ=2�
þ ½A1� þ ½A2� þ � � � ½An2=4�:

ð3:3Þ

As an example we can quote the following. In case we con-

sider three particles and three antiparticles (n ¼ 6Þ, we will

have ten interparticle interactions (labeledG1;G2. . .;G15; all

of themattractive, i.e., gravity-like) andwewill have six terms

that correspond to virtual annihilation terms. These interac-

tions occur among particle and antiparticle pairs (labeled

A1;A2; . . .;A9). The virtual annihilation interactions are

repulsive contact potentials if l\2m.

As it can be seen, for example in [21], the description of

interactions of two or more than two bodies with equal or

comparable masses is muchmore demanding than the case of

particles with non-identical masses. We cannot generally

differentiate between the test particles or antiparticles and the

source of the field for the case of equal or comparable masses.

Furthermore, we should consider all particles on an equal

footing. Moreover, the interactions among particles or

antiparticles do not propagate with infinite velocity. There-

fore, there are further complications for the treatment of

interactions among particles or antiparticles. These phenom-

ena lead to the terms corresponding to ‘‘retardation effects’’.

The matrix element for the interaction related to our n-

body wave equations (retardation effects are included) is

[6] (for j\k):

hwnj : ĤI : jwni ¼ hwnj : ĤI2 : jwni

¼ � g2

4ð2pÞN
Z

dNp1. . .d
Npnd

Np01. . .d
Np0n

G�ðp01; p02; . . .; p0nÞGðp1; p2; . . .; pnÞ

�
X
j¼1

n�1 Xn
k¼jþ1

Y
i¼1...n

ðj;kÞ
dNðp0i � piÞ

(

dðp0j þ p0k � pj � pkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xp0

j
xp0

k
xpjxpk

p 1

l2 � ðpj � p0jÞ
2

þ
X
j¼1

n�1 Xn
k¼jþ1

0 Y
i¼1...n

ðj;kÞ
dNðp0i � piÞ

dðp0j þ p0k � pj � pkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xp0

j
xp0

k
xpjxpk

p 1

l2 � ðpj þ pkÞ2

)
;

ð3:4Þ

where we can write dðp0j þ p0k � pj � pkÞ ¼ dðxp0
j
þ xp0

k
�

xpj � xpkÞdðp0j þ p0k � pj � pkÞ; and Rk¼a
0uk signifies

ua þ uaþ2 þ uaþ4 þ � � � :
The superscript notation (j, k) in

Q
i¼1...n

ðj;kÞdNðp0i � piÞ
in Eq. (3.4) indicates that the terms with indices j and k are

left out. We can write down:

Y
i¼1...n

ðj;kÞ
dNðp0i � piÞ ¼

Y
i¼1

j�1

dNðp0i � piÞ

Y
i¼jþ1

k�1

dNðp0i � piÞ
Y
i¼kþ1

n

dNðp0i � piÞ

¼
Y
i¼1

n

dNðp0i � piÞ � ½dNðp0j � pjÞdNðp0k � pkÞ��1:

One should note that if n ¼ 2, we will haveQ
i¼1...n

ðj;kÞdNðp0i � piÞ ¼ 1.

We should also consider the statistical factors [22] in our

systems under study due to the fact we have identical

particles or antiparticles. This means that we should not

double count the states of identical particles [22]. For the

case where n is an even number, the statistical factor is
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1=ðn=2Þ!� 1=ðn=2Þ!: For examples, if we have four- and

six-body systems consisting of two particles–two antipar-

ticles and three particles–three antiparticles, respectively,

we will have the following statistical factors for four-body

and six-body systems, respectively: 1=2!� 1=2! and

1=3!� 1=3!:

In Eq. (3.4), i, j and k indicate indices. Even indices are

considered for antiparticles and odd indices are considered

for particles. The relativistic n-body wave equation for

scalar particles–antiparticles can be obtained from the

matrix elements as below [6] (for j\kÞ:
Gðp1; p2; . . .; pnÞ½xp1 þ xp2 þ � � � þ xpn � E�

¼ g2

4ð2pÞN
Z

dNp01d
Np02. . .d

Np0nG
�ðp01; p02; . . .; p0nÞ

�
�X

j¼1

n�1 Xn
k¼jþ1

Y
i¼1...n

ðj;kÞ
dNðp0i � piÞ

dðp0j þ p0k � pj � pkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xp0

j
xp0

k
xpjxpk

p 1

l2 � ðpj � p0jÞ
2

þ
X
j¼1

n�1 Xn
k¼jþ1

0 Y
i¼1...n

ðj;kÞ
dNðp0i � piÞ

dðp0j þ p0k � pj � pkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xp0

j
xp0

k
xpjxpk

p 1

l2 � ðpj þ pkÞ2
�
:

ð3:5Þ

The first terms on the right-hand side of the above equation

are related to attractive interactions among the n bodies.

The second terms correspond to virtual annihilation inter-

actions among odd–even or even–odd indices (particles–

antiparticles pairs). The Eq. (3.5) has the Schrödinger-like

structure, with positive-energy solutions only. This can

easily be seen by putting the right-hand side of this equa-

tion to zero (i.e., no interactions). In Appendix we

explicitly quote some examples of the two-, four-, and six-

body wave equations.

We should mention that if the terms corresponding to

retardation effects are eliminated we should substitute in

the kernel of the equations the terms like 1=½l2 � ðp1 �
p2Þ2� by 1=½l2 þ ðp1 � p2Þ2�; and the terms like 1=½l2 �
ðp1 þ p2Þ2� by 1=½l2 � 4m2�:

The non-relativistic limit of the relativistic n-body wave

equations can be obtained (which corresponds to p2=m2

\\1) by the Fourier transformation (from momentum

space to coordinate space),

Wðr1; r2; . . .; rnÞ ¼
1

ð2pÞnN=2
Z

dNp1d
Np2. . .d

Npn

� Gðp1; p2; . . .; pnÞ
� expðiðp1 � r1 þ p2 � r2 þ � � � þ pn � rnÞÞ:

ð3:6Þ

Hence, the resulting n-body Schrödinger equation is

� 1

2m

Xn
i¼1

r2
i

 !
Wðr1; r2; . . .; rnÞ

þ ðVðr1; r2; . . .; rnÞ � �ÞWðr1; r2; . . .; rnÞ ¼ 0;

ð3:7Þ

where � ¼ E � nm.

The non-relativistic potential Vðr1; r2; . . .; rnÞ can be

explained as follows. The first terms of Eq. (3.8) corre-

spond to sum of attractive Coulomb potentials for the case

of massless mediating field ðl ¼ 0Þ or Yukawa potentials

for the case of massive mediating field ðl 6¼ 0Þ among the

n bodies, and repulsive (if l\2m) contact potentials, due

to virtual annihilation interactions among the particle and

antiparticle pairs (among odd–even or even–odd indices of

j and k). The n-body system potential in coordinate space in

the non-relativistic limit can be written as below:

Vðr1; r2; . . .; rnÞ ¼ �a
X
j¼1

n�1 X
k¼jþ1

n e�ljrj�rk j

jrj � rkj

þ
X
j¼1

n�1 Xn
k¼jþ1

0
a

4p
4m2 � l2

dðrj � rkÞ; for j\k:

ð3:8Þ

Note again that we have a ¼ g2=ð16pm2Þ and Rk¼a
0uk

means ua þ uaþ2 þ uaþ4 þ � � � :

Approximate ground-state energy solutions
for two-, four-, and six-body systems with and/
or without virtual annihilations and retardation
effects

The simplest case for the systems under study is the two-

body case. As mentioned before, the case of two-body

system has been investigated before [12, 13]. However, it is

good to recall some key points of the two-body particle and

antiparticle system since it will help to better understand

the four- and six-body cases.

As pointed out before, the scalar Yukawa [or Wick–

Cutkosky (WC)] model [3, 4] has been investigated by

several researchers in different formalisms and approxi-

mations. Figure 1 of Ref. [12, 13] (which is plotted here

again as Fig. 1) contains various results of WC or BS

formalism as well as other calculations. Moreover, the

results of Di Leo and Darewych [23] correspond with the

solutions obtained in [12, 13] (the two-body system in the

present formalism) with xp1 ¼ xp0
1
(i.e., no retardation). In

other words, the retardation term is not included in [23].

Furthermore, Refs. [3, 4] and [23] do not contain the virtual

annihilation interaction terms which are repulsive interac-

tions. The effect of this repulsive interaction is to increase

the ground-state energy solutions of the two-body system
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by a small amount or to decrease the binding energy of the

two-body system [B2 ¼ E2 � 2 in units of m (i.e., m ¼ 1)]

by a small amount. One should note that the magnitude of

contribution of virtual annihilation interactions augments

with increase of the coupling constant a: This means that at

very high coupling (a� 1) the contribution of this repulsive

interaction becomes more important.

Figure 1 of Refs. [12, 13] (also plotted here as Fig. 1)

shows the retardation effects for the two-body case. The

inclusion of this effect causes to decrease the ground-state

energy solutions of the two-body system by a small but not

negligible amount. One should note that the magnitude of

contribution of retardation effects augments with increas-

ing of the coupling constant a: A comparison of the present

two-body equation [12, 13] with BS [1, 2] or WC results

[3, 4] proves that for the present case we have stronger

binding energy solutions particularly at strong coupling.

One should keep in mind that the obtained results com-

pared to BS or WC model are from different sets of

equations. One of the differences between variational

method Eq. (3.5) in this manuscript and BS equation is

clear even in the no interaction case (a ¼ 0), that is, the

former equation has no negative energy solutions. There-

upon, perhaps it is not surprising that there are differences

between the variational method equations here and BS and

WC models, particularly at strong coupling a:
Figure 1 also contains the results obtained in [24]

showing that the two-body eigenstates can be written down

for Hamiltonian of the present model without free fields,

provided that an empty vacuum state j0i, annihilated by

both negative and positive-energy components of the field

operator /ðxÞ; is employed. The use of such an empty

vacuum state did give both negative and positive ground-

state energy solutions. Moreover, The two-body system in

Ref. [24] could be solved analytically for the massless

mediating field case and also the results suggest a critical

value of the coupling strength around a� 1.

All the results related to different formalisms and

approaches for the two-body system mentioned above have

been presented in Fig. 1 (Fig. 1 of Refs. [12, 13]).

The four-body system (consisting of two particles and

two antiparticles) and six-body system (consisting of three

particles and three antiparticles) cannot be solved analyti-

cally. Therefore some approximate solutions should be

sought. In the Appendix, four-, and six-body wave equa-

tions have been written explicitly using the Eq. (3.5) for

n ¼ 4 and n ¼ 6; respectively. One can obtain variational

expression for the energy En of the n-body system (for our

case: n ¼ 4 or n ¼ 6) of the systems under study by sub-

stituting Gðp1; p2; . . .; pnÞ with analytical functions that

contain adjustable constants or parameters to compute the

energy of four- or six-body system (see Eqs. 3.2 and 3.4).

En ¼
1

hwnjwni
hwnj : Ĥ : jwni: ð4:1Þ

We consider ground-state energy solutions and using the

variational principle (Eq. 2.16) and taking simple forms for

the wave function G we can obtain some approximate

solutions. We have, namely

Gðp1; p2; . . .; pnÞ ¼ f ðp1Þ � � � f ðpnÞdðp1 þ � � � þ pnÞ; ð4:2Þ

where

f ðpiÞ ¼
1

ðp2i þ p20Þ
m ; ð4:3Þ

where p0 and m describe adjustable parameters. The cal-

culations have been performed in the rest frame (with zero

total momentum).

For the four- or six-body wave equations, the multidi-

mensional integrals that we have cannot be solved analyt-

ically, hence we should seek some numerical solutions

using the Monte Carlo method [25]. The parameter p0
indicates the scale of the approximate wave functions. We

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

0 0.2 0.4 0.6 0.8 1

E/m

α

Darewych
Ding-Darewych-1
Ding-Darewych-2
Leo-Darewych
WC
BS

Fig. 1 Ground-state energies in units of m of two-body system.

Curves from lowest to highest: Feshbach–Villar formalism [24]; with

retardation and without virtual annihilation [12, 13]; with retardation

and with virtual annihilation [12, 13]; without virtual annihilation

interactions and retardation terms [23]; Wick–Cutkosky formalism

[3, 4]; Bethe–Salpeter formalism [1]
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locate the minimum of the variational trial energy as a

function of p0. Moreover, varying the parameter m does not
change the numerical solutions sensibly (see, for example,

[12, 13]); therefore, we leave it at the value m ¼ 2 which is

the non-relativistic, hydrogenic ground-state value.

For the four-body system the numerical results have

been presented for different cases, ‘‘without’’ and ‘‘with’’

retardation effects and virtual annihilation interactions. The

virtual annihilation interactions are mostly not included in

other works. One should note that the solutions corre-

sponding to four-body relativistic wave equations when the

retardation effects are included and virtual annihilation

interactions are eliminated have been done previously in

[14] and they are added here for the comparison purposes

with other cases in Tables 1 and 2. The numerical solutions

for the variationally obtained trial wave functions are given

in Table 1 for the massive-exchange case with l ¼ 0:15m

and for the massless-exchange case l ¼ 0 in Table 2.

These solutions have been also plotted in Fig. 2a, b,

respectively. Energies, E4 and p0 have been provided in

units of m (i.e., m ¼ 1) for given coupling a.
Binding energy B4 is: B4 ¼ E4 � 4 in units of m (i.e.,

m ¼ 1); the binding energy augments when we increase the

coupling a: This is because of the fact that for present

scalar mediating field, the dominant one-quantum

exchange interactions are attractive. The parameter p0
corresponding to our wave functions also augments when

we increase the coupling strength a: This means that the

wave function becomes more peaked in coordinate space at

higher values of the coupling. Similar results have been

presented in Table 2 and Fig. 2b for the massless-exchange

case (l ¼ 0). In this case, Yukawa potentials transform to

Coulombic potentials in the non-relativistic limits.

Although the qualitative behaviors of EðaÞ for l ¼ 0 are

very close to that for l ¼ 0:15m, the binding energy, for a

specific a is stronger for l ¼ 0 than for l ¼ 0:15m, and it

sets in at a0 ! 0.

The numerical results in Tables 1 and 2 generally show

that the retardation effects and virtual annihilation inter-

actions are somehow minor effects but not negligible in

contrast to Yukawa interactions for the scalar four-body

particle–antiparticle systems. Moreover, the contribution

of these retardation effects and virtual annihilation terms

increases at high coupling and they become more

noticeable for the range of the values of coupling strength

0:5� a� 1: Furthermore, for a given value of coupling a
we can observe (from Tables or plotted figures) that for

the case where virtual annihilation terms are included and

retardation effects are excluded we have the highest val-

ues of the energy solutions (the top curves in the Fig. 2a,

b, respectively). In addition, for the case where virtual

annihilation terms are excluded and retardation effects are

included we have the lowest values of the energy solu-

tions (the lowest curves in the Fig. 2a, b, respectively).

We can observe these differences of the ground-state

energy values with respect to inclusion and/or exclusion

of virtual annihilation terms and retardation effects par-

ticularly at higher values of the coupling strength

0:5\a� 1:

We should mention that the four-body system similar to

the case of two-body system in [24] (that was solved

analytically for the massless mediating field case) may

suggest a critical value of the coupling constant around

a� 1: This means that the values of energy solutions

obtained for a	 1 may not be reliable or no energy solu-

tions exist beyond a critical value of the coupling a� 1:

Hence, we did not consider the energy results for a larger

than 1. Note also that the error estimates in the numerical

Table 1 Four-body ground-state energies E4 and wave function parameter, p0; for the massive-exchange case l ¼ 0:15m

a E4
ðp0Þ

with annihilation and

without retardation

E4
ðp0Þ

without annihilation and

without retardation

E4
ðp0Þ

with annihilation and

with retardation

E4
ðp0Þ

[14] without annihilation and

with retardation

0.3 3:995
 0:020
ð0:080Þ

3:992
 0:020
ð0:085Þ

3:989
 0:020
ð0:090Þ

3:985
 0:025
ð0:095Þ

0.4 3:968
 0:030
ð0:200Þ

3:959
 0:030
ð0:210Þ

3:952
 0:035
ð0:220Þ

3:946
 0:035
ð0:225Þ

0.5 3:916
 0:045
ð0:270Þ

3:902
 0:050
ð0:275Þ

3:894
 0:050
ð0:285Þ

3:882
 0:050
ð0:290Þ

0.6 3:851
 0:060
ð0:330Þ

3:843
 0:065
ð0:340Þ

3:819
 0:070
ð0:345Þ

3:798
 0:070
ð0:350Þ

0.7 3:781
 0:075
ð0:365Þ

3:758
 0:075
ð0:370Þ

3:739
 0:075
ð0:380Þ

3:706
 0:075
ð0:385Þ

0.8 3:694
 0:080
ð0:410Þ

3:663
 0:080
ð0:420Þ

3:638
 0:085
ð0:430Þ

3:594
 0:085
ð0:430Þ

0.9 3:603
 0:090
ð0:440Þ

3:561
 0:090
ð0:450Þ

3:525
 0:095
ð0:455Þ

3:477
 0:095
ð0:465Þ

1 3:504
 0:100
ð0:455Þ

3:458
 0:100
ð0:465Þ

3:415
 0:100
ð0:475Þ

3:356
 0:100
ð0:480Þ
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results obtained by Monte Carlo method grow significantly

for higher values of the coupling strength.

Similar to the case of four-body system (two particles

and two antiparticles) we have the case of six-body prob-

lem (system consisting of three particles and three

antiparticles). Tables 3 and 4 show the numerical results

corresponding to the effects of inclusion or exclusion of

virtual annihilation interactions and/or retardation effects

for the six-body system for the massive-exchange case with

l ¼ 0:15m and for the massless-exchange case l ¼ 0,

respectively. The wave function parameters p0 are also

available in Tables 3 and 4 for each case at a given cou-

pling strength a:
Note that as for the previous cases of two-, and four-

body systems the virtual annihilation terms have small

contributions for the ground-state energy results. The vir-

tual annihilation term is a ‘‘repulsive’’ interaction that

increases the energy of the system by a small amount,

particularly for coupling values around 0:1� a� 0:4:

However, the contribution of this interaction becomes more

important (not negligible) at higher coupling strength val-

ues such as 0:5\a� 1:

Moreover, the contribution of retardation effects

become more significant at higher values of coupling a: In
addition, for a given value of coupling a if we consider that

virtual annihilation interactions are included in the calcu-

lations, we will have two different cases. The first case is

when retardation term is added and the second one is when

retardation term is neglected. Similar to the case of two-

and four-body systems the inclusion of retardation terms do

decrease the energy solutions of the six-body system. This

means that the binding energy of the systems in the

example mentioned above will increase for both cases: the

massive-exchange case with l ¼ 0:15m and for the

massless exchange case l ¼ 0, respectively. Note that

binding energy B6 is: B6 ¼ E6 � 6 in units of m (i.e.,

m ¼ 1).

The numerical solutions have been presented in Tables 3

and 4. These values have been also plotted in Fig 3a, b for

the massive-exchange case with l ¼ 0:15m and for the

massless-exchange case l ¼ 0, respectively.

The case of six-body system, for particles only and no

virtual annihilation interaction [5], was done before and it

has been included in the Tables 3 and 4 as well as the

calculation of the case of combined three particles and

three antiparticles with virtual annihilations and with

retardation effects [9]. The corresponding graphs are also

put in Fig. 3a, b for comparison purposes. However, the

other two cases when the retardation terms are included or

excluded have not done previously and correspond to the

present work.

We should note that for the six-body system under

study, as for the two- and four-body cases mentioned

before, we may have a critical value of the coupling around

a� 1: Note also that the error estimates in the numerical

results obtained by Monte Carlo method is growing with

increase of the coupling strength values. Furthermore, the

error estimates augment notably with the increasing num-

ber of particles and antiparticles. This means that, for

example for a ¼ 1; the error bars in the graphs related to

Table 2 Four-body E4 ground-state energies and wave function parameter, p0, for the massless-exchange case, l ¼ 0

a E4
ðp0Þ

with annihilation and

without retardation

E4
ðp0Þ

without annihilation and

without retardation

E4
ðp0Þ

with annihilation and

with retardation

E4
ðp0Þ

[14] without annihilation and

with retardation

0.1 3:986
 0:040
ð0:020Þ

3:980
 0:040
ð0:025Þ

3:975
 0:050
ð0:030Þ

3:971
 0:050
ð0:030Þ

0.2 3:938
 0:050
ð0:130Þ

3:930
 0:050
ð0:135Þ

3:925
 0:060
ð0:140Þ

3:919
 0:060
ð0:145Þ

0.3 3:854
 0:060
ð0:185Þ

3:835
 0:065
ð0:195Þ

3:829
 0:070
ð0:200Þ

3:821
 0:070
ð0:205Þ

0.4 3:758
 0:070
ð0:265Þ

3:743
 0:075
ð0:275Þ

3:733
 0:080
ð0:280Þ

3:721
 0:085
ð0:290Þ

0.5 3:643
 0:080
ð0:385Þ

3:625
 0:085
ð0:390Þ

3:613
 0:090
ð0:400Þ

3:598
 0:090
ð0:405Þ

0.6 3:512
 0:090
ð0:410Þ

3:484
 0:095
ð0:420Þ

3:470
 0:095
ð0:430Þ

3:454
 0:100
ð0:430Þ

0.7 3:379
 0:100
ð0:445Þ

3:342
 0:100
ð0:450Þ

3:324
 0:105
ð0:460Þ

3:304
 0:105
ð0:465Þ

0.8 3:237
 0:105
ð0:450Þ

3:185
 0:105
ð0:460Þ

3:155
 0:105
ð0:470Þ

3:131
 0:105
ð0:470Þ

0.9 3:095
 0:110
ð0:475Þ

3:042
 0:110
ð0:480Þ

3:010
 0:110
ð0:490Þ

2:970
 0:110
ð0:500Þ

1 2:935
 0:110
ð0:515Þ

2:875
 0:110
ð0:525Þ

2:830
 0:110
ð0:530Þ

2:775
 0:110
ð0:535Þ
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the six-body system are much larger than the error bars

corresponding to the four-body system investigated earlier

in this section.

Binding energy of the six-body system B6 is: B6 ¼
E6 � 6 in units of m (i.e., m ¼ 1). As one can observe from

the results of six-body system the binding energy of the

system augments with increase of coupling strength a

similar to the previous cases of two- and four-body sys-

tems. Although the qualitative behaviors of EðaÞ for l ¼ 0

are very close to that for l ¼ 0:15m; the binding energy for

a particular value of a is stronger for l ¼ 0 than for l ¼
0:15m; and it sets in at a0 ! 0:
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3.7

3.8
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0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E/m

α

With Annihilation and Without Retardation
Without Annihilation and Retardation
With Annihilation and Retardation
Without Annihilation and With Retardation

2.6

2.8

3

3.2

3.4

3.6

3.8

4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E/m

α

With Annihilation and Without Retardation

Without Annihilation and Retardation

With Annihilation and Retardation

Without Annihilation and With Retardation

a

b

Fig. 2 a Relativistic ground-state energies in units of m of four-body

systems, ‘‘with’’ and/or ‘‘without’’ retardation and/or virtual annihi-

lation terms, for the massive-exchange case l ¼ 0:15m and different

coupling a. b Relativistic ground-state energies in units of m of four-

body systems, ‘‘with’’ and/or ‘‘without’’ retardation and/or virtual

annihilation terms, for the massless-exchange case l ¼ 0 and

different coupling a

Table 3 Six-body ground-state energies E6 and wave function parameter, p0, for massive-exchange case l ¼ 0:15m

a E6
ðp0Þ

with annihilation and

without retardation

E6
ðp0Þ

without annihilation and

without retardation

E6
ðp0Þ

[9] with annihilation and

with retardation

E6
ðp0Þ

[5] without annihilation and

with retardation

0.3 5:935
 0:0065
ð0:085Þ

5:922
 0:065
ð0:225Þ

5:915
 0:065
ð0:235Þ

5:891
 0:060
ð0:245Þ

0.4 5:820
 0:100
ð0:300Þ

5:777
 0:100
ð0:310Þ

5:765
 0:100
ð0:315Þ

5:715
 0:095
ð0:330Þ

0.5 5:651
 0:110
ð0:350Þ

5:596
 0:110
ð0:360Þ

5:570
 0:110
ð0:370Þ

5:505
 0:105
ð0:380Þ

0.6 5:477
 0:120
ð0:400Þ

5:401
 0:120
ð0:410Þ

5:345
 0:120
ð0:420Þ

5:274
 0:110
ð0:435Þ

0.7 5:252
 0:155
ð0:435Þ

5:161
 0:155
ð0:445Þ

5:101
 0:155
ð0:450Þ

5:021
 0:145
ð0:470Þ

0.8 5:008
 0:200
ð0:505Þ

4:910
 0:200
ð0:515Þ

4:842
 0:200
ð0:520Þ

4:742
 0:195
ð0:535Þ

0.9 4:725
 0:260
ð0:540Þ

4:620
 0:260
ð0:550Þ

4:535
 0:260
ð0:570Þ

4:425
 0:250
ð0:580Þ

1 4:380
 0:290
ð0:615Þ

4:260
 0:290
ð0:625Þ

4:155
 0:290
ð0:635Þ

4:105
 0:280
ð0:645Þ
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Concluding remarks

Approximate ground-state solutions of the two-, four-, and

six-body systems have been presented for different strength

of coupling, for both massive and massless scalar mediat-

ing field to compare the effects of virtual annihilation

interaction terms and retardation effects in the relativistic

equations. The numerical solutions of the two-, four-, and

six-body systems have been discussed considering that

‘‘the virtual annihilation interactions’’ and ‘‘the retardation

effects’’ are neglected or included.

Table 4 Six-body E6 ground-state energies and wave function parameter, p0, for the massless-exchange case, l ¼ 0

a E6
ðp0Þ

with annihilation and

without retardation

E6
ðp0Þ

without annihilation and

without retardation

E6
ðp0Þ

[9] with annihilation and

with retardation

E6
ðp0Þ

[5] without annihilation and

with retardation

0.1 5:967
 0:070
ð0:090Þ

5:945
 0:070
ð0:100Þ

5:935
 0:055
ð0:105Þ

5:915
 0:060
ð0:105Þ

0.2 5:881
 0:090
ð0:205Þ

5:852
 0:090
ð0:220Þ

5:840
 0:090
ð0:230Þ

5:812
 0:085
ð0:230Þ

0.3 5:665
 0:090
ð0:285Þ

5:632
 0:110
ð0:290Þ

5:617
 0:110
ð0:300Þ

5:587
 0:100
ð0:310Þ

0.4 5:412
 0:165
ð0:360Þ

5:367
 0:165
ð0:375Þ

5:340
 0:165
ð0:380Þ

5:291
 0:155
ð0:390Þ

0.5 5:102
 0:205
ð0:405Þ

5:051
 0:205
ð0:410Þ

5:025
 0:205
ð0:415Þ

4:971
 0:195
ð0:425Þ

0.6 4:822
 0:260
ð0:440Þ

4:745
 0:260
ð0:450Þ

4:710
 0:260
ð0:455Þ

4:638
 0:250
ð0:465Þ

0.7 4:498
 0:310
ð0:495Þ

4:410
 0:310
ð0:500Þ

4:360
 0:310
ð0:505Þ

4:278
 0:295
ð0:515Þ

0.8 4:171
 0:330
ð0:525Þ

4:061
 0:330
ð0:535Þ

3:990
 0:335
ð0:540Þ

3:885
 0:325
ð0:550Þ

0.9 3:770
 0:360
ð0:570Þ

3:655
 0:360
ð0:580Þ

3:585
 0:360
ð0:590Þ

3:461
 0:345
ð0:610Þ

1 3:405
 0:385
ð0:640Þ

3:260
 0:385
ð0:650Þ

3:170
 0:385
ð0:655Þ

3:015
 0:375
ð0:675Þ
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a b

Fig. 3 a Relativistic ground-state energies in units of m of six-body

systems, ‘‘with’’ and/or ‘‘without’’ retardation and/or virtual annihi-

lation terms, for the massive-exchange case l ¼ 0:15m and different

coupling a. b Relativistic ground-state energies in units of m of six-

body systems, ‘‘with’’ and/or ‘‘without’’ retardation and/or virtual

annihilation terms, for the massless-exchange case l ¼ 0 and

different coupling a
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The results for our various systems under study show

that at low coupling the retardation effects and virtual

annihilation interactions are minor effects compared to

Yukawa interactions in our particle–antiparticle systems. In

addition, at high coupling the results show that we have a

noticeable increase in the effects of virtual annihilation

interactions or retardation terms in the two-, four-, and six-

body systems.

As mentioned before, the effect of retardation terms is as

follows. The binding energies of our systems under study

have been increased by a small amount for low values of

the coupling and by a noticeable amount for high values of

the coupling. However, as we can see, for example in the

work of Gross [26], the inclusion of retardation effects

reduces the binding energy of the two-body system. The

argument that we can use to express the difference between

these results with respect to the inclusion of the retardation

effects is as follows. In a general point of view, we should

consider the types of interactions that have been used. As a

matter of fact, retardation terms that did arise in the

equations are relativistic effects. The relativistic equations

in the current model have only positive-energy solutions. In

other words, the present relativistic equations are Salpeter-

like and not Klein–Gordon like. The relativistic results lie

above non-relativistic solutions, as we can see, for exam-

ple, in [5] or [12, 13]. This fact, that the relativistic solu-

tions are above the non-relativistic results, is the

characteristic of formalisms, like the present model, which

has no negative energy answers. One should also note that

for the two-body case, the relativistic solutions which are

obtained by employing an ‘‘empty’’ vacuum (Klein–Gor-

don-like equations) lie below the non-relativistic solutions.

As one can see from eq. (50) of Darewych [24] for the

massless-exchange case (the same as Todorov equation

[27] using a quasipotential approach), at small values of the

coupling a, the energy solutions are: E2 ¼ 2� 1
4
a2 � 5

64
a4:

To sum up, the retardation effect augments the binding

energy of the systems mostly due to the characteristic of

the present model or formalism.

From the practical point of view, it is of interest to

remind what follows. Wheeler [28] speculated that two

positronium atoms can combine to form the four-body

system, namely positronium molecule (Ps2: e
�eþe�eþ), in

1946. He also postulated the possible existence of larger

atoms such as the six-body systems Ps3 (e�eþe�eþe�eþ).
The first calculation of the binding energy of Ps2 was

performed [29] later on. In 2007 the positronium molecule

was observed by Cassidy and Mills [30]. Similarly, the

existence of a scalar ‘‘fundamental’’ particle, named Higgs

boson, was theorized in 1960 by Higgs [31] and some other

scientists. Observation of this new particle was confirmed

in 2012 [32]. Hence, it would be also of interest to

investigate the existence of bound states and related rela-

tivistic effects of the few-body Higgs bosons such as four-

body Higgs systems or even larger structures. For example,

the existence of two-Higgs-boson bound states has been

studied in references [33, 34].

Therefore, from experimental and theoretical points of

view it will be of fundamental interest to study the exis-

tence of bound states of scalar particles (or other exotic

systems [35]) and the corresponding relativistic effects.

Moreover, since the bound-state solutions, for example, of

the scalar Higgs bosons are mainly found in the very strong

coupling regime [34] the use of variational method seems

to be more appropriate for the computations of relativistic

effects of such ‘‘scalar’’ particles and/or antiparticles (the

perturbation theory does depend on the coupling constant

and the calculations may not be reliable) particularly at

strong coupling.
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Appendix

For the two-body system (one particle and one antiparti-

cle), choosing the trial state

j w2i ¼
Z

dNp1d
Np2 Gðp1; p2ÞAyðp1ÞByðp2Þj0i; ð6:1Þ

we obtain the following wave equation:

Gðp1; p2Þ½xp1 þ xp2 � E� ¼ g2

4ð2pÞN
Z

dNp01d
Np02Gðp01; p02Þ

� dNðp01 þ p02 � p1 � p2Þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffixp0

1
xp0

2
xp1xp2

p

� 1

l2 � ðp01 � p1Þ2
þ 1

l2 � ðp1 þ p2Þ2

" #

ð6:2Þ

For the four-body system (two particles and two antipar-

ticles), choosing the trial state

j w4i ¼
Z

dNp1d
Np2d

Np3 d
Np4Gðp1; p2; p3; p4Þ

Ayðp1ÞByðp2ÞAyðp3ÞByðp4Þj0i;
ð6:3Þ

we have the following wave equation:
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Gðp1; p2; p3; p4Þ½xp1 þ xp2 þ xp3 þ xp4 � E�

¼ g2

4ð2pÞN
Z

dNp01d
Np02d

Np03d
Np04Gðp01; p02; p03; p04Þ

�
(

dNðp02 � p2ÞdNðp04 � p4Þ
�

dNðp01 þ p03 � p1 � p3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffixp0
1
xp0

3
xp1xp3

p
1

l2 � ðp1 � p01Þ
2

#

G1

þ dNðp01 � p1ÞdNðp04 � p4Þ
�
dNðp02 þ p03 � p2 � p3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffixp0

2
xp0

3
xp2xp3

p
1

l2 � ðp2 � p02Þ
2

#

G2

þ dNðp04 � p4ÞdNðp03 � p3Þ
�
dNðp01 þ p02 � p1 � p2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffixp0

1
xp0

2
xp1xp2

p
1

l2 � ðp2 � p02Þ
2

#

G3

þ dNðp01 � p1ÞdNðp02 � p2Þ
�
dNðp04 þ p03 � p3 � p4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffixp0

4
xp0

3
xp3xp4

p
1

l2 � ðp3 � p03Þ
2

#

G4

þ dNðp03 � p3ÞdNðp02 � p2Þ
�
dNðp04 þ p01 � p4 � p1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffixp0

4
xp0

1
xp4xp1

p
1

l2 � ðp1 � p01Þ
2

#

G5

þ dNðp03 � p3ÞdNðp01 � p1Þ
�
dNðp04 þ p02 � p4 � p2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffixp0

4
xp0

2
xp4xp2

p
1

l2 � ðp4 � p04Þ
2

#

G6

þ dNðp01 � p1ÞdNðp02 � p2Þ
�
dNðp04 þ p03 � p3 � p4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffixp0

4
xp0

3
xp3xp4

p
1

l2 � ðp4 þ p3Þ2

#

A1

þ dNðp03 � p3ÞdNðp02 � p2Þ
�
dNðp04 þ p01 � p4 � p1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffixp0

4
xp0

1
xp4xp1

p
1

l2 � ðp4 þ p1Þ2

#

A2

þ dNðp01 � p1ÞdNðp04 � p4Þ
�
dNðp02 þ p03 � p2 � p3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffixp0

2
xp0

3
xp2xp3

p
1

l2 � ðp03 þ p02Þ
2

#

A3

þ dNðp04 � p4ÞdNðp03 � p3Þ
�
dNðp01 þ p02 � p1 � p2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffixp0

1
xp0

2
xp1xp2

p
1

l2 � ðp01 þ p02Þ
2

#

A4

)

ð6:4Þ

For the six-body system (consisting of three particles and

three antiparticles: n ¼ 6), the simplest trial state for a

system of three particles and three antiparticles is

jw6i ¼
Z

dNp1d
Np2d

Np3d
Np4d

Np5d
Np6Gðp1; p2; p3; p4; p5; p6Þ

� Ayðp1ÞByðp2ÞAyðp3ÞByðp4ÞAyðp5ÞByðp6Þj0i
ð6:5Þ

The resulting six-body wave equation is

Gðp1; p2; p3; p4; p5; p6Þ½xp1 þ xp2 þ xp3

þ xp4 þ xp5 þ xp6 � E�

¼ g2

4ð2pÞN
Z

dNp01d
Np02d

Np03d
Np04d

Np05d
Np06

G�ðp01; p02; p03; p04; p05; p06Þ

�
(

dNðp03 � p3ÞdNðp04 � p4Þ
�

dNðp01 þ p02 � p1 � p2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffixp0
1
xp0

2
xp1xp2

p
dNðp05 � p5ÞdNðp06 � p6Þ

l2 � ðp1 � p01Þ
2

#

G1

þ dNðp02 � p2ÞdNðp04 � p4Þ
�
dNðp01 þ p03 � p1 � p3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffixp0

1
xp0

3
xp1xp3

p
dNðp05 � p5ÞdNðp06 � p6Þ

l2 � ðp1 � p01Þ
2

#

G2

þ dNðp02 � p2ÞdNðp03 � p3Þ
�
dNðp01 þ p04 � p1 � p4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffixp0

1
xp0

4
xp1xp4

p
dNðp05 � p5ÞdNðp06 � p6Þ

l2 � ðp4 � p04Þ
2

#

G3

þ dNðp02 � p2ÞdNðp03 � p3Þ
�
dNðp01 þ p05 � p1 � p5Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffixp0

1
xp0

5
xp1xp5

p
dNðp04 � p4ÞdNðp06 � p6Þ

l2 � ðp5 � p05Þ
2

#

G4

þ dNðp02 � p2ÞdNðp03 � p3Þ
�
dNðp01 þ p06 � p1 � p6Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffixp0

1
xp0

6
xp1xp6

p
dNðp04 � p4ÞdNðp05 � p5Þ

l2 � ðp6 � p06Þ
2

#

G5

þ dNðp01 � p1ÞdNðp04 � p4Þ
�
dNðp02 þ p03 � p2 � p3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffixp0

2
xp0

3
xp2xp3

p
dNðp05 � p5ÞdNðp06 � p6Þ

l2 � ðp3 � p03Þ
2

#

G6

þ dNðp01 � p1ÞdNðp03 � p3Þ
�
dNðp02 þ p04 � p2 � p4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffixp0

2
xp0

4
xp2xp4

p
dNðp05 � p5ÞdNðp06 � p6Þ

l2 � ðp2 � p02Þ
2

#

G7
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þ dNðp01 � p1ÞdNðp03 � p3Þ
�
dNðp02 þ p05 � p2 � p5Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffixp0

2
xp0

5
xp2xp5

p
dNðp04 � p4ÞdNðp06 � p6Þ

l2 � ðp2 � p02Þ
2

#

G8

þ dNðp01 � p1ÞdNðp03 � p3Þ
�
dNðp02 þ p06 � p2 � p6Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffixp0

2
xp0

6
xp2xp6

p
dNðp04 � p4ÞdNðp05 � p5Þ

l2 � ðp6 � p06Þ
2

#

G9

þ dNðp01 � p1ÞdNðp02 � p2Þ
�
dNðp03 þ p04 � p3 � p4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffixp0

3
xp0

4
xp3xp4

p
dNðp05 � p5ÞdNðp06 � p6Þ

l2 � ðp3 � p03Þ
2

#

G10

þ dNðp01 � p1ÞdNðp02 � p2Þ
�
dNðp03 þ p05 � p3 � p5Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffixp0

3
xp0

5
xp3xp5

p
dNðp04 � p4ÞdNðp06 � p6Þ

l2 � ðp5 � p05Þ
2

#

G11

þ dNðp01 � p1ÞdNðp02 � p2Þ
�
dNðp03 þ p06 � p3 � p6Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffixp0

3
xp0

6
xp3xp6

p
dNðp04 � p4ÞdNðp05 � p5Þ

l2 � ðp6 � p06Þ
2

#

G12

þ dNðp01 � p1ÞdNðp02 � p2Þ
�
dNðp04 þ p05 � p4 � p5Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffixp0

4
xp0

5
xp4xp5

p
dNðp03 � p3ÞdNðp06 � p6Þ

l2 � ðp4 � p04Þ
2

#

G13

þ dNðp01 � p1ÞdNðp02 � p2Þ
�
dNðp04 þ p06 � p4 � p6Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffixp0

4
xp0

6
xp4xp6

p
dNðp03 � p3ÞdNðp05 � p5Þ

l2 � ðp4 � p04Þ
2

#

G14

þ dNðp01 � p1ÞdNðp02 � p2Þ
�
dNðp05 þ p06 � p5 � p6Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffixp0

5
xp0

6
xp5xp6

p
dNðp03 � p3ÞdNðp04 � p4Þ

l2 � ðp5 � p05Þ
2

#

G15

þ dNðp03 � p3ÞdNðp04 � p4Þ
�
dNðp01 þ p02 � p1 � p2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffixp0

1
xp0

2
xp1xp2

p
dNðp05 � p5ÞdNðp06 � p6Þ

l2 � ðp1 þ p2Þ2

#

A1

þ dNðp02 � p2ÞdNðp03 � p3Þ
�
dNðp01 þ p04 � p1 � p4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffixp0

1
xp0

4
xp1xp4

p
dNðp05 � p5ÞdNðp06 � p6Þ

l2 � ðp1 þ p4Þ2

#

A2

þ dNðp02 � p2ÞdNðp03 � p3Þ
�
dNðp01 þ p06 � p1 � p6Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffixp0

1
xp0

6
xp1xp6

p
dNðp04 � p4ÞdNðp05 � p5Þ

l2 � ðp01 þ p06Þ
2

#

A3

þ dNðp01 � p1ÞdNðp04 � p4Þ
�
dNðp02 þ p03 � p2 � p3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffixp0

2
xp0

3
xp2xp3

p
dNðp05 � p5ÞdNðp06 � p6Þ

l2 � ðp02 þ p03Þ
2

#

A4

þ dNðp01 � p1ÞdNðp03 � p3Þ
�
dNðp02 þ p05 � p2 � p5Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffixp0

2
xp0

5
xp2xp5

p
dNðp04 � p4ÞdNðp06 � p6Þ

l2 � ðp2 þ p5Þ2

#

A5

þ dNðp01 � p1ÞdNðp02 � p2Þ
�
dNðp04 þ p03 � p3 � p4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffixp0

4
xp0

3
xp3xp4

p
dNðp05 � p5ÞdNðp06 � p6Þ

l2 � ðp04 þ p03Þ
2

#

A6

þ dNðp01 � p1ÞdNðp02 � p2Þ
�
dNðp03 þ p06 � p3 � p6Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffixp0

3
xp0

6
xp3xp6

p
dNðp04 � p4ÞdNðp05 � p5Þ

l2 � ðp4 þ p3Þ2

#

A7

þ dNðp01 � p1ÞdNðp02 � p2Þ
�
dNðp04 þ p05 � p4 � p5Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffixp0

4
xp0

5
xp4xp5

p
dNðp03 � p3ÞdNðp06 � p6Þ

l2 � ðp04 þ p05Þ
2

#

A8

þ dNðp01�p1ÞdNðp02�p2Þ
�
dNðp05þp06�p5�p6Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffixp0

5
xp0

6
xp5xp6

p
dNðp03�p3ÞdNðp04�p4Þ

l2�ðp05þ p06Þ
2

#

A9

)
:

ð6:6Þ

As an example for the non-relativistic potential of six-

body system, namely Vðr1;r2; . . .;r6Þ; we can write it as

below:
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Vðr1; r2; r3; r4; r5; r6Þ ¼ �a
e�ljr1�r2j

jr1 � r2j
� a

e�ljr1�r3j

jr1 � r3j

� a
e�ljr1�r4j

jr1 � r4j
� a

e�ljr1�r5j

jr1 � r5j

� a
e�ljr1�r6j

jr1 � r6j
� a

e�ljr2�r3j

jr2 � r3j
� a

e�ljr2�r4j

jr2 � r4j
� a

e�ljr2�r5j

jr2 � r5j

� a
e�ljr2�r6j

jr2 � r6j
� a

e�ljr3�r4j

jr3 � r4j
� a

e�ljr3�r5j

jr3 � r5j
� a

e�ljr3�r6j

jr3 � r6j

� a
e�ljr4�r5j

jr4 � r5j
� a

e�ljr4�r6j

jr4 � r6j
� a

e�ljr5�r6j

jr5 � r6j

þ a
4p

4m2 � l2
d3ðr1 � r2Þ þ a

4p
4m2 � l2

d3ðr1 � r4Þ

þ a
4p

4m2 � l2
d3ðr1 � r6Þ þ a

4p
4m2 � l2

d3ðr2 � r3Þ

þ a
4p

4m2 � l2
d3ðr2 � r5Þ þ a

4p
4m2 � l2

d3ðr3 � r4Þ

þ a
4p

4m2 � l2
d3ðr3 � r6Þ þ a

4p
4m2 � l2

d3ðr4 � r5Þ

þ a
4p

4m2 � l2
d3ðr5 � r6Þ;

ð6:7Þ
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