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Abstract
A model is presented to study the random growth of the number of tumor cells. It contains deterministic growth and therapy 
terms, as well as a random term. The model is formulated as a Langevin equation and its corresponding Fokker–Planck 
equation is studied. Three forms for the time-dependence of the therapy are used and the results are compared to each other. 
Specifically, the ratio of the probability that the number of tumor cells be large to the probability that the number of tumor 
cells be small is investigated. The large time behavior of this ratio is considered as a figure of merit. Better therapies cor-
respond to smaller values for this figure of merit. The behavior of this figure of merit in terms of various parameters of the 
therapy is investigated. It is seen that decreasing the amplitude or the period, decreases this figure of merit, hence improves 
the therapy.
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Introduction

There have been significant developments in the mathemati-
cal modeling of tumor growth[1–4]. Simplest models deal 
with just the number of tumor cells, so that there is a sin-
gle variable the time evolution of which is studied. More 
extended models involve several numbers (the number of 
tumor cells or other kinds of the cells, for example) which 
still depend on only time[5]. One could also study the spatial 
behavior of these numbers, so that the time evolutions of 
some fields are studied. One could investigate determinis-
tic models, which result in ordinary or partial differential 
equations, depending on whether the spatial behavior is 
neglected or investigated. Finally, one could include ran-
dom effects in the models. Including random effects through 
Gaussian white noises results in Langevin equations which 

correspond to equivalent Fokker–Planck equations for prob-
ability functions[6–10].

Here a simple model is studied which contains a single 
time-dependent variable, the number of the tumor cells, 
but contains random effects. The model contains a growth 
term which is of the form of a logistic function, a therapy 
term which could depend on time, and a white noise term. 
The Langevin equation corresponding to the system, and 
its equivalent Fokker–Planck equation are studied, and spe-
cifically the longtime behavior of the system is studied. To 
quantify the effect of various parameters on the therapy, a 
figure of merit r is introduced, which is the large time value 
of the ratio of the probability that the number of tumor cells 
be large to the probability that the number of tumor cells be 
small. Better therapies correspond to smaller values for this 
figure of merit. Three types of time-dependences are con-
sidered for the therapy function: sine, piecewise constant, 
and exponential, all of them periodic in time. Increasing 
the average of the therapy function, of course decreases the 
value of r, hence improving the therapy. It is shown that 
increasing the amplitude or the period increases r. Also, for 
similar parameters, it is seen that the exponential form and 
the sine form correspond to the smallest and largest values 
for r, respectively. So best therapies are achieved by expo-
nential forms with small amplitudes and periods.

The scheme of the paper is the following. In Sect. 2 the 
mathematical tools and in Sect. 3 the model are introduced. 
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Section 4 is where periodic therapies are studied and the 
main results are presented. Section  5 is devoted to the 
discussion.

Mathematical tools

Mainly to introduce the notation, let us briefly review 
the Langevin equation and the equivalent Fokker–Planck 
method. A Langevin equation for a single variable x, with 
an additive Gaussian white noise, is of the form

where � is a Gaussian white noise satisfying

where Γ is a positive constant. The corresponding Fok-
ker–Planck equation is

where D0 and D are differentiation with respect to t and x, 
and the probability current J satisfies

So,

J vanishes at the boundaries corresponding to x, so that the 
integral of P over x is a constant. (It should be one.) If f 
is time-independent, then there exists a time-independent 
solution for P. This time-independent solution corresponds 
to a vanishing J:

So, denoting the time-independent probability by Pst , one 
has

where N  is a normalization constant[11, 12].
In general, that f does depend on time, the time evolution 

of P is governed by

or in a more compact form

(1)
d x

d t
= f (t, x) + �(t),

(2)⟨�(t)⟩ = 0,

(3)⟨�(t) �(t�)⟩ = 2Γ �(t − t�),

(4)
D0 P = −D J,

=∶ H P,

(5)J = f P − ΓDP.

(6)H P = −D (f P) + D (ΓDP).

(7)J = 0.

(8)Pst(x) = N exp

[
1

Γ ∫
x

d x� f (x�)

]
,

(9)P(t, x) = ∫ d x� U(t, x, x�)P(0, x�),

where U is the evolution operator satisfying

A special case is when f is periodic in time, say with the 
period T. In that case in large times P would be periodic with 
the same period. Denoting that P again with Pst , one has

where n is an integer. Also,

meaning that Pst is an eigenvector of the evolution by the 
time T, with the eigenvalue 1. The time average of Pst would 
satisfy

The model

A complete model of the growth of a tumor, involves the 
tumor cells as well as the normal cells, with interaction 
between them. Here a very simple model is studied, in which 
the effect of the normal cells on the tumor cells is neglected, 
so that the equation for the evolution of the tumor contains 
only the tumor, and the therapy parameters.

Let us assume a logistic model for the deterministic 
growth of the tumor cells. This means that the growth rate 
is proportional to the number of cells, if the number of cells 
is small, but reaches a saturation. A therapy term c (in gen-
eral a function of time and the number of tumor cells) is 
added to this. Finally, the stochastic effects are taken into 
account through a Gaussian white noise. One could use a 
more complex stochastic term, with the coefficient of the 
noise being a function of time and the number of tumor cells. 
Here, these dependencies have been neglected to make the 
model simpler, with fewer parameters, so that the effect of 
each parameter could be studied.

With this model, the evolution equation is

x is the number of tumor cells, a is the birth rate of the 
tumor cells, and b is the inverse of the carrying capacity. 

(10)P(t) = U(t)P(0),

(11)D0 U = HU,

(12)U(0, x, x�) = �(x − x�).

(13)Pst(t + n T , x) = ∫ d x� U(t, x, x�)Pst(0, x
�),

(14)Pst(0, x) = ∫ d x� U(T , x, x�)Pst(0, x
�),

(15)Pst(x) =
1

T ∫
T

0

d t ∫ d x� U(t, x, x�)Pst(0, x
�).

(16)
d x

d t
= a x(1 − b x) + c(t, x) + �(t).
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The current J corresponding to the Fokker–Planck equation 
(4) satisfies

so that the Fokker–Planck equation itself is

The dimensionless form of the above is

If c is independent of time, the time-independent probability 
Pst would satisfy

For example, for c being equal to a constant �,

Periodic therapies

Consider a therapy function c which is a function of only 
time, and is periodic in time with the period T. The reason 
for choosing the therapy to be a periodic function of time, 
is that real therapies are like this. Of course real therapies 
could depend also on x. Here a very simple model is con-
sidered in which this dependence has been put aside.

Among the characteristics of these functions are the 
mean � , the amplitude � , and the sharpness � . � and � are 
defined as

The sharpness � is defined as the inverse of the time (in a 
period), for which c is larger than �.

Three kinds of such therapy functions are studied here: 
the sine function cs , the piecewise-constant function cc , 
and the exponential function ce.

• The sine function 

(17)J = [a x(1 − b x) − c]P − ΓDP,

(18)D0 P = D{[−a x(1 − b x) + c]P} + ΓD2 P.

(19)D0 P = D{[−x(1 − x) + c]P} + ΓD2 P.

(20)Pst(x) = N exp

{
1

Γ

[
x2

2
−

x3

3
− ∫

x

d x� c(x�)

]}
.

(21)Pst(x) = N exp

[
1

Γ

(
x2

2
−

x3

3
− � x

)]
.

(22)� =
1

T ∫
T

0

d t c(t).

(23)�2 =
1

T ∫
T

0

d t [c(t) − �]2.

(24)cs(t) = � + A cos
2� t

T
.

• The piecewise constant function 

• The exponential function 

Figure 1 shows the three therapy functions.
The aim is to study the effects of the functional types of 

the therapy and the involved parameters on the result. To 
do so, the time average of the large-time behavior of the 
probability is studied and a single parameter r is defined as 
a figure of merit for the therapy:

Better therapies correspond to smaller values of r.
In the following the behavior of r is investigated. It is 

seen that the sine function and the exponential function con-
tain three independent parameters, � , � , and T. For these 
functions, � depends on the other three parameters. For 
the piecewise constant function, � is independent as well. 

(25)|A| < 𝜇.

(26)�s =
A√
2
.

(27)
1

�s
=

T

2
.

(28)cc(t) = 𝜇 +

⎧
⎪⎪⎨⎪⎪⎩

B

T1
, 0 < t < T1

−
B

T − T1
, T1 < t < T

.

(29)B < 𝜇 (T − T1).

(30)�c =
B√

T1 (T − T1)
.

(31)
1

�c
= T1.

(32)ce(t) = �
T

�

[
1 − exp

(
−
T

�

)]−1
exp

(
−
t

�

)
.

(33)�e = �

{
T

2 �

[
1 − exp

(
−
T

�

)]−1 [
1 + exp

(
−
T

�

)]
− 1

}1∕2

.

(34)
1

�e
= −� ln

{
�

T

[
1 − exp

(
−
T

�

)]}
.

(35)r =
Pst(1)

Pst(0)
.
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However, the numerical results show that the effect of �c on 
r is small. So, to simplify the comparison �c is taken to equal 
to (2/T), similar to the sine function. Also Γ is taken to be 
one. Finally, it is obvious that increasing the mean � reduces 
r (improves the therapy). So in the following comparison � 
is kept constant and the effects of � and T are studied. To 
summarize, the following parameters are used.

Figure 2 shows the behavior of the figure of merit r in terms 
of the amplitude � with a constant period T = 1.

Figure 3 shows the behavior of the figure of merit r in 
terms of the period T with a constant amplitude � = 1.

Discussion

Increasing the average value of the therapy function, of 
courses decreases the figure of merit: makes things better, 
that is, decreases the probability of large number of tumor 
cells. The above diagrams show that decreasing the period 
and decreasing the amplitude have similar effects. So, if 
there are no other constraints, a better therapy is one that 
is constant in time. Practically, this may not be possible. 
If the therapy is administered in discrete batches, then it is 
better to shorten the time between the batches and decrease 
the amount of each batch. Finally, among the three time 

(36)Γ = 1.

(37)� = 2.

(38)
1

�c
=

T

2
.

dependencies of the therapy, the exponential function seems 
to be the best. Incidentally, it is probably also the practical 
one: if the drug is given in a short time interval, then it is 
plausible to assume that the amount of the drug decreases 
exponentially with time, until the next batch.
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Fig. 1  The three therapy functions: sine, piecewise constant, and 
exponential
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Fig. 2  The figure of merit r in terms of the amplitude � . Here T = 1 . 
It is seen that the exponential function has the best (smallest) value of 
r, while the sine function has the worst (largest) value of r 
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Fig. 3  The figure of merit r in terms of the period T. Here � = 1 . It is 
seen that the exponential function has the best (smallest) value of r, 
while the sine function has the worst (largest) value of r 
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