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Abstract Pressure-dependent first-order phase transition,

mechanical, elastic, and thermodynamical properties of

cubic zinc blende to rock-salt structures in 3C silicon

carbide (SiC) are presented. An effective interatomic

interaction potential for SiC is formulated. The potential

for SiC incorporates long-range Coulomb, charge transfer

interactions, covalency effect, Hafemeister and Flygare

type short-range overlap repulsion extended up to the

second-neighbour ions, van der Waals interactions and zero

point energy effects. The developed potential including

many body non-central forces validates the Cauchy dis-

crepancy successfully to explain the high-pressure struc-

tural transition, and associated volume collapse. The

3C SiC ceramics lattice infers mechanical stiffening,

thermal softening, and ductile (brittle) nature from the

pressure (temperature) dependent elastic constants beha-

viour. To our knowledge, these are the first quantitative

theoretical predictions of the pressure and temperature

dependence of mechanical and thermodynamical properties

explicitly the mechanical stiffening, thermally softening,

and brittle/ductile nature of 3C SiC and still awaits

experimental confirmations.

Keywords Carbide � High pressure � Elastic properties �
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Introduction

Silicon carbide, (SiC), a high quality technical grade ce-

ramics, possesses wide energy band gap, low density, high

strength, low thermal expansion, high thermal conductiv-

ity, high hardness, high melting point, large bulk modulus,

low dielectric constant, high elastic modulus, excellent

thermal shock resistance, and superior chemical inertness.

The IV–IV SiC compound possesses tetrahedral of C and

Si atoms with strong bonds in the crystal lattice and the

availability of wide variety of its polytypes with unique

structural and electronic properties. SiC has been a subject

of immense interest as it is a very hard and strong ceramics

with its application in requiring high endurance, such as car

brakes and clutches and ceramics plates in bulletproof

vests. The high thermal conductivity coupled with low

thermal expansion and high strength gives this material

exceptional thermal shock resistant qualities. Ceramics SiC

with little or no grain boundary impurities maintain

strength at very high temperatures with no strength loss

[1, 2].

The structural transition, mechanical and elastic prop-

erties under low and high pressures of SiC have attracted

much interest in both experimental [3, 4] and theoretical

[5–15] investigations to elucidate the pressure-dependent

behaviour of polytype [cubic (3C), hexagonal (6H), and

rhombohedral (15R)] SiC. The energy-dispersive X-ray
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diffraction with a diamond anvil cell has identified struc-

tural transformation in 3C SiC [zinc-blende (ZB) (B3)

structure to the rock-salt (B1) structure & 100 GPa] with a

volume collapse of about 20.3 % [3]. The transition is

reversible and the zinc-blende phase is recovered below

35 GPa upon decompression. Furthermore, 6H polytype

SiC is found to be stable up to about 90.0 GPa. Later,

shock compression experiments on 6H SiC show a first-

order phase transition into a sixfold coordinated rock-salt

structure around 105 ± 4 GPa with a volume reduction of

about 15 ± 3 % [4].

Structural and thermal stability as well as high-pressure

behaviour of 3C-SiC has been described both by ab initio

[5–7, 11, 14, 16] and molecular dynamics simulations [8,

10, 15]. Based on ab initio density functional calculations

with the local-density approximation (LDA) show that the

transition pressure of 3C-SiC is around 60 GPa [ZB to rock

salt (RS)] [5–7, 11–14, 16]. Following Perdew–Wang

generalized gradient approximation (GGA) for the

exchange-correlation potential and the Troullier–Martins

pseudopotentials; the transition pressure of SiC at about

63 GPa is predicted [6, 12, 13]. Using the Troullier–Mar-

tins pseudopotentials and the LDA, the phase-transition

pressure of 100 GPa is also documented [7, 14]. It is noted

that first-principles LDA calculations underestimate critical

pressure for structural phase transition.

The constant-pressure molecular dynamics (MD) simu-

lation retraces the reversible phase transformation [3C to

RS] in SiC [8]. The first-principle calculations clearly

demonstrate the structural transformation of SiC from a

fourfold coordinated structure to sixfold coordinated

structure under pressure. The phase transition from the

zinc-blende phase to the RS phase is associated with a

cubic to only one intermediate state as monoclinic unit cell

transformation. Later on, the structural phase transition and

mechanical properties of SiC from the ZB structure to the

RS structure under pressure are investigated in detail by the

first-principles plane-wave pseudopotential density func-

tional theory method [9]. The results on the high-pressure

elastic constants illustrate that the ZB structure SiC is

found unstable when the applied pressure is larger than

126.6 GPa consistent with the experimental data and the

molecular dynamics (MD) simulation results.

The molecular dynamics with effective interatomic

interaction potential for SiC incorporating two-body and

three-body covalent interactions is also proposed. The

covalent characteristics SiC are described by the three-

body potential using modified Stillinger–Weber form. The

molecular dynamics method with the developed interaction

potential is employed to investigate the structural and

dynamical properties of crystalline 3C, amorphous, and

liquid states of SiC for several densities and temperatures

[10, 15]. The phase stability of SiC under high pressure and

behaviour of elastic constants with temperature is worth for

microscopic understanding as well as technological

applications.

The quantum computations based on density functional

theory (DFT) as the full-relativistic version of the full-

potential augmented plane-wave plus local orbitals method

(FP - APW ? lo) are powerful techniques and have the

advantage of elucidating the ground state properties not

only for small atomic systems but also for large molecules

[17]. Density functional theory with approximate local and

semilocal density functionals with nonlocal and long-range

Coulomb interactions are effective for dense molecules and

materials as well as short-range interactions for soft matter,

van der Waals complexes, and biomolecules [18].

The quantum mechanical calculations suggest a favour-

able phase transition into a RS structure with different

transition pressure for 3C SiC. However, these underesti-

mate critical pressure for structural phase transition. We

thus aimed at computing the pressure-induced phase tran-

sition of 3C SiC by formulating an effective interatomic

potential. Note that the determination of ground state

properties of IV–IV compounds with complex bonds based

on lattice dynamical models is not easy. One needs to take

care of experimental data with high accuracy and precision

that accounts for low degree of freedom. The object of the

proposed investigation is to develop a differential model as

well to integrate the observed effect enabling useful pre-

diction with reduced input experimental parameters.

The lattice dynamical models are useful in yielding both

qualitative and quantitative information also with sugges-

tive parameterization of the materials parameter. The

density functional quantum calculations need precisely

structural information as atomic positions and space

groups. It also cares the value of volume around the

experimental volume of the system. The successive itera-

tion is thus made to determine the total energy corre-

sponding to this volume. The thermal equation of state is

needed to determine the ground state structural properties.

It includes the lattice parameters within stable structure, the

bulk modulus and pressure derivatives of elastic constants.

The transition pressure is obtained by the common tangent

between the two pressure–volume curves.

While exploring the ground state and anharmonic prop-

erties of simple and complex molecules, two major meth-

ods, one based on analytical form of cohesion with effective

physical understanding and other based on expensive and

time taking computational methods, are progressive. In the

analytical models with two body interactions, the force

constant deduced does not validate the Cauchy discrepancy.

Incorporating many body interactions in the interaction

potential with different cohesive energy forms is seen as the

relevant potential which validates the Cauchy discrepancy.

It is thus the major objective to seek the importance of both
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charge transfer interactions and covalent nature apart from

zero point energy effects of group IV–IV cubic SiC in the

interaction potential.

While discussing the mechanical and thermodynamical

properties, the lattice dynamical model based on charge

transfer interactions has been found successful [19–26]. The

overlap repulsion potential (extended up to second-neigh-

bour ions) is based on Hafemeister and Flygare [27]. The

short-range interactions as the induced charge dipole–

dipole and charge dipole–quadruple (van der Waals) inter-

action are found to be successful to determine the cohesion

in several alkaline-earth solids [28]. As far as the pressure

(temperature) induced mechanical and elastic properties as

hardness, ductile nature, mechanical stiffening and thermal

softening of SiC ceramics is concerned, these are probably

the first quantitative theoretical prediction of its kind and

still awaits experimental confirmations. Deduced aggregate

Young’s modulus, compression and shear wave velocities

are in agreement with the observed values.

The opportunities offered by SiC ceramics have, there-

fore, motivated large research efforts which in turn have

addressed only structural transitions and elastic, thermal

and thermodynamical properties are still lagging. The

proposed studies are organized in the following sequence.

We first discuss the key assumptions to develop an effec-

tive interatomic potential between a pair of ions. We then

support them by physical arguments for ceramics SiC

followed by an equation of state in ‘‘Computational

methodology’’ section. The Slater–Kirkwood variational

method is employed to determine the induced charge

dipole–dipole and charge dipole–quadruple (van der

Waals) coefficients keeping in mind that both ions (Si and

C) are polarizable. In sequence, we compute phase-transi-

tion pressures, the second-order aggregate elastic constants

within the Shell model. Thus, the importance of long-range

Coulomb with charge transfer interactions, covalent nature

of bonds, charge dipole–dipole and charge dipole–

quadruple (van der Waals) interaction, and the short-range

overlap repulsive interaction up to second-neighbour ions

is validated. In ‘‘Results and discussion’’ section, we dis-

cuss the various elastic properties.

As regard the ceramics 3C SiC, a number of works have

been made on the structural stability of high-pressure

phases but the pressure and temperature-dependent prop-

erties are sparse as normalized volume, aggregate second-

order elastic constants Cij, Bulk modulus BT, Cauchy dis-

crepancy in second-order elastic constant D1
2, second-order

elastic constant anisotropy c1
2, melting temperature TM,

aggregate third-order elastic constants Cijk, Cauchy dis-

crepancy Di
3 in third-order elastic constant, third-order

elastic anisotropy ci
3, isotropic shear modulus GH, Voigt’s

shear modulus GV, Reuss’s shear modulus GR, Young’s

modulus E, Poisson’s ratio m and Pugh ratio / (=BT/GH)

leading to ductility (brittleness), Lamé’s constant k and l,
and elastic wave velocity vl and vs.

The anharmonic effects on SiC lattice are further studied

by investigating the Gruneisen parameter cG, isothermal

compressibility b, Debye temperature hD, hardness HV,

heat capacity Cv, and thermal expansion coefficient ath.exp.
either in ZB or RS structures. The relevant expressions are

documented in Appendix 1 and 2. We also provide a

comparison of computed values with observed experi-

mental and other theoretical studies. The major conclusions

are presented in ‘‘Concluding remarks’’ section.

Computational methodology

To study the phase stability and the aggregate elastic con-

stants of SiC under high pressures, we formulate an inter-

atomic potential. The proposed interaction potential is based

on the following assumptions: variations in force constants

of Si and C are small, the short-range interactions between Si

and C atoms are effective up to their second-neighbour ions,

and harmonic elastic forces are viable for a pair of atoms

without any internal strains within the crystal. Application of

mechanical pressure as external variable causes an increase

in the overlap of adjacent ions in a crystal. The result is a

charge transfer takes place between the overlapping electron

shells of Si and C atoms. The transferred charges interact

with neighbouring charges around the lattice via Coulomb’s

law. Also, the chemical bonds in SiC are both ionic and

covalent in nature and the application of pressure causes

change in crystal structure (first-order structural phase

transition), volume collapse and elastic properties.

The proposed interatomic potential is thus a route to

discuss the structural transitions, mechanical properties in

particularly, about stiffness, softeness, ductile, brittle nat-

ure, elastic constants anisotropy, compression and shear

elastic wave velocity. In addition, the potential is predictive

to explain the validity of non-central forces and anhar-

monicity from thermodynamical properties namely Debye

temperature, heat capacity and thermal expansion coeffi-

cient of 3C SiC. At zero pressure and variable temperature,

the underlined effective interatomic potential also

describes some of the temperature-induced thermal and

thermodynamical properties of 3C SiC.

The effective interatomic potential at ambient pressure

invokes an isolated stable phase when the crystal free

energy is minimized for the specified thermodynamic

conditions. For this purpose, if the variables such as tem-

perature, pressure or magnetic field applied on the crystal

are altered, either the free energy changes smoothly and

continuously or discontinuously. Variations in free energy

cause structural phase transition. The SiC ceramics trans-

form from their initial B3 to B1 structure under pressure.
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The minimum Gibbs’s free energy, G, infers the stability of

a particular structure. Herein, Gibbs’s free energy,

G = U ? PV - TS. The notations are: U is internal

energy, which at 0 K is the cohesive energy, S is the

vibrational entropy at absolute temperature T, pressure

P and volume V. The thermodynamically stable phase at a

given pressure P and at zero temperature is the one with

lowest enthalpy. The thermodynamical potential is thus the

Helmholtz free energy (H).

The interatomic potential with pressure or temperature

as thermodynamical variable requires the estimation of the

Gibbs’s free energies for ZnS (B3) phase and NaCl (B1)

phase. We use Born equation: GB3(r) = UB3(r) ? 3.08Pr3

for ZnS (B3) phase and GB1(r
0) = UB1(r

0) ? 2Pr03 for

NaCl (B1) phase. At phase-transition pressure P and at zero

temperature: GB1 = GB3 [29]. The notations UB3 (r) infer

the total potential energy of ZnS (B3) phase and UB1 (r
0) as

total potential energy for the RS (B1) phase. The unit cell

volumes are VB3 (=3.08r3) and VB1 (=2 r03). The nearest

neighbour distance is r (r0) in ZB (RS) structure. The total

potential energy for ZnS (B3) and NaCl (B1) phases is

UB3 ¼ ð�aMZe
2=rÞ Z þ 2nf ðrÞ½ � � Cr�6 � Dr�8

þ nbbij exp ri þ rj � rij
� �

=q
� �

þ n0b=2ð Þ bii exp 2ri � krij
� �

=q
� ��

þbjj exp 2rj � krij
� �

=q
� ��

þ f�h\x2 [ 1=2=2
h i

ð1Þ

UB1¼ð�a
0

MZe
2=r0Þ Zþ2mf ðr0Þ½ ��Cr0�6�Dr0�8

þmbbij exp riþrj�r
0

ij

� �
=q

h i

þ m0b=2ð Þ biiexp 2ri�k0r
0

ii

� �
=q

� �h

þbjj exp 2rj�k0r
0

jj

� �
=q

� �i
þ f�h\x2[1=2=2g
h i

ð2Þ

Due to complex nature of bonds in SiC, the ionic charge

for Si and C atom cannot be determined uniquely. The

calculation of the Madelung energy is thus modified by

incorporating the covalency effects [10, 15, 30, 31]. The

charge in above equations is thus written incorporating the

polarization of a spherical shaped dielectric in displacing

the constituent positive ions. The charge transfer interac-

tions caused by the deformation of the electron shells of the

overlapping ions and the covalency effects are the major

attributes of long-range Coulomb effects. The IV–IV

semiconducting compound contains covalent bonds so that

some electrons are distributed over the region between

neighbouring atoms; in such situation the interaction ener-

gies are attributed from the contribution of charge dipole-

dipole and charge dipole-quadruple terms. The induced

charge dipole–dipole and charge dipole–quadruple (van der

Waals) interactions are the third and fourth terms which are

the short-range vdW attractive potential energies.

The fifth and sixth terms are the short-range overlap

repulsive energies. This is due to the overlap repulsion

between ij, ii and jj ions. The Madelung constants for B3

(B1) phases are represented by am (am0). bij symbolized for

Pauling coefficient and is defined as bij = 1 ? (Zi/

ni) ? (Zj/nj) with Zi(Zj) and ni(nj) as the valence and the

number of electrons in the outermost orbit. The numbers of

the nearest unlike n (=4) and like n0 (=6) neighbours are for
B3 (ZnS). Similarly, numbers of the nearest unlike m (=6)

and like m0 (=6) are for B1 (NaCl) structure. The Ze is

being the ionic charge, k (k0) is the structure factor for B3

(B1) structures, and b (q) is the hardness (range) parame-

ters. We denote the nearest neighbour ion separations as

r (r0)for B3 (B1) structures.

The last term in Eqs. 1 and 2 is the lowest possible

energy of the system and is due to the zero point energy.

Here, \x2[1/2 (=kBhD/�h) is the mean square frequency

related to the Debye temperature hD. The Debye temper-

ature can be known either from Heat capacity measure-

ments or from the Bulk modulus value using hD = (�h/

kB)H(5r0BT/l). Herein, r0, B and l are the equilibrium

distance, Bulk modulus and reduced mass of the com-

pounds. Henceforth, model potential for ground state

incorporates the attractive, repulsive and zero point energy.

We use the variational approach to deduce the overall

vdW coefficients C (charge dipole–dipole) and D (charge

dipole–quadruple) [32]. The short-range vdW coefficients

due to induced charge dipole–dipole and charge dipole–

quadruple interactions caused by Si atom and C atom are

cij ¼
3

2

e�h
ffiffiffiffiffiffi
me

p aiaj
ai
Ni

	 
1=2

þ aj
Nj

	 
1=2
" #�1

; ð3Þ

dij ¼
27

8

�h2

me

aiaj
ai
Ni

	 
1=2

þ aj
Nj

	 
1=2
" #2

ai
Ni

	 

þ 20

3

aiaj
NiNj

	 
1=2

þ aj
Nj

	 
" #�1

:

ð4Þ

cii ¼
3

2

e�h
ffiffiffiffiffiffi
me

p aiai
ai
Ni

	 
1=2

þ ai
Ni

	 
1=2
" #�1

; ð5Þ

dii ¼
27

8

�h2

me

aiai
ai
Ni

	 
1=2

þ ai
Ni

	 
1=2
" #2

ai
Ni

	 

þ 20

3

aiai
NiNi

	 
1=2

þ ai
Ni

	 
" #�1

ð6Þ

cjj ¼
3

2

e�h
ffiffiffiffiffiffi
me

p ajaj
aj
Nj

	 
1=2

þ aj
Nj

	 
1=2
" #�1

; ð7Þ

djj ¼
27

8

�h2

me

ajaj
aj
Nj

	 
1=2

þ aj
Nj

	 
1=2
" #2

aj
Nj

	 

þ 20

3

ajaj
NjNj

	 
1=2

þ aj
Nj

	 
" #�1

:

ð8Þ

In the above equations, the notations: me, e and Z are

mass of the electron, charge and valence of the
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constituent metallic element, respectively. The symbols

ai,and aj represent the polarizabilities of ith and jth ion,

respectively. The effective number of electrons responsi-

ble for polarization is symbolized by Ni and Nj. The lat-

tice sums Sij and Tij enable one to compute the overall

vdW coefficients C and D in terms of c and d values

determined from Eqs. 1 to 8. The lattice sums Sij, and Tij
are expressed as [28]:

C ¼ cijSij þ ciiSii þ cjjSjj ð9Þ

D ¼ dijTij þ diiTii þ djjTjj ð10Þ

SiC is a tetrahedrally coordinated covalent material and

the complex chemical bonding corroborate both ionic and

covalent nature. The Coulomb interaction between ions of

Si and C atoms leads to charge transfer interactions.

Apart from this, the covalent character of bond bending

and stretching also needs to be incorporated in the

potential. Thus, the second term in Eqs. 1 and 2 is an

algebraic sum of non-central many body forces as the

charge transfer force parameter and the force parameter

arise due to covalent nature i.e. f(r) = fcti ? fcov. The

charge transfer between ions of Si and C atoms is denoted

in terms of a force parameter fcti and is expressed as [27,

33, 34]:

fcti ¼ f0 expð�r=qÞ ð11Þ

Here, ri (rj) is the ionic radii of i(j) ion.

The complex chemical bonding in IV–IV semicon-

ducting compounds infers SiC as partially ionic and par-

tially covalent in bonding. The attractive forces due to

covalent nature thus modify the charge and are now the

effective charge. The polarization effects originate from

changes in covalency due to Si–Si, Si–C, and C–C inter-

acting electric fields. The covalency term in the interaction

potential is thus expressed as [30, 31]:

fcov rð Þ ¼
4e2V2

spr

r0E3
g

ð12Þ

Here, Vspr represents the transfer matrix element

between the outermost p orbital and the lowest excited of

s state. The transfer energy of electron from p to the s

orbital is denoted as Eg. The effective charge eS
* of SiC is

related with the number of electrons transferred to the

unoccupied orbitals from its surrounding nearest neigh-

bour. The electron density is thus nc = 1 - eS
*/e. Thus, in

SiC for overlap distortion effect eS
*
= e. The transfer

matrix element Vspr and the transfer energy Eg are related

to electron density as nc/12 % Vspr
2 /Eg

2. The effective

charge eS
* is thus

V2
spr

E2
g

¼ 1� e�s
12

ð13Þ

The transfer energy Eg is

Eg ¼ E � I þ 2a� 1ð Þ e
2

r
ð14Þ

Here, E is the electron affinity for C and I is the ioni-

sation potential of constituent atom.

The Szigeti effective charge eS
* (=Ze)* is written in terms

of the optical static dielectric constant e0 and the high

frequency dielectric constant e? as [19–26]:

e�2s ¼ 9lx2
TOðe0 � e1Þ

4pNkðe1 þ 2Þ2
ð15Þ

and

e�2s
e2

¼ 9Vlx2
TOðe0 � e1Þ

4pe2ðe1 þ 2Þ2
ð16Þ

The symbol l is the reduced mass, Nk is the number of

atoms present per unit cell volume i.e. Nk = 1/V, xTO is

the long wavelength transverse optical phonon frequency.

Thus, for 3C SiC eS
* deviates from e and is attributed to

covalent nature of Si–Si, Si–C, and C–C bonds.

Usually materials document a transition when the ther-

modynamical potential relevant to the given ensemble of

the lower pressure phase equals that for some other struc-

ture in the absence of any barrier. The low pressure phase

becomes the stable phase above this coexistence pressure.

After determining the stable phase we also compute the

higher order elastic constants, their pressure derivatives

and anisotropy. The Appendix 1 illustrates the essential

equations for the higher order elastic constants and their

pressure derivatives. With these understanding of inter-

atomic potential in SiC, we have four material parameters,

namely, modified ionic charge, hardness, range, force

parameter [Zm, b, q, f(r)]. Values of them can be deduced

from equilibrium conditions [35–42].

Results and discussion

The application of pressure, temperature and magnetic field

probably transforms materials from one structure to another.

The relative stability of two crystal structures requires an

extremely accurate prediction. The interatomic interaction

potential with charge transfer interactions caused by ions of

Si and C atom and covalent nature of Si–Si, Si–C, and C–C

bonds are effective in studying the structural phase transi-

tions and elastic properties of tetrahedrally coordinated

ceramics 3C SiC. We evaluate the phase transition pressure

by computing the Gibbs free energyG = U ? PV - TS for

the ZB and RS phases. We note that the Gibbs free energy is

thus the enthalpy H (=U ? PV) at T = 0 K.

While doing high-pressure experiments, the huge

applied pressure causes a reduction of the material volume.
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The temperature variations during the experiments will

normally produce much smaller changes in the relative

stabilities of different phases. Thus, the Gibbs free energy

at zero temperature, which is the enthalpy H, is measured.

The thermodynamically stable phase of crystal at 0 K and

at ambient pressure P is the one with the lowest enthalpy.

Thus, the zero-temperature theoretical calculations are

valid with experiment. In a situation when temperature

variations are large during experiment for certain materials

the effects of finite temperature may be significant. With

these assumptions, we investigate structural and elastic

properties of SiC in an ordered way.

The thermodynamical potential G or H in SiC is com-

puted involving modified ionic charge, hardness, range and

charge transfer parameters [Zm, b, q, f(r)] as [35–42]:

dUðrÞ
dr

����

����
r¼r0

¼ 0 ð17Þ

Also, the bulk modulus (BT):

d2UðrÞ
dr2

����

����
r¼r0

¼ ð9kr0Þ�1
BT ð18Þ

We first deduce vdW coefficients C and D involved in

expressions (1) and (2) from the Slater–Kirkwood variational

method [32], for 3C SiC ceramics material parameters, and

are enlisted in Table 1. The charge dipole–dipole and charge

dipole–quadruple vdW coefficients are influenced by elec-

tronic polarizabilities. The polarizability values have been

obtained from least-squares fit of experimental refraction

data using additive rule and a Lorentz factor of 4p/3 [43, 44].
We consider that the SiC to be partially ionic and covalent to

discuss their structural, mechanical, elastic and thermody-

namical properties in a systematic manner.

As a next step, we use the experimental data on lattice

constant (a) [45], the bulk modulus (BT) [46], ionic (Ze),

effective charge (es
*) and the second-order aggregate elastic

constant C12 (C44) [47] for determining the material

parameters. Deduced values of hardness (b), range (q)
parameter, and non-central many body forces arising due to

charge transfer (fcti) and covalency (fcov) for 3C SiC ceramics

are illustrated in Table 1. The effective charge eS
* depends on

the values of optical dielectric constant es and the high fre-

quency dielectric constant e?. The value of long wave length

transverse optical phonon frequency xTO is taken from [48]

to have the effective charge eS
* and hence the covalency

contribution.

We then minimize the Gibbs’s free energies GB3(r) and

GB1(r
0) for the equilibrium interatomic spacing (r) and (r0)

to determine structural phase transition of SiC. Table 1

shows the optimized values of equilibrium interatomic

spacing in B3 and B1 phases. The Gibbs’s free energy

GB3(r) [GB1(r
0)] as functions of pressure (P) for SiC is

discerned in Fig. 1a. At zero pressure, the Gibb’s free

energy for SiC in B3 crystal phase is more negative. Thus,

at zero pressure SiC in B3 phase is thermodynamically and

mechanically stable, while the B1 is not. On the other hand,

above the phase transition pressure (PT = 90 GPa), the

Gibb’s free energy for B1 system becomes more negative

than B3 phase, implying B1 phase will be more stable. The

cohesive energy per particle is obtained as 6.301 eV for

3C SiC which is consistent with earlier experimental value

of 6.34 eV [49]; 7.415 eV from ab initio density functional

calculations and molecular dynamics method yields

6.3410868 eV for SiC [50].

The phase stability of cubic 3C SiC under high pressures

is essentially based on material parameters namely hard-

ness (b), range (q), non-central many body forces as charge

transfer force (fcti) and covalency parameter (fcov). These

are obtained from the experimental data. We comment that

the available data based on one kind of experiment depend

on the conditions of measurement. Henceforth, while

developing a theory, one faces certain complications and

one need to find suitable data that varies from technique to

technique. For SiC, we pay special attention while

Table 1 Estimated and input crystal data: vdW coefficients [cii, cij,

cjj, C, dii, dij, djj, D], lattice constant (a0), bulk modulus (BT), second-

order elastic constant C12 (C44), optimized value of ionic radii ri (rj),

hardness (b), range (q), charge transfer parameter f (r), equilibrium

distance: r0 (B3); r0
0 (B1), Gibbs’s free energy: GB3(r); GB1(r)

Input parameters SiC

cii (10
-60 erg cm6) 28.76

cij (10
-60 erg cm6) 0.71

cjj (10
-60 erg cm6) 0.047

C (10-60 erg cm6) 14.07

dii (10
-76 erg cm8) 14.284

dij (10
-76 erg cm8) 0.297

djj (10
-76 erg cm8) 0.002718

D (10-76 erg cm8) 3.019

a0 (Å) 4.36 [45]

BT (GPa) 227.0 [46]

C12 (GPa) 142.0 [47]

C44 (GPa) 256.0 [47]

ri (Å) 0.42

rj (Å) 1.162

b (10-12 erg) 7.512

q (10-9 cm) 3.29

f (r) (10-3) 5.267

Equilibrium distance (Å) r0 (B3) 1.89

Equilibrium distance (Å) r0
0 (B1) 2.11

Gibb’s free energy (kJ mol-1) GB3(r) -4570

Gibb’s free energy (kJ mol-1) GB1(r) -4498
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formulating interatomic potential to ensure whether long

range or short-range interactions are at the origin of the

structural transition. The many body force parameter as

charge transfer f(r) is positive as seen in Table 1. It is

attributed to the fact that the charge transfer parameter is

computed from the difference of second-order elastic

constants C12 and C44. The Cauchy energy C12 - C44 is

negative for SiC. Thus, consistent results lead to a test of

the validity of assumptions made in model potential for

SiC.

SiC shows a crystallographic transition from B3 to B1 in

certain pressure range. Table 2 illustrates the computed

phase-transition pressure (PT) and compared with available

experimental data [3, 4] and theoretical results [5–12, 14–

16]. PT for SiC is consistent with the experimental and

other reported values and is attributed to proper formula-

tion of interatomic potential, which considers the various

interactions, explicitly the non-central many body forces as

charge transfer interactions and covalency effects, as well

as use of materials parameter based on experimental data.

We may comment that any computational technique has its

own limitations related to the chosen materials basic

parameters, basic sets, as well the accuracy and precisions

used apart from the approximations laid in the method.

Needless to suggest that there is always a variation in

estimated parameters by each technique.

The values of relative volumes associated with various

compressions are estimated from [51]

VP

V0

¼ 1þ B0

B0

P

	 
�1=B0

; ð19Þ

Here, V0 (B0) is the cell volume (bulk modulus) of SiC

at ambient conditions and VP is at finite pressure. The

symbol B0 is the pressure derivative of the bulk modulus.

Figure 1b documents the estimated value of pressure-de-

pendent radius for both B3 and B1 structures, the curve of

volume collapse (VP/V0) with pressure to show phase dia-

gram for 3C SiC. The phase diagram will let us estimate

the magnitude of the discontinuity in volume at the tran-

sition pressure. The value of relative volumes is shown in

Table 2. It is also compared with various experimental [3,

4] and other theoretical works [5–9, 11–14, 16].
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Compressions in SiC at higher pressure indicate the

mechanical stiffening of lattice.

Figure 1c discerns the variation of VT/V0 as functions of

temperature in B3 phase. Here, VT symbolizes the volume

at various temperatures and V0 at zero temperature and zero

pressure volumes, respectively. A steep increase in the

ratio VT/V0 with increasing temperature infers expansion of

SiC lattice and is susceptible to temperature. On the other

hand, SiC is compressed at higher pressures as shown in

Fig. 1b. Henceforth, SiC lattice is thermally softened and

mechanical stiffened. The normalized volume VT/V0

dependences on temperature are not known for SiC, but the

present behaviour is consistent with available experimental

[52] and theoretical [53] data on Li2O.

The response of any material that undergoes stress,

deforms and then recovers and returns to its original shape

after stress ceases leads to the determination of elastic

properties. The elastic properties are vital in generating

information about the binding characteristic between

adjacent atomic planes, anisotropic character of binding

and structural stability. Apart from the structural stability

of SiC in ZnS (B3) and NaCl (B1) structures, we now

compute the aggregate elastic constants at normal and

under hydrostatic pressure. Deduced values are docu-

mented in Table 2.

Using the stress–strain coefficients, one determines the

second-order aggregate elastic constants Cij under hydro-

static pressure with respect to finite strain. Also, proper

parametrization of Coulomb, non-central many body for-

ces, overlap repulsion, van der Waals interactions and zero

point energy terms are essentially required.

The cubical symmetry of SiC dealt with three inde-

pendent elastic constants Cij. C11 is a response of resistance

to deformation by a stress applied on (1,0,0) plane with

polarization in the direction\100[. C11 probes elasticity in

length and a longitudinal strain produces a change in C11.

C44 refers to the measurement of resistance to deformation

with respect to a shearing stress applied across the (100)

plane with polarization in the\010[direction. C12 and C44

are related to the elasticity in shape, which is a shear

constant. A transverse strain causes a change in shape

without a change in volume and hence C12 and C44 are less

sensitive of pressure as compared to C11.

The variation of three independent second-order aggre-

gate elastic constants (SOECs): C11, C12, and C44 with

external pressure for SiC in B3 and B1 phase is first dis-

cussed. As seen from Fig. 2a that C11 and C12 increase with

increase in pressure in both B3 and B1 phases. Also, C44

decreases with the increase of pressure away from zero till

the phase-transition pressures and then increases in B1

Table 2 Calculated transition pressure PT (GPa), volume collapse (%), aggregate second-order elastic constants (C11, C12 and C44), aggregate

bulk modulus (BT), (all are in 1010 Nm-2) and pressure derivatives of SOECs (dBT/dP, dC44/dP and dCS/dP) for Silicon Carbide in B3 phase

Property Present Expt. FP LMTO LDF LDA MD DFT

Transition pressure PT 90.0 100 [3],

105 ± 4 [4]

66 ± 5 [5, 11]

63 [6]

100 [8]

90 [10, 15]

66.6 [16]

100 [7, 14]

75.4 [9]

Volume collapse 13.8 20.3 [3]

15 ± 3 [4]

18.5 [5, 11] 21 [8] 18.5 [16]

12 [7, 14]

18 [9]

C11 37.11 39.0 [47]

36.3 [56]

42.0 [51]

35.23 [58]

44.9 [62, 64]

43.6 [63]

39.0 [8]

39.0 [10, 15]

41.51 [9]

37.1 [56]

C12 22.34 14.2 [47]

15.4 [56]

12.6 [51]

14.04 [58]

14.6 [62, 64, 65]

12.0 [63]

14.4 [8]

14.26 [10, 15]

13.19 [9]

16.9 [56]

C44 27.93 25.6 [47]

14.9 [56]

28.7 [51]

23.29 [58]

25.6 [62, 64, 65]

25.5 [63]

17.9 [8]

19.11 [10, 15]

26.54 [9]

17.6 [56]

BT 27.30 22.7 [46]

22.4 [59]

22.5 [60]

22.3 [51]

21.1 [58]

24.9 [34]

22.5 [61]

21.2 [5, 11]

22.5 [62–65]

22.5 [8]

22.52 [10, 15]

23.5 [7, 14]

22.71 [9]

20.0 [57]

22.5 [56]

CS 7.38

dBT/dP 5.188 3.57 [46] 3.8 [51] 3.2 [62, 64, 65] 3.7 [5, 11] 5.5 [10, 15] 3.79 [9]

7.3 [57]

dC44/dP 5.198

dCS/dP -0.0716
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phase. Similar observations have earlier been reported in

SiC [9, 10, 15]. A crossover of C12 and C44 in CaS has also

been reported [54]. At phase transition pressures, SiC has

witnessed a discontinuity in aggregate second-order elastic

constants Cij, which identifies the first-order phase transi-

tion. Thus, the proposed interaction potential incorporating

charge transfer interactions ions of Si and C atom and

covalency effects caused by Si–Si, Si–C, and C–C bonds

consistently explains the high-pressure elastic behaviour.

The variations in Cij with temperatures (T) for 3C SiC

ceramics are plotted in Fig. 2b. It can be seen that the

aggregate elastic constants Cij (T) decrease linearly with

the temperature in ZB phase. We note that the pressure

dependence of aggregate elastic constants Cij (P) docu-

ments an increasing trend (please see Fig. 2a). The physi-

cal interpretation of temperature dependence of Cij showed

that (a) values of C11 decrease more steeply with enhancing

temperature, (b) C12, and C44, are less sensitive to tem-

perature for 3C SiC ceramics, (c) C11 is remarkably larger

than C12, and C44, and (d) values of all aggregate elastic

constants Cij are influenced by temperature dependence

indicating that anharmonicity is substantial. Deduced val-

ues of Cij with temperatures (T) are documented in Table 3

along with the available data on SiC at room temperature

[55]. From the second-order aggregate elastic constants

pressure and temperature-dependent behaviour, we com-

ment that SiC lattice is mechanical stiffened and thermally

softened.

Born criterion for a lattice to be mechanically stable

infers that the elastic energy density must be a positive

definite quadratic function of strain. The principal minors

(alternatively the eigenvalues) of the elastic constant

matrix should all be positive at ambient conditions. The

mechanical stability conditions for a crystal suggest that

elastic constants of a cubic crystal are as follows [29],

BT ¼ C11 þ 2C12ð Þ=3[ 0; ð20Þ
C11;C44 [ 0; ð21Þ

and

CS ¼ ðC11 � C12Þ=2[ 0: ð22Þ

Here, Cij are conventional aggregate elastic constants

and BT is bulk modulus. We represent, C44 and CS as the

shear and tetragonal moduli of a cubic crystal.

Table 2 illustrates the computed values of bulk modulus

(BT), shear moduli (C44) and tetragonal moduli (CS) which

validates the elastic stability criteria for 3C SiC in B3

phase. The second-order elastic constants critically depend

upon pressure leading to C12 - C44 = 0. The mechani-

cally stable phases for cubic crystal satisfy the Born cri-

teria: C12 - C44[ 0. The validity of above is readily seen

by referring to Eqs. 51 and 52 for C12 and C44. The equi-

librium condition leads to B1 ? B2 = -1.261Zm
2 with

emphasis on charge transfer interactions as well as cova-

lency effects. For optimized values of ri (rj) the Cauchy

discrepancy C12 - C44 is nonzero at zero pressure and at

zero temperature. It is also valid when the many body non-

central forces are not involved in long-range forces. The

short-range and long-range effects are naturally of similar

order of magnitude. This is due to the fact Cij are calculated

at optimized values of equilibrium distances rather than at

experimental values.

Table 2 illustrates the calculated values of pressure

derivatives of aggregate second-order elastic constants

(dBT/dP, dC44/dP and dCS/dP). These are compared with

available experimental [46, 47, 56] and theoretical studies

[8–10, 15, 46, 57–65]. For mechanical stability, the shear

elastic constant C44 is nonzero and is known by combining

mechanical stability with minimum energy conditions. The

high-pressure stability also suggests that the stable phase of
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the crystal possesses the lowest potential energy among the

mechanically stable lattices [66].

The elasticity in 3C SiC is thus probed by a non-central

many body force potential which assumes that the inter-

atomic forces have a certain shape and directionality. The

Cauchy discrepancy is defined as D1
2 = C12 - C44 - 2P.

Here, D1
2 is a measure of the contribution from the non-

central many body force. However, for pure central inter-

atomic potentials, Cauchy relation is C12 = C44 ? 2P.

At zero pressure, the Cauchy discrepancy (D1
2) in SiC is

about -5.588 9 1010 Nm-2. The D1
2 further enhances on

increasing the pressure in both phases as depicted in

Fig. 3a. In SiC, larger deviation of D1
2 essentially points to

the importance of the many body non-central (charge

transfer and covalency) interaction in the interatomic

potential and anharmonic effects are substantial at high

pressures. The strength of non-central many body forces

incorporating charge transfer interactions and covalency

effects is witnessed by significant deviation in D1
2 at dif-

ferent pressures not only in ZB but also in RS structure,

although weak. The importance of many body non-central

forces and anharmonic effects is further explored by ana-

lysing the higher order elastic constants explicitly the third-

order elastic constants. Usually, the anharmonic effects are

noticeable at high pressure as reflected from elastic con-

stants behaviour.

The anisotropy in second-order elastic constants is

reflected from geophysical activities of various materials

and alloys. The anisotropic parameter c is unity for iso-

tropic elasticity. As far as cubic crystal is concerned,

Table 3 Calculated second-order elastic constant Cauchy discrep-

ancy (D1
2), anisotropy parameter (ci

2), isotropic shear modulus (GH),

Voigt’s shear modulus (GV), Reuss’s shear modulus (GR), Young’s

modulus (E), Poisson ratio (m), compressibility (b) and Gruneisen

parameter (cG) of Silicon Carbide in B3 phase at zero pressure

Property Present Expt. FP LMTO LDF LDA MD DFT

c1
2(1010 Nm-2) -0.736

D1
2 (1010 Nm-2) -5.588

GH (1010 Nm-2) 16.47 19.2 [60] 21.9 [50]

16.9 [58]

12.37 [10, 15] 14.1 [56]

GV (1010 Nm-2) 19.71 23.1 [50]

18.2 [58]

14.6 [56]

GR (1010 Nm-2) 13.22 20.8 [50]

15.7 [58]

13.6 [56]

E (1010 Nm-2) 41.22 44.8 [60] 49.60 [50]

40.1 [58]

56.7 [62, 64, 65]

55.0 [62, 64, 65]

31.36 [10, 15] 35.2 [56]

m 0.249 0.267 [47]

0.168 [60]

0.146 [50]

0.201 [58]

0.268 [10, 15] 1.0 [5, 11]

0.259 [56]

b (10-11 Pa-1) 0.024 0.1518 [5, 11]

cG 1.015 1.01 [61] 1.12 [5, 11]
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although it is isotropic in structure, it has elastic anisotropy

other than unity. This is a consequence of fourth rank

tensor property of elasticity.

We define elastic anisotropic parameter c1
2 in terms of

aggregate Cij as [67]:

c21 ¼
C11 � C12 � 2C44

2C44

ð23Þ

The pressure dependence of the elastic anisotropic

parameter c1
2 in SiC is shown in Fig. 3b. It is evident that c1

2

in SiC is insensitive below transition pressure and also at

low pressures. A jump has been noted at PT (=90 GPa)

inferring first-order structural phase transition. Further-

more, c1
2 in SiC remains unaltered for B1 phase for higher

pressures. The value of anisotropic parameter c1
2 for SiC is

given in Table 4 at T = 0 K and P = 0 GPa.

During mechanical processing, explicitly in fabrication

the melting ranges of materials and alloys are substantial.

The usage of an alloy in the applications as the success of

the melting and casting operations depends on the correct

selection of temperature. Once solidified and primary

processed (rolling or forging), the melting temperature has

little significance to designers, engineers and users. The

melting temperature influences elevated temperature

properties, such as creep strength, but the researchers have

limited interest. The pressure dependence of the melting

temperature: TM ¼ 553 K þ 5:91C11 K GPa�1 for SiC in

B3 and B1 phase is discerned in Fig. 4. It is noticed that TM
enhances with increased pressure or in other words the

resistance to deformation by a stress increases. It is noticed

that at zero pressure, the melting temperature of SiC is

2746 K consistent with reported value of about

3100 ± 40 K [1, 2]. At PT (=90 GPa), its value is about

4000 K which enhances further in B1 phase. An increase in

TM with variations in pressure infers the hardening or

stiffening of the lattice. Higher melting temperature sym-

bolizes higher shear modulus (G), and Young’s modulus

(E) values that we shall see later on. The data on its melting

under high pressure are very limited and extremely con-

tradictory, which does not allow one to make any conclu-

sions about congruent or incongruent melting behaviour as

well as the slope of the melting curve of SiC.

SiC is the only compound in the Si(IV)–C(IV) binary

system and is obtained by electromelting high purity silica

sand with petroleum coke, also of good quality. This

melting takes place at high temperature about 2473 K and

requires a large quantity of energy to produce. It also

requires energy for it to dissociate into about 2/3 Si and 1/3

C in the induction furnace [1, 2]. The better quality raw

materials produce better quality SiC, which is lower in

nitrogen, sulphur, hydrogen and other trace elements.

Figure 4 shows the temperature dependence of the melting

temperature for SiC estimated from the C11 elastic constant

as discussed previously. At room temperature its value is

about 4550 K which drops and is 4200 K at 1000 K in B3

phase. The suppressed TM with increased temperature

indicates that there is a decrease in the resistance to

deformation by a stress induced due to temperature. The

suppressed TM infers the weakening of the lattice as a result

of thermal softening. Usually, SiC does not melt, it actually

dissolves since its melting point is about 2973 K. Its

behaviour in the molten metal is similar to sugar dissolving

in coffee. This aspect is very important for the use of SiC.

For cubic lattice, three second-order elastic constants

and the six non-vanishing third-order elastic constants are

obtained from crystal geometry. The anharmonicity of a

crystal lattice is successfully probed in terms of higher

order elastic constants. The third-order terms in the strain

variables are deduced from derivatives of elastic energy

(please see Appendix for both ZB B3 and RS B1 phases).

For SiC, the third-order aggregate elastic constants C111,

C112, C166, C144, and C456, are negative and only C123 is

positive at P = 0 GPa i.e., in B3 phase. We note that no

such efforts have been made in the past for third-order

elastic constants of SiC. Thus, deduced information on

pressure-dependent Cijk will serve as a guide line for future

Table 4 Calculated aggregate second-order elastic constants (C11,

C12 and C44) and aggregate bulk modulus (BT), second-order elastic

constant anisotropy parameter (ci
2), isotropic shear modulus (GH),

Voigt’s shear modulus (GV), Reuss’s shear modulus (GR), Young’s

modulus (E), Poisson ratio (m), First and second Lame constant (k, l),
longitudinal (vl), shear (vs) and average elastic wave velocity (vm),

Kleinman parameter (n) and thermodynamical properties: Debye

temperature (hD) of silicon carbide in B3 phase at temperature of

about 300 K

Materials parameter SiC

C11 (10
10 Nm-2) 67.65, 35.23 [49]

C12 (10
10 Nm-2) 8.31, 14.04 [49]

C44 (10
10 Nm-2) 19.99, 23.29 [49]

BT (1010 Nm-2) 28.1

CS (10
10 Nm-2) 29.7

GH (1010 Nm-2) 23.43

GV (1010 Nm-2) 23.86

GR (1010 Nm-2) 22.99

E (1010 Nm-2) 54.9, 43.7 [71]

m 0.174, 0.167 [71]

k (1010 Nm-2) 12.47

l (1010 Nm-2) 23.43

vl (ms-1) 12,440, 12,182 [71]

vs (ms-1) 7819, 7701 [71]

vm (ms-1) 1824

n 0.274

hD (K) 708.60
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research and its application in materials technology. This

information is useful as the structural strengths of a

material are successfully known from the knowledge of

elastic constants. The microstructures developed on the

applied pressure and temperature can be known from third-

order elastic constants variations.

The variation of aggregate third-order elastic constants

(TOECs) with pressure for SiC in B3 and B1 phase is

sketched in Fig. 5. For SiC in cubic phase, the C144, and

C166 increases with enhancing pressure. Other TOECs as

C456, C112, C111, and C123 infer a decreasing trend. We note

that C144 is remarkably larger as compared to other

TOECs. Furthermore, aggregate elastic constants Cijk

inferring the anharmonic effects are influenced by appli-

cation of pressure in SiC. In the present interatomic

potential, Cijk are affected by the inclusion of second-

nearest-neighbour interaction and are influenced by the

short-range interactions (please see Eqs. 60–65 in the

Appendix). Also, many body non-central forces as long-

range Coulomb, charge transfer interactions and covalency

are effective in SiC. We comment that pressure-dependent

Cijk behaviour can have a direct means to describe the

interatomic forces at high pressure. It successfully cares the

short-range forces, and a balance between long range and

short-range forces.

As a next step, we intend to study the anisotropy among

Cijk. The equilibrium condition in the interatomic potential

infers B1 ? B2 = -1.261 Zm
2 . The Cauchy discrepancy

Di
3 among third-order elastic constants are: (a) D1

3 =

C112 - C166 - 2P; (b) D2
3 = C123 - C456 - 2P; (c) D3

3 =

C144 - C456 - 2P; and (d) D4
3 = C123 - C144 - 2P. The

Cijk at zero pressure i.e., in B3 phase are influenced by con-

tributions from both long-range and short-range interactions.

Henceforth, Di
3 is an indicator of the contribution from the

non-central many body force. Figure 5a shows the variation

ofDi
3 as functions of pressure. The significant deviation inDi

3

is a natural consequence of the non-centralmany body forces

as charge transfer interactions ions of Si and C atom and

covalency effects caused by Si–Si, Si–C, and C–C bonds

apart from short-range interactions as the induced charge

dipole–dipole and charge dipole–quadruple (van der Waals)

interaction and the overlap repulsion. At zero pressure, D2
3

andD3
3 are positive, while to thatD1

3 andD4
3 are negative inB3

phase. A growth in D2
3 and D3

3 and decay in with enhanced

pressure is witnessed with enhanced pressure till phase

transition pressure. However, all Di
3 is negative in B1 phase

indicating the importance of non-central many body forces

and anharmonic effects in SiC ceramics. As far as we know,

there are no experimental results available for Cauchy dis-

crepancy Di
3 in SiC.

For cubic crystal structures, the aggregate third-order

elastic constants Cijk discern three anisotropy coefficients

and three isotropic coefficients. It is useful to express linear

combinations of the anisotropy coefficients and dividing

them by the isotropic coefficients [68–70]. The anisotropy

coefficients ci
3 are as follows:

c31 ¼
3C112 � C111 � 12C144 þ 12C166 � 16C456 � 2C123

2C123

ð24Þ

c32 ¼
C111 � C123 � 2C144

2C144

ð25Þ

c33 ¼
C166 � C144 � 2C456

2C456

ð26Þ

The pressure dependence of the elastic anisotropic

parameter ci
3 for both phases is sketched in Fig. 5b. The

elastic anisotropy (c2
3 and c3

3) in B3 phase is less sensitive. On

the other hand, c1
3 shows variation with increase in pressure

in B3 phase. The anisotropy factor c1
3 is negative and shows a
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decreasing trend with pressure in B1 phase at higher pres-

sures. Values of ci
3 are given in Table 5 at zero temperature

and pressure. As far as we know, there are no experimental

and theoretical results available for comparison.

The strength and hardness are key issues for materials

useful in technological applications. The mechanical

strength and hardness of SiC can be known once elastic

constants are known. We now determine elastic moduli at

various pressures of SiC which are of substantial impor-

tance in engineering, geophysical and seismological

application. The elastic properties are important in probing

the bonding characteristic between adjacent atomic planes

and the anisotropic character of the solid. Crystals leading

to elasticity under application of pressure identify the

response of a crystal under external strain. This valuable

information is characterized by isotropic shear modulus

(GH), and Young’s modulus (E). We note that hardness of

polycrystalline materials is inhibited in elastic response as

GH and E.

The resistance to volume change and resistance to

reversible deformations upon applied pressures are

accounted by Voigt–Reuss–Hill approximation using GH

and E following [68–70]:

GH ¼ GV þ GR

2
ð27Þ

Herein, GV (GR) is Voigt’s (Reuss’s) shear modulus

corresponding to the upper (lower) bound of GH values.

The GV (GR) is obtained from Cij assuming uniform strain

throughout the sample as

GV ¼ C11 � C12 þ 3C44

5
ð28Þ

and

5

GR

¼ 4

C11 � C12ð Þ þ
3

C44

ð29Þ

Hardness of materials is usually measured in terms of

isotropic shear modulus (GH), and Young’s modulus (E) or

bulk modulus (BT). The bulk modulus infers resistance to

volume change by applied pressure. The isotropic shear

modulus (GH) measures the resistance to reversible defor-

mations upon shear stress. In such a situation, GH is a better

probe to measure hardness than the bulk modulus (BT).

Table 4 illustrates the calculated isotropic shear modulus

(GH), Voigt’s shear modulus (GV) and Reuss’s shear

modulus (GR) for SiC ceramics at zero temperature and
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pressure along with a comparison with the available theo-

retical results [10, 15, 50, 56, 58, 60].

A decreasing and then increasing nature of the isotropic

shear modulus GH, GV and GR is witnessed in B3 phase of

SiC. On the other hand, a steep increase inGH,GV andGR is

seen with enhanced pressure in B1 phase at higher pressures

as plotted in Fig. 6a. The explanation of the above charac-

teristics lies in a fact that both GV and GR are influenced by

aggregate elastic constant C44. Thus, GV decreases as C44

decreases with enhanced pressure in ZnS phase. On the

other hand, Reuss’s shear modulus (GR) pressure-dependent

behaviour is integrated by combination of C11 - C12 pres-

sure-dependent behaviour as well as to that of C44 pressure-

dependent behaviour. GR initially decreases and then starts

increasing at about 30 GPa and is attributed to steep

decrease in C44. We end up by stating that above transition

pressure an increase in GH, GV and GR support our earlier

prediction about mechanical stiffening of lattice.

The high temperature studies of materials at ambient

pressure lead to the performance of a material in terms of

(a) the understanding of vibrational anharmonicity that is

associated with the relative interplay of long-range and

short-range potential energy function, (b) thermal response

in terms of softening or hardening and (c) the elastic

behaviour of materials as the elasticity, extensibility,

acoustic transmission velocity, Debye temperature, specific

heat, and thermal conductivity.

The high temperature investigations cause laboratory

difficulties and structural changes make the phenomenon

more amenable to interpretation. Figure 6b displays the

GH, GV and GR behaviour of 3C SiC ceramics as functions

of temperature (at zero pressure). We note that the isotropic

shear modulus of SiC is decreasing with enhanced tem-

perature. The steep decrease of GH, GV, and GR is in

accordance with aggregate second-order elastic constant Cij

behaviour with temperature. Suppressed GH, GV and GR as

functions of temperature infer the weakening of the lattice

as a result of thermal softening.

The tensile modulus as Young’s modulus (E) further

elaborates the stiffness property. E is also defined in terms

of Reuss’s shear modulus (GH), and bulk modulus (BT):

E ¼ 9GHBT

GH þ 3BT

ð30Þ

The tensile strength as Young’s modulus (E) for 3C SiC

is illustrated in Table 4 for ZnS (B3) phase along with a

comparison with the reported data [10, 15, 50, 55, 56, 60,

62, 64, 65]. The model calculations presented here lead to

E value of about 411 GPa at zero pressure. It is known that

the material is stiffer if its Young’s modulus is high [E of

steel, graphene and diamond is *200, 1000 and

1220 GPa]. As inferred SiC is less stiff as compare to

graphene and diamond. The pressure dependence of the

Young’s modulus (E), of SiC is sketched in Fig. 7a. A

decreasing trend of E in B3 phase infers the weakening of

tensile strength till 90 GPa and an increasing trend of E in

B1 phase essentially identifies more stiffening. Looking to

the wide usage of SiC in gas turbines, heat exchangers,

ceramics fans, radar, microwave, solar cell, and high-

voltage devices, these properties are worth investigating.

Figure 7b illustrates the temperature dependence of the

tensile strength as Young’s modulus (E) for 3C SiC

ceramics. A decreasing trend is inferred with increase in

temperature. Matsumoto and researchers have reported the

Young’s modulus and Poisson’s ratio of SiC ceramics at

temperatures [1400 �C using laser ultrasonics coupled

with Fabry-Pérot interferometry as well ultrasonic pulse

method [71]. It is reported that E is about 438 GPa at

T = 273 K and shows a decreasing behaviour with

increasing temperature. The model calculations presented

here lead to a value of about 549 GPa at room temperature

which is comparable to reported E of 437 GPa for 3C SiC

ceramics [71]. A reduction of E with temperature is a

signature of bond weakening or thermal softening.

We now make a comparison of tensile strength

E (P) and E (T) of 3C SiC ceramics. It is noted that

Table 5 Calculated aggregate third-order elastic constant (Cijk),

third-order elastic constant anisotropy parameter (ci
3), First and sec-

ond Lame constant (k, l), longitudinal (vl), shear (vs) and average

elastic wave velocity (vm), Kleinman parameter (n) thermodynamical

properties: force constant (f), Reststrahlen frequency (m0), Debye

temperature (hD), and average elastic constant (C), of Silicon Carbide

in B3 phase at zero pressure

Materials parameter SiC

C111 (10
10 Nm-2) -160.70

C112 (10
10 Nm-2) -189.70

C123 (10
10 Nm-2) 8.33

C144 (10
10 Nm-2) -44.85

C166 (10
10 Nm-2) -250.90

C456 (10
10 Nm-2) -17.38

c1
3 -157.283

c2
3 1.207

c3
3 4.927

k (1010 Nm-2) 16.29

l (1010 Nm-2) 16.47

vl (ms-1) 12,400

vs (ms-1) 7172

vm (ms-1) 1688

n 0.709

f (105 dyne cm-1) 7.187

m0 (10
12 Hz) 6.867

hD (K) 611.758

Cav. (10
10 Nm-2) 22.82
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E (P) values are smaller than E (T) for SiC at low pressures

and temperatures. It implies that E (P) and E (T) are

although susceptible to external variables as pressure and

temperature, but it is their Si and C ions in 3C SiC ceramics

that makes SiC lattice to be mechanical hard due to bond

strengthening and thermal soft due to bond weakening. It is

worth commenting that while tailoring the composites

based on SiC, one should seek its performance in terms of

tensile strength.

Another interest in 3C SiC is to probe the ductile and

brittle nature of Silicon and Carbon-based alloys are

important and predicted from the knowledge of second-

order elastic constants. Ductile materials as Steel and alu-

minium sustain large strains before rupture, while to that

brittle materials as glass and cast iron fractured at lower

strains. For materials design and advances in metallurgy as

well composite technology, the materials response for

applied pressures and temperatures are often gauzed by

stress–strain characteristics. Composites are predictive as

depending on the external variable (pressure and temper-

ature), the response of the constituent element is tailored in

terms of ductile or brittle nature. Also ductile element in

composites may become brittle as the pressure or temper-

ature is increased or decreased. Once the pressure depen-

dence of shear modulus (GH), and Young’s modulus (E) or

bulk modulus (BT) is known, it is worth investigating

ductile and brittle nature of SiC.

The shear modulus (GH,) measures the resistance to

plastic deformation, while the bulk modulus (BT) probes the

resistance to fracture. An empirical relation in terms of the

ratio of these moduli is known to differentiate ductile and

brittle nature. In accordance with the Pugh’s ratio / (=BT/

GH)[ 1.75, the material sustains large strains before rupture

i.e., the ductile response. On the other hand, for/ B 1.75 the

material is brittle. Empirically, 1.75 is a critical value that

separates ductile and brittle response of materials [72].

In Fig. 8a, we have shown the Pugh ratio / as functions

of pressure. Note that SiC is ductile in ZnS phase (at zero

as well at low pressures). Brittle nature is noticed at higher

pressures in ZnS phase. Furthermore, brittle response of

SiC is also noticed in rock salt structure. Hence, ceramics

SiC is ductile/brittle irrespective of any structural
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transformations. To our knowledge, perovskite are ductile/

brittle that is a test for its deformation before fracture. In

materials performance ductility is a powerful probe for

quality control. It provides a means to assess the level of

impurities and proper processing of a material. Hence, we

classify 3C SiC as brittle material at higher pressures and

ductile at zero pressure on the basis of Pugh ratio. The

magnitude of elastic constants and shear moduli agrees

with ductility degree of SiC in both B3 and B1 phase.

The Poisson’s ratio is another measure to differentiate

the ductility and brittleness of materials [73]. The critical

value of Poisson’s ratio (in terms of BT and GH) m is 0.33

that separates ductile and brittle nature of any material. If

m[ 0.33, the material is ductile, and for m\ 0.33, the

brittle response of material is observed such as ceramics.

However, Poisson’s ratio lies in between -1.0 and 0.5

which are the lower and upper bounds. The lower bound

is a signature of the response of the materials that do not

change its shape and the upper bound indicates that the

volume is unchanged. The Poisson’s ratio m in terms of

bulk modulus BT and the shear modulus GH is expressed

as [68–70],

m ¼ 1

2
3
BT

GH

� 2

� 

3
BT

GH

þ 1

� 
�1

ð31Þ

Figure 8a summarizes the pressure-dependent results of

Poisson’s ratio m. SiC in ZnS phase documents mixed

behaviour. At zero pressure (P = 0 GPa), the value of m is
about 0.25 for SiC. At lower pressures, SiC is brittle, above

15 GPa and till phase transition pressure, ductile nature of

SiC is observed. Above PT (=90 GPa), the value of m is

about 0.34 for B1 phase. Above PT, at higher pressures, in

the RS structure, SiC remains brittle with increasing

pressure. Deduced value of m is in good agreement with

available experimental and theoretical results [5, 10, 11,

15, 47, 50, 56, 59, 63]. As per definition of Poisson’s ratio,

3C SiC is brittle. It should be pointed out here that both

Pugh (SiC as ductile) and Poisson’s ratio (SiC as brittle)

give contradictory results. The two empirical rules only

differ on the exact border between the two types of beha-

viour. In view of this, the pressure-dependent variations of

SiC allow it to consider as a borderline case between the

classes of ductile and brittle materials. We note the

ceramics are brittle, but perovskites are ductile.

The Poisson’s ratio m behaviour as a function of tem-

perature is sketched in Fig. 8b. The Poisson’s ratio m is

independent of temperature and is consistent with the

earlier measured m by laser ultrasonics method [71].

Beginning from zero temperature and at high temperatures

in ZB phase, m & 0.174 is obtained for 3C SiC. The

temperature-dependent Poisson’s ratio reflects brittle nat-

ure of SiC, while to that a borderline case between the

classes of ductile and brittle materials is known from

pressure dependence. Poisson’s ratio is thus an effective

indicator to control the level of impurities and processing

of SiC ceramics. For covalent materials, m is small

(m * 0.1), whereas for metallic materials m is typically

0.33. It is worth mentioning that agreement with experi-

mental and theoretical data is not fortuitous, but it is

attributed to proper parametrization and formulation of

potential with non-central many body forces as charge

transfer interactions ions of Si and C atom and covalency

effects caused by Si–Si, Si–C, and C–C bonds apart from

short-range interactions as the induced charge dipole–

dipole and charge dipole–quadruple (van der Waals)

interaction and the overlap repulsion.

Usually, the elastic moduli describe only reversible

response of a material to small strain near equilibrium. The

intrinsic strength of a material reflects permanent plastic

deformation at large shear strain. Consequently, to further

understand the behaviour of SiC in terms of Vickers

hardness:HV = 2 (/2GH)
0.585 - 3. Here, / = BT/GH.

Figure 9a illustrates the theoretical Vickers hardness as a

function of pressure. It is clear from the plot that the

Vickers hardness HV decreases in B3 phase and then

increases in B1 phase with increase in pressure, which
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indicates that SiC becomes hard under pressure implying

its good mechanical properties. Figure 9b shows Vickers

hardness as a function of temperature for SiC. It is clear

from the plot that the Vickers hardness HV decreases in B1

phase, which indicates that SiC gets softened with

enhanced temperature. Apart from the elastic anisotropy of

crystals, the hardness is important to discuss their proper-

ties because it is highly correlated with the possibility of

inducing microcracks in materials.

SiCs are promising materials with wide range of appli-

cability’s with effective mechanical properties. Usually,

materials elastic properties are a source of valuable infor-

mation where materials mechanics is significant as the

knowledge of deformational characteristics of materials is

essential in engineering design and construction of effec-

tive structures. Having, understood the materials elastic

behaviour using Bulk modulus (BT), shear modulus (GH,

GV and GR), and Young modulus (E), in the following, we

will use our calculated elastic constants to discuss the

compressional and shear wave velocity in ceramics SiC.

The velocities of the longitudinal vl and shear waves vs are

known from the Lamé’s constants, k and l. The com-

pressional wave with velocity vl propagates back and forth

in a crystal. The shear waves with velocity vs go up and

down.

The Lamé’s constants are related to Young’s modulus

(E) and Poisson’s ratio (m) [correlating the bulk modulus

BT and the shear modulus GH]. The first Lamé’s con-

stant (k) measures the compressibility of the material.

The second Lamé’s constant (l) infers its shear stiffness

[68–70]. The Lamé’s constants (k and l) are expressed

as:

k ¼ mE
1þ mð Þ 1� 2mð Þ ð32Þ

l ¼ E

2 1þ mð Þ ð33Þ

Figure 10a displays the pressure dependence of the first

and second Lamé’s constants (k, l). Starting from zero

pressure and at high pressures, both Lamé’s constants (k, l)
are positive. Note that the Lamé’s constant (k) can be

negative; however, for most materials it is also positive.

The second Lamé’s constant (l) is positive. An increasing

trend of compressibility (k) of SiC is witnessed in terms of

k as seen in both ZB and RS structures and is attributed to

mechanical hardening of lattice. The decreasing trend in B3

phase and increasing trend in B1 phase of shear modulus

(GH, GV and GR) results in a decreasing behaviour of shear

stiffness (l) in B3 phase and then enhanced shear stiffness

in B1 phase. Note that k and l together constitute a

parameterization of the elastic moduli for homogeneous

isotropic media. The values of pressure-dependent Lamé’s

constants (k, l) are documented in Table 5. Deduced val-

ues of Lamé’s constants (k, l) could not be compared due

to lack of data on SiC. Figure 10b summarizes the tem-

perature-dependent behaviour of Lamé’s constants (k, l),
for 3C SiC. It is noticed that both Lamé’s constants (k, l)
are decreasing with increasing temperature. Thus, both

compressibility and shear stiffness showed decreasing

trend with temperature variations and identifies once again

the thermal softening of SiC.

The Lamé’s constants (k, l) determine the longitudinal

(shear) wave velocity as

vl ¼
kþ 2l

q

� 
1
2

ð34Þ

vs ¼
l
q

� 
1
2

ð35Þ

Here, q is the density. The average wave velocity vm has

been approximately given by

vm ¼ 1

3

2

v3t
þ 1

v3s

	 
� 
�1
3

ð36Þ
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The compressional longitudinal (shear) wave velocity

thus depends on density of the material as well on Bulk

modulus (BT), shear modulus (GH, GV and GR), and Young

modulus (E). We note that Bulk modulus (BT) has a strong

dependence on the density of the material, Young modulus

(E) displays a weak dependence, while the shear modulus

(GH) is independent of density.

Figure 11a displays the pressure dependence of the

longitudinal (shear) wave velocity in SiC. In ZB phase,

beginning from zero pressures and at high pressures,

compressional wave velocity vl increases while to that

shear wave velocity vs decreases. Both compression and

shear waves increase with enhanced pressure in B1 struc-

ture. Deduced values of longitudinal, shear and average

elastic wave velocities propagating in SiC are illustrated in

Table 5 at zero temperature and pressure. Figure 11b rep-

resents the temperature dependence of the longitudinal

(shear) velocity, respectively. It is noticed that both lon-

gitudinal (shear) wave velocity decreases in B3 phase with

enhanced temperature. The values of the longitudinal,

shear and average elastic wave velocities propagating in

3C SiC ceramics are documented in Table 4 at room

temperature. Deduced values of wave velocities are in good

agreement with the measured values by laser ultrasonics

method [71]. The high temperature behaviour of longitu-

dinal (shear) wave velocity for SiC can be considered as

predictive studies as they cannot be compared due to

unavailability of high temperature data.

The Navier’s equation is also used to determine the

longitudinal and the shear wave velocity [74, 75]. These

are written in terms of Reuss’s shear modulus (GH), and

bulk modulus (BT) as

vl ¼
3BT þ 4GH

3q

� 
1
2

ð37Þ

vs ¼
GH

q

� 
1
2

ð38Þ

Elastic, plastic and molten state properties with pressure

as controlling variable are useful for tailoring composites.

The Lamé’s constants (k, l) are of substantial interest for

plastic materials. Referring to equations 32 and 33, we note

that as the Poisson’s ratio (m) increases, the Lamé’s con-

stants (k, l) numerically approach the bulk modulus (E).

For fluids, the Reuss’s shear modulus (GH) vanishes as the

viscosity of the fluid approaches zero. The above is
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important in context of the present computation and can

also be cross-checked from the relation between bulk

modulus and Reuss’s shear modulus: BT = k ? 2 GH/3.

Furthermore, GH approaches zero for fluids and hence the

Poisson’s ratio is *0.5.

The response to deformations against bond bending or

bond-angle distortion is relevant for materials with

promising technological applications and also a test to

validate the many body non-central potential that we dealt

with. The aggregate elastic constants infer the elastic

properties of material that undergo stress, deform and then

recover after returns to its original shape after stress ceases.

The nature of elastic constants in solids holds a great

importance to elucidate the microscopic nature interatomic

bonding, equations of state, and vibrational density of

states. The above can be understood in terms of Kleinman

parameter, n, which describes the relative positions of the

cation and anion sub-lattices under volume-conserving

strain distortions for which positions are not fixed by

symmetry [76, 77]. We have explored its applicability to

ceramics SiC using [78].

n ¼ C11 þ 8C12

7C11 þ 2C12

ð39Þ

Deduced value of n & 0.709 is documented in Table 5

for 3C SiC at zero temperature and pressure. The value of

n & 0.274 is obtained at room temperature and is reported

in Table 4 for 3C SiC. A low value of n implies a large

resistance against bond bending or bond-angle distortion

and vice versa [79]. Thus, SiC shows resistance against

bond bending or bond-angle distortion and hence is of

immense use in heat exchangers and ceramics fans. As far

as we know, there is no experimental result available for

Kleinman parameter and is considered as a prediction

study. For both ZB and RS structures, the knowledge of

elastic constants at variable pressure is worth investigating

aimed for practical applications related to the mechanical

properties of a solid: load deflection, thermo elastic stress,

internal strain, elastic wave velocities, and fracture

toughness.

Physical properties as thermal expansion, heat capacity

and Grüneisen parameter can be explained with higher

order terms of the interaction potential. The thermal pro-

cess in terms of heat conduction is hindered if one con-

siders a solid to be perfectly harmonic and thermal

conductivity will be infinitely large. Thus, the role of

anharmonic effects or phonon decay is important as

enhanced pressures as well temperatures allows a change in

volume or dimensions. The pressure-dependent calcula-

tions of elastic constants will provide a measure of the

accuracy of the calculation of forces in SiC as well the

mechanical stiffening or hardening attributed to Si–Si,

C–C, and Si–C bond compression and bond strengthening

due to lattice vibration.

We express the molecular force in the absence of the

Lorentz effective field [19–26].

f ¼ 1

3

d2

dr2
USRðrÞ �

2

r0

d

dr
USRðrÞ

� 


r¼r0

; ð40Þ

The force constant is a function of the second-order

derivatives of the short-range (SR) overlap repulsive

potential and as well the charge dipole–dipole and charge

dipole–quadruple van der Waals potential. The Reststrahlen

frequency is obtained from the force constant using

t0 ¼
1

2p
f

l

� 
1=2
; ð41Þ

Here, l is the reduced mass of SiC.

The Grüneisen parameter cG is a ratio of second and

first-order derivatives of the potentials enable us to discuss

the anharmonic effects in a crystal. We express cG as

cG ¼ � r0

6

U000ðr0Þ
U00ðr0Þ

� 

ð42Þ

The pressure dependence of Grüneisen parameter is

sketched in Fig. 12a for 3C SiC in ZnS (B3) and RS (B1)

phases. A linear decrease of cG with pressure in both

phases is observed. The Grüneisen constant jump [cG
(B3 - B1)] at PT is about 7 % in 3C SiC ceramics.

Deduced cG value of about 1.015 for 3C SiC in ZnS (B3)

phase is in good agreement with available theoretical

results [5, 11, 61]. On the other hand, Fig. 12b discerns

temperature dependence of Grüneisen parameter with a

value of about 0.98 at 1000 K. For most of the solids,

Grüneisen parameter ranges from 1.5 to 2.5. As Grüneisen

constant cG behaviour is influenced by ratio of second and

first-order derivatives of the potentials, we may thus

comment that anharmonicity is significant in SiC ceramics.

Note that these results are further validated by inelastic

neutron scattering measurements to probe phonon fre-

quencies as a function of the crystal volume.

The isothermal compressibility (b) is known from sec-

ond-order derivative of the potential as

b ¼ r20
9V

U00ðr0Þf g
� 
�1

ð43Þ

The isothermal compressibility (b) is another interesting
thermodynamical property which invokes the bond com-

pression or strengthening on application of pressure. With

this motivation, we have computed and sketched isother-

mal compressibility (b) with pressure in Fig. 13a. For SiC,

at zero pressure, b is about 0.024 which is comparable with

available theoretical result of 0.1518 [5, 11]. Note that the
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lattice of SiC is stiffened with increased pressure in B3

phase. At phase transition pressure it gets softened. Away

from phase transition pressure and at higher pressures i.e.,

in B1 phase b again becomes stiff. The mechanical stiff-

ening is reflected from all elastic response of SiC. It is

attributed to Si–Si, C–C, and Si–C bond compression and

bond strengthening due to lattice vibration in both B3 and

B1 phase. We comment that the compressibility (b) at zero
pressure is reduced by about 1 % of that at transition

pressure PT in B3 phase in SiC. However, the magnitude of

b at transition pressure PT is about 0.3 % of that at higher

pressures (*150 GPa). We identify that SiC documents

giant lattice softening at the boundary of B3–B1 phase

transition.

The compressibility is useful in engineering applications

as it measures the performance of a material explicitly the

elasticity, extensibility, and thermal conduction. The

isothermal compressibility (b) as functions of temperature

is shown in Fig. 13b. It is seen that b displays a steep

increase in B3 phase. The compressibility is thus tunable

with applied pressure and temperature stimuli and plays a

vital role in tailoring materials and composites.

We further compute Debye temperature (hD) to shed

further light on mechanical stiffened and thermal softened

characteristics of SiC following [80–84]:

h3D ¼ 3:15

8p
h

kB

	 
3
r

M

� �3
2 C11 � C12

2

	 
1
2 C11 þ C12 þ 2C44

2

	 
1
2

C
1
2

44;

ð44Þ

where, M is the acoustic mass of SiC. The notations h and

kB are the Planck and Boltzmann constants.

The Debye temperature as functions of pressure is

plotted in Fig. 14a for SiC. At zero pressure, hD is about

611 K. It is noticed that with enhanced pressure, hD
decreases in B3 phase for SiC. The Debye temperature

from B3 to B1 phase is jumped by 655 K at PT. On the

other hand, hD showed an increase in B1 phase. Deduced

value of hD is listed in Table 5. Suppressed hD in B1 phase

at higher pressure indicates the mechanical stiffening of

lattice and giant softening at PT and above pressures.

Debye temperature is a function of temperature and its

value varies from technique to technique as well as

depends on the sample quality. Usually, a standard devia-

tion in hD of about 15 K is agreeable. The change in the
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force constants induced by pressure decreases hD in B3

phase and after transition pressure it starts increasing which

drives the system effectively towards the softening of lat-

tice with increasing pressure.

Figure 14b displays the variation of the Debye temper-

ature as functions of temperature at zero pressure. Starting

from zero temperature, hD decreases rapidly. On the other

hand, hD enhances with applied pressures at zero temper-

ature. It is worth commenting from high pressure and high

temperature Debye temperature behaviour that (a) the

pressure-dependent Debye temperature infers the mechan-

ical stiffened bulk modulus due to Si–Si, C–C, and Si–C

bond compression and bond strengthening due to lattice

vibration and (b) the thermal softening of bulk modulus

results from bond expansion and bond weakening due to

thermal stress in 3C SiC ceramics in ZB structure.

A comparison of values of hD(P) and hD(T) at zero

pressure and zero temperature results: hD(T)[ hD(P) im-

plying the susceptibility of hD with temperature. It is worth

to comment that hD(P) and hD(T) behave differently with

applied pressure and temperatures in 3C SiC ceramics. This

is attributed to the fact vibrational spectrum of SiC lattice

is controlled by aggregate elastic constants Cij behaviour.

Thus, the understanding of Debye temperature behaviour

of a material not only provides essential features of the

vibrational spectrum but is also mandatory for technolog-

ical and engineering applications. This quantity is useful as

a reference for future experimental studies.

The cumulative effect of both pressure and temperature

led us to define aggregate elastic constants Cav as

Cav: ¼
8p
3:15

	 
2
3 kB

h

	 
2
M

r

	 

h2D; ð45Þ

This is useful once Debye temperature at zero pressure

is known from experiments. Despite various investigations

on mechanical and thermodynamical properties, basic

properties controlled by elastic constants related with high

temperature behaviours are lacking.

In order to further explore the role of anharmonic effects

in terms of heat capacity at constant volume Cv and thermal

expansion coefficient a, we express the vibration term Avib.

[85, 86]:

Avib:ðhD; TÞ ¼ nkBT
9hD
8T

þ 3 ln 1� exp � hD
T

	 
� �
� DðhD=TÞ

� 


ð46Þ

The non-equilibrium Gibbs function, G*(V; P, T), is

minimized with respect to volume V as

oG�ðV;P; TÞ
oV

� 


P;T

¼ 0 ð47Þ

From Eq. (47), we determine heat capacity at constant

volume Cv as

Cv ¼ 3nkB 4D
hD
T

	 

� 3hD=T

ehD=T � 1

� 

ð48Þ

Figure 15a documents the variations of heat capacity at

constant volume, Cv, with pressure P for both B3 and B1

phase of SiC at T = 600, 800, 1000 and 1200 K. The

normalized heat capacity is [Cv (P) - Cv (0)]/Cv(0), where

Cv(P) and Cv (0) are heat capacity at any pressure P and at

zero pressure. Starting from zero pressure, normalized heat

capacity initially increases and with further enhanced

pressure it decreases abruptly in B1 phase. This behaviour

essentially points to the fact that the SiC lattice vibrations

energy are controlled by both pressure as well temperature.

Note that for higher temperatures T ? hD, the variation in

heat capacity with pressure is weak in B1 phase. Also, at

PT, reduced jump in between ZB and RS structures can be

seen as compared to low temperatures.

The Debye temperature calculated from elastic constants

must have a close resemblance to that measured from
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specific heat only at low temperatures. It is instructive to

study the temperature-dependent behaviour of heat capac-

ity. Figure 15b illustrates the heat capacity at constant

volume, Cv, behaviour as functions of temperature for

various pressures [0, 50, 100, 150 GPa] within the frame-

work of quasi-harmonic model for 3C SiC ceramics. It can

be seen that below room temperature (300 K), Cv increases

very rapidly with the temperature at all pressures. Above

room temperature, Cv increases slowly with the tempera-

ture. It almost approaches a constant ideal gas limit, the

Dulong–Petit limit, Cv(T) = 3 R, at higher temperatures as

well at all pressures for SiC ceramics.

We further determine thermal expansion coefficient

ath.exp. using Eq. (47) as

ath:exp: ¼
cCv

BTV
ð49Þ

Apart from the pressure dependence of heat capacity at

constant volume Cv, the Gruneisen parameter and Bulk

modulus are also needed to elucidate the thermal expansion

coefficient (ath.exp.). It is a measure of any alteration in

phonon frequency depending on the lattice’s expansion or

contraction in volume as a result of temperature variation.

Figure 16a illustrates the pressure dependence of ath.exp. for
3C SiC in both ZB and RS i.e., B3 and B1 phase. A non-

linear decrease in ath.exp., is thus witnessed with pressure in

both ZnS and NaCl phase. The decrease is more rapid in

ZB structure while a slow decrease is documented in RS

structure. We note that at PT, the thermal expansion coef-

ficient ath.exp. is suppressed by 26–22 % in SiC, at tem-

peratures 600, 800, 1000, and 1200 K, respectively.

The variations of ath.exp. as functions of temperature at

various pressures have been plotted in Fig. 16b for 3C SiC

ceramics. This figure shows that at low temperatures

(T\ 250 K), ath.exp. enhances rapidly with temperature at

P = 0 and 50 GPa. At high temperatures (T[ 250 K), a

sharp increase of ath.exp is witnessed at all pressures. This

figure also suggests that with enhanced pressure, the

increase of ath.exp. with temperature becomes smaller. In

other words, the slope of ath.exp. gradually decreases at

higher temperatures at all pressures except at P = 0 GPa.

Returning back to pressure dependence of thermal expan-

sion coefficient (ath.exp.), we note a rapid decrease in ZB

structure with the increase of pressure. A comparison of

ath.exp.(P) and ath.exp.(T) reveals that ath.exp.(P) values are

smaller than that ath.exp.(T) for SiC under same pressure and

temperature. Thus, ath.exp.(P) and ath.exp.(T) are differently

sensitive to the Si and C ions in 3C SiC ceramics as SiC

lattice is mechanical hard due to bond strengthening and

thermal soft due to bond weakening.

Concluding remarks

The present study addresses for the first time, the high

pressure and high temperature-dependent structural, elastic,

and thermodynamical studies in ZB and RS structure of

3C SiC ceramics. We have formulated an interatomic

pairwise potential that incorporates the long-range Cou-

lomb with charge transfer interactions, covalent nature of

bonds, zero point energy effects and the short-range

interactions as charge dipole–dipole and charge dipole–

quadruple (van der Waals), as well overlap repulsive

interaction up to second-neighbour ions.

From the knowledge of Gibbs’s free energies in ZB and

RS structure, we determine the pressure-induced first-order

structural phase transition of SiC at about 90 GPa. As a

next step, we determine the cohesive energy as 6.301 eV

for 3C SiC ceramics and the volume collapse is about

13.8 %. Compressions in SiC at higher pressure indicate

the mechanical stiffening of lattice. The phase transition

pressure and volume collapse are consistent with earlier

observations. We emphasize that agreement with experi-

mental and theoretical data is not fortuitous, but it is
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attributed to proper parametrization and formulation of

potential with non-central many body forces in terms of the

screening of the effective Coulomb potential through

modified ionic charge.

Furthermore, we make effort to determine the second-

order aggregate elastic constants Cij under applied pressure

and temperature with respect to finite strain. Once pressure

and temperature dependence of Cij is known, Cauchy dis-

crepancy and elastic anisotropy in second-order elastic

constants, melting temperature, third-order elastic con-

stants Cijk, Cauchy discrepancy and anisotropy in third-

order elastic constants, isotropic shear moduli as GH, GV,

and GR, Young’s modulus E, Poisson’s ratio m, Pugh’s ratio
/ and Vicker’s hardness HV to discuss ductile/brittle nature

and mechanical stiffening/thermal softening of SiC lattice.

In continuity, Lamé’s constant (k, l), longitudinal (shear)
wave velocity to enumerate the compressibility and shear

stiffness of the material, Grüneisen constant, Debye tem-

perature, isothermal compressibility, heat capacity and

thermal expansion coefficient to shed light on anhar-

monicity of 3C SiC ceramics. We comment that incorpo-

ration of charge transfer interactions, covalent contribution

and quantum effects leads to nonzero value of Cauchy

discrepancy (C12 - C44 = 0) and is a corner stone of the

proposed interatomic potential.

From the present investigations on 3C SiC ceramics, we

draw the following conclusions:

(a) The volume collapse (VP/V0) in terms of compres-

sions in SiC at higher pressure indicates the mechanical

stiffening of lattice. The expansion of SiC lattice is inferred

from steep increase in VT/V0 and is attributed to thermal

softening of SiC lattice.

(b) Larger deviation in Cauchy discrepancy D1
2 empha-

sizes the importance of the many body non-central (charge

transfer and covalency) interaction and substantial anhar-

monic effects at high pressures.

(c) Elastic anisotropic parameter c1
2 in cubic SiC is

negative and largely uninfluenced by application of

pressure.

(d) Melting temperature (TM), Vicker’s hardness (HV),

shear modulus (GH), Young’s modulus (E) and bulk

modulus (BT) increase with enhanced pressure showing the

hardening or stiffening of the lattice, and suppressed TM,

GH, E and BT variations in temperature suggest the weak-

ening of the lattice as a result of thermal softening of SiC

lattice.

(e) From the Pugh’s ratio (/) we classify 3C SiC as

ductile material while to that Poisson’s ratio suggest its

brittle nature. The two empirical rules only differ on the

exact border between the two types of behaviour and SiC is

a borderline case between the classes of ductile and brittle

materials.

(f) Grüneisen parameter (cG) Debye temperature (hD),
isothermal compressibility (b), heat capacity at constant

volume (Cv) and thermal expansion coefficient (ath.exp.)
probe the importance of anharmonicity in SiC at heigh

pressures and temperatures.

(g) Elastic properties showed TM(P)\TM(T), HV(P)

\HV(T), E(P)\E(T), E(P)\E(T), hD(P)\ hD(T) and

ath.exp.(P)\ ath.exp.(T) infers that these are differently

sensitive to the Si and C ions as SiC lattice is mechanical

hard due to bond strengthening and thermal soft due to

bond weakening.

To an end, an interatomic pairwise potential for cubic

SiC incorporating the non-central many body forces as

long-range Coulomb with charge transfer interactions,

covalent nature of bonds (due to Si–Si, Si–C, and C–C

interacting electric fields), quantum effects, charge
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dipole–dipole and charge dipole–quadruple (van der

Waals), and the short-range interactions as overlap

repulsion up to second-neighbour ions successfully

explains the pressure and temperature induced structural,

elastic and thermodynamical properties of 3C SiC

ceramics consistent with available results.
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Appendix 1

The relevant expressions for the aggregate second-order

elastic constants (SOECs), and the pressure derivatives of

SOECs are expressed for zinc-blende structure as

C
11
¼ L 0:2477ZðZ þ 8f ðr0ÞÞ þ

1

3
A1 þ 2B1ð Þ

�

þ 1

2
A2 þ B2ð Þ þ 5:8243Zaf 0ðr0Þ



;

ð50Þ

C12 ¼ L �2:6458ZðZ þ 8f ðr0ÞÞ þ
1

3
A1 � 4B1ð Þ

�

þ 1

4
A2 � 5B2ð Þ þ 5:8243Zaf 0ðr0Þ



;

ð51Þ

C44 ¼ L �0:123ZðZ þ 8f ðr0ÞÞ þ
1

3
A1 þ 2B1ð Þ þ 1

4
A2 þ 3B2ð Þ

�

� 1

3
r �7:53912ZðZ þ 8f ðr0ÞÞ þ A1 � B1ð Þ


 ð52Þ

and

B1 þ B2 ¼ �1:261Z Z þ 8f ðrÞ½ �: ð53Þ

Thus, second-order elastic constants difference lead to

finite value at Cauchy pressure:

C12 � C44 6¼ 0 ð54Þ

Henceforth, polarizability of the ions has effect on the

elastic constants. It should be noted that if charge transfer

mechanism is not taken into account, Cauchy relation:

C12 - C44 = 0, The Cauchy violations (C12 = C44) is

seen by several crystals due to anisotropy in the electron

distribution or angle bending. Here, C11 represents a

measure of resistance to deformation by applied stress and

C44 represents the measure of resistance to deformation

with respect to applied shearing stress. The elastic con-

stants C12 and C44 are related to the elasticity in shape,

which is a shear constant.

The pressure derivatives of second-order elastic con-

stants under hydrostatic pressure P are obtained in the form

3X
dBT

dp
¼ � 20:1788ZðZ þ 8f ðr0ÞÞ � 3 A1 þ A2ð Þ

�

þ4 B1 þ B2ð Þ þ 3 C1 þ C2ð Þ � 104:8433Zaf 0ðr0Þ
þ22:7008Za2f 00ðr0Þ

�
ð55Þ

2X
dr
dp

¼�
�
�11:5756ZðZ þ 8f ðr0ÞÞ þ 2 A1 � 2B1ð Þ

þ 3

2
A2 �

7

2
B2 þ

1

4
C2 þ 37:5220Zaf 0ðr0Þ



; ð56Þ

and

X
dC44

dp
¼�

0:4952ZðZ þ 8f ðr0ÞÞ þ
1

3
A1 � 4B1 þ C1ð Þr

þ 1

4
2A2 � 6B2 þ C2ð Þ þ 4:9667Zaf 0ðr0Þ þ 2:522Za2f 00ðr0Þ

2

664

3

775

þr �17:5913ZðZ þ 8f ðr0ÞÞ þ A1 � B2 �
2

3
C11

�

þ 40:6461Zaf 0ðr0Þ � 5:044Za2f 00ðr0Þ



þr2 3:1416ZðZ þ 8f ðr0Þ þ
2

3
A1 � B1ð Þ

�

þ C1

3
� 15:9412Zaf 0ðr0Þ þ 8:8052Za2f 00ðr0Þ




ð57Þ

The notations are

X ¼ �5:0440gþ A1 þ A2 � 2ðB1 þ B2Þ þ 17:4730Zg1

ð58Þ

r ¼ �7:5391ZðZ þ 8f ðr0ÞÞ þ A1 � B1ð Þ
�3:141ZðZ þ 8f ðr0ÞÞ þ A1 þ 2B1ð Þ þ 21:765Zaf 0ðr0Þ

� 

;

ð59Þ

Finally, the anharmonic third-order elastic constants

(TOECs) for zinc-blende structure are as follows:

C111 ¼
e2

4a4
0:5184gþ 1

9
ðC1 � 6B1 � 3A1Þ þ

1

4
ðC2 � B2 � 3A2Þ

�

�2 B1 þ B1ð Þ � 9:9326Zg1 þ 2:522Zg2



;

ð60Þ

C112 ¼
e2

4a4
0:3828gþ 1

9
ðC1 þ 3B1 � 3A1Þ þ

1

8
ðC2 þ 3B2 � 3A2Þ

�

� 11:642Zg1 þ 2:522Zg2



;

ð61Þ

C123 ¼
e2

4a4
6:1585gþ 1

9
ðC1 þ 3B1 � 3A1Þ � 12:5060Zg1 þ 2:5220Zg2

� 

;

ð62Þ

C144 ¼
e2

4a4
6:1585gþ 1

9
ðC1 þ 3B1 � 3A1Þ � 4:1681Zg1 þ :8407zg2þ

�

þr �3:3507g� 2

9
C1 þ 13:5486Zg1 � 1:681Zg2

� 


þr2 �1:5637gþ 2

3
A1 � B1ð Þ þ C1

9
� 5:3138Zg1 þ 2:9350Zg2

� 
�

ð63Þ
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In view of equilibrium condition, the third-order elastic

constants difference also lead to finite value at Cauchy

pressure inferring that polarizability of the ions has effect

on the elastic constants:

C112 � C166 6¼ 0 ð66Þ
C123 � C456 6¼ 0 ð67Þ
C144 � C456 6¼ 0 ð68Þ
C123 � C144 6¼ 0 ð69Þ

Furthermore, the third-order elastic constants satisfy the

identity:

C123 þ 2C456 � 3C144 ¼ 0 ð70Þ

Various symbols appear in the earlier expressions are

associated with the crystal energy and have been defined

below:

A1 ¼ Aij ¼
4a3

e2
d2

dr2
VijðrÞ

	 


r¼a

; ð71Þ

A2 ¼ Aii ¼ Ajj ¼
4a3

e2
d2

dr2
ViiðrÞ þ

d2

dr2
VjjðrÞ

	 


r¼
ffiffi
3

p
a=4

;

ð72Þ

B1 ¼ Bij ¼
4a2

e2
d

dr
VijðrÞ

	 


r¼a

; ð73Þ

B2 ¼ Bii ¼ Bjj ¼
4a2

e2
d

dr
ViiðrÞ þ

d

dr
VjjðrÞ

	 


r¼
ffiffi
3

p
a=4

;

ð74Þ

C1 ¼ Cij ¼
4a4

e2
d3

dr3
VijðrÞ

	 


r¼a

; ð75Þ

C2 ¼ Cii ¼ Cjj ¼
4a4

e2
d3

dr3
ViiðrÞ þ

d3

dr3
VjjðrÞ

	 


r¼a

; ð76Þ

g ¼ Z þ 8f rð Þ ð77Þ

g1 ¼ rodf rð Þ ð78Þ
g 2ð Þ ¼ roddf rð Þ ð79Þ

Similarly, the expressions for the second-order elastic

constants for RS structure crystals are as follows:

C11 ¼
e2

4a4
�5:112Z2

m þ A1 þ
A2 þ B2

2
þ 9:3204Z af 0ðrÞð Þ

� �

ð80Þ

C12 ¼
e2

4a4
0:226Z2

m � B1 þ
A2 � 5B2

4
þ 9:3204Z af 0ðrÞð Þ

� �

ð81Þ

C44 ¼
e2

4a4
2:556Z2

m þ B1 þ
A2 þ 3B2

4

� �
ð82Þ

and

B1 þ B2 ¼ �1:165Z Z þ 12f rð Þ½ �: ð83Þ

For non-central many body forces as we deal with the

second-order elastic constants difference lead to finite

value at Cauchy pressure:

C12 � C44 6¼ 0 ð84Þ

The pressure derivatives of second-order aggregate

elastic constants under hydrostatic pressure P are obtained

in the form

3X
dBT

dp
¼ � 13:980Z2

m þ C1 � 3A1 þ C2 � 3A2

�

�167:7648Z af 0ðrÞð Þ þ 41:9420Z a2f 00ðrÞ
� ��

ð85Þ

2X
dr
dp

¼ � 23:682Z2
m þ C1 þ

C2 þ 6A2 � 6B2

4

�

�50:0752Z af 0ðrÞð Þ þ 13:9808Z a2f 00ðrÞ
� �

�
ð86Þ

C166 ¼
e2

4a4
�2:1392gþ 1

9
ðC1 � 6B1 � 3A1Þ þ

1

8
C2 � 5B2 � 3A2ð Þ

�
� B1 � B2ð Þ

� 4:168Zg1 þ :8407Zg2 þr �8:3768gþ 2

3
A1 � A2ð Þ � 2

9
C1 þ 13:5486Zg1

�
�1:6813Zg2

#

þr2 2:3527gþ C1

9
� 5:3138Zg1 þ 2:9350Zg2

� 


ð64Þ

C456 ¼
e2

4a4
4:897gþ 1

9
ðC1 � 6B1 � 3A1Þ � B2 þr �5:0261g� 1

9
C1

� 
�

þr2 7:0580gþ 1

3
C1

� 

þr3 �4:8008gþ 1

3
A1 � B1ð Þ � 1

9
C1

� 
� ð65Þ
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X
dC44

dp
¼ � �11:389Z2

m þ A1 � 3B1

�

þC2 þ 2A2 � 10B2

4
þ 44:6528Z af 0ðrÞð Þ

� ð87Þ

The notation X is

X ¼ �2:330Z2
m þ A1 þ A2 þ 27:9612Z af 0ðrÞð Þ ð88Þ

Finally, the anharmonic third-order elastic constants for

RS structure are as follows:

C111 ¼
e2

4a4
37:556Z2

m þ C1 � 3A1 �
3A2 þ 9B2 � C2

4

�

�89:305Z af 0ðrÞð Þ þ 13:980Z a2f 00ðrÞ
� �

� ð89Þ

C112 ¼
e2

4a4
�4:836Z2

m � 3A2 þ 3B2 � C2

8

�

�18:640Z af 0ðrÞð Þ þ 4:66Z a2f 00ðrÞ
� �

� ð90Þ

C123 ¼
e2

4a4

�
2:717Z2

m þ 16:692Z af 0ðrÞð Þ
�

ð91Þ

C144 ¼
e2

4a4

�
2:717Z2

m þ 5:564Z af 0ðrÞð Þ
�

ð92Þ

C166 ¼
e2

4a4

�
�4:836Z2

m � 2ðB1 þ B2Þ

� 3A2 � 3B2 � C2

8
þ 5:564Z af 0ðrÞð Þ

� ð93Þ

C456 ¼
e2

4a4

�
2:717Z2

m � ðB1 þ B2Þ
�

ð94Þ

Various symbols appear in the above expressions are

associated with the crystal energy and have the following

form in RS structure

A1 ¼
8a3

e2
d2

dr2
VijðrÞ

� 


r¼a

; ð95Þ

A2 ¼
16a3

e2
d2

dr2
ViiðrÞ þ

d2

dr2
VjjðrÞ

� 


r¼
ffiffi
2

p
a

; ð96Þ

B1 ¼
8a3

e2
1

r

d

dr
VijðrÞ

� 


r¼a

; ð97Þ

B2 ¼
16a3

e2
1

r

d

dr
ViiðrÞ þ

1

r

d

dr
VjjðrÞ

� 


r¼
ffiffi
2

p
a

; ð98Þ

C1 ¼
8a3

e2
r
d3

dr3
VijðrÞ

� 


r¼a

; ð99Þ

C2 ¼
16a3

e2
r
d3

dr3
ViiðrÞ þ

d3

dr3
VjjðrÞ

� 


r¼
ffiffi
2

p
a

ð100Þ

in terms of the short-range energy

VijðrÞ ¼
X

ij

bbij exp
ri þ rj � rij

q

	 

�
X

ij

C

r6ij
�
X

ij

D

r8ij

ð101Þ

The short-range interaction (SR) energy is expressed

in terms of the overlap repulsion (first term) and the

induced charge dipole–dipole and charge dipole–

quadruple (van der Waals) [second and third terms],

respectively.

Appendix 2

The temperature-dependent elastic, thermal and thermo-

dynamical properties of SiC are now studied within the

quasi-harmonic Debye approximation. The Helmholtz free

energy at temperature below the melting point of SiC

ceramics in the quasi-harmonic model is applicable to

evaluate equation of state and thus the elastic properties.

The non-equilibrium Gibbs’s free energy function, G*(V;

P, T) within the quasi-harmonic approximation is

G = U ? PV ? Avib.[hD(V); T].
In order to determine the anharmonic effects on the

elastic constants at higher temperatures, we use the equa-

tion of state (EOS) as:

P ¼ � dU

dV
þ TavBT ð102Þ

Here, P is the pressure, T the temperature, U the total

potential energy, av the volume thermal expansion coeffi-

cient, BT the isothermal bulk modulus. The second term in

Eq. (106) is the thermal phonon pressure. The temperature-

dependent second-order elastic constants Cij are derived

from the dynamical matrix of modified Rigid Shell model

[19–26, 35–42] and the method of long waves as

C11 ¼ 1:573TavBT

þ e2

4a4
1

3
A1 � 0:9B1 � 1:573B2 þ 8:9558 af 0ðrÞð Þ

� �

ð103Þ

C12 ¼ �1:786TavBT

þ e2

4a4
1

3
A1 þ 1:45B1 þ 1:786B2 þ 8:9558 af 0ðrÞð Þ

� �

ð104Þ

C44 ¼ �0:786TavBT

þ e2

4a4
1

3
A1 þ 1:45B1 þ 1:786B2 �

1

3
D

� �
ð105Þ

with
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D ¼ A1 þ 6:77B1 þ 7:78B2 � 7:77 TavBT

4a4

e2

� �
ðA1 þ 2B1Þf

�

þ 3ðA2 þ 2B2Þg�1
i

ð106Þ

and

TavBT ¼ e2

4a4
1:9395Z½Z þ 8f ðr0Þ� þ ðB1 þ B2Þ½ � ð107Þ

Herein, the potential energy incorporates the long-range

Coulomb with charge transfer interactions, covalent nature

of bonds, and short-range overlap repulsive interaction up

to second-neighbour as well charge dipole–dipole and

charge dipole–quadruple (van der Waals) interaction.

We use equilibrium condition to obtain temperature

dependence of hardness and range parameters as

r
dUðrÞ
dr

����

����
r¼r0

¼ 3TavVBT ð108Þ

Here, V is the unit cell volume of SiC.
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