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Abstract We derive new exact charged rotating solutions

of ðnþ 1Þ-dimensional Brans–Dicke theory in the presence

of Born–Infeld field and investigated their properties.

Because of the coupling between scalar field and curvature,

the field equations cannot to be solved directly. Using a

new conformal transformation, which transforms the Ein-

stein-dilaton–Born–Infeld gravity Lagrangian to the Brans–

Dicke–Born–Infeld gravity one, the field equations are

solved. We also compute temperature, charge, mass, elec-

tric potential, and entropy; entropy, however, does not obey

the area law. These quantities are invariant under confor-

mal transformation and satisfy the first law of

thermodynamics.

Keywords Brans–Dicke � Black holes � Born–Infeld �
Thermodynamics

Introduction

Brans–Dicke theory [1] is one of the most important

alternative theories of gravity to modify Einstein’s theory

to incorporate Mach’s principle into the theory of gravi-

tation. In this theory, gravity is described through a metric

tensor glm and a scalar field U, which replace Newton’s

gravitational constant. This theory involves a dimension-

less parameter x which represents the strength of coupling

between scalar field and curvature. Recently, this theory

has obtained more attention as it arises as the low energy

limit of many theories of quantum gravity such as the

supersymmetric string theory or the Kaluza–Klein theory

[2]. Besides, recent discoveries show that the universe is

accelerating [3–5], so scalar-tensor theories, including

Brans–Dicke theory, can be used to explain some features

of dark energy (the cause of the acceleration). Cylindrically

symmetric solutions are one of the most studied solutions

of various gravity theories. For instance, the cylindrical

symmetry is used in the study of gravitational waves,

cosmological models, and gravitational collapse of non-

spherical matter distributions. The first black hole solutions

of Brans–Dicke theory in four dimensions were obtained

by Brans [6]. Four-dimensional static cylindrical vacuum

solutions of Brans–Dicke theory were obtained in [7, 8].

Static solutions of Brans–Dicke–Maxwell theory were

presented in [9]. Recently, higher dimensional cylindrically

symmetric solutions were investigated by many authors

[10–12]. Charged rotating solutions in ðnþ 1Þ -dimensions

for an arbitrary value of x were presented in [19], but

charged rotating solutions for an arbitrary value of x in the

presence of Born–Infeld field have not been constructed. In

this paper, we will obtain the ðnþ 1Þ-dimensional charged

rotating solutions in Brans–Dicke–Born–Infeld theory and

investigate their properties.

The organization of this paper is as follows. In Sect. 2,

we introduce the action of Brans–Dicke theory and dilaton

gravity in the presence of Born–Infeld field and obtain field

equations and conformal transformations between them. In

Sect. 3, a new charged rotating solution in ðnþ 1Þ-di-

mensions with Liouville-type potential is constructed. In

Sect. 4, temperature, charge, electric potential, and entropy

are obtained. In Sect. 5, by calculating the Euclidean action

method, we obtain the conserved quantities and study the
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first law of thermodynamics. We finish our paper with

some concluding remarks.

The action and field equations

The gravitation action in ðnþ 1Þ-dimensions for the

Brans–Dicke theory with scalar field U coupled to a Born–

Infeld field can be written as

IBD ¼ � 1

16p

Z
M

dnþ1x
ffiffiffiffiffiffiffi�g

p
UR� x

U
ðrUÞ2 � VðUÞ þ LðFÞ

� �
;

ð1Þ

where R is the Ricci scalar, x is the coupling constant, U
denotes the BD scalar field, and VðUÞ is a potential for the

scalar field U. The last term in Eq. (1) is the Born–Infeld

term and is given by the following:

LðFÞ ¼ 2c 1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ FlmFlm

c

s !
: ð2Þ

Here, Flm ¼ o½lAm� is the electromagnetic field tensor and

Al is the electromagnetic vector potential. c is called the

Born–Infeld parameter with dimension of mass. Notice that

when c ! 1, L(F) reduces to Maxwell electrodynamics

LðFÞ ¼ �FlmF
lm: ð3Þ

In the limit c ! 0, LðFÞ ! 0. It is convenient to set

LðFÞ ¼ 2cLðYÞ; ð4Þ

where

LðYÞ ¼ 1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ FlmFlm

c
:

s
ð5Þ

Varying the action (1) with respect to the gravitational field

glm, the scalar field U and the electromagnetic field Al give

the following field equations:

Glm ¼
x

U2
rlUrmU� 1

2
glmðrUÞ2

� �

� glm

2U
VðUÞ � 2r2Uþ LðYÞ
� �

þ 1

U
rlrmU� 4oYLðYÞFlkF

k
m

� �
;

ð6Þ

r2U ¼� 4oYLðYÞ
n� 1ð Þxþ n½ �F

2 þ nþ 1ð Þ
n� 1ð Þxþ n½ � LðYÞ � VðUÞ

2

	 


þ ðn� 1Þ
2 n� 1ð Þxþ nÞ½ � U

dVðUÞ
dU

	 

;

ð7Þ

rlðoYLðYÞFlmÞ ¼ 0; ð8Þ

where Glm and rl are, respectively, the Einstein tensor and

covariant differentiation corresponding to the metric glm.

Because the right-hand side of Eq. (6) appears as second

derivatives of the scalar field U, so we cannot solve it

directly and use a suitable conformal transformation such

as:

glm ¼ X2~glm;

U ¼ exp
4a ~U
n� 3

� �
;

Flm ¼ ~Flm;

ð9Þ

where X ¼ U� 1
n�1. Using this conformal transformation, the

action (1) becomes

~I ¼ � 1

16p

Z
M

dnþ1x
ffiffiffiffiffiffiffi
�~g

p
~R� 16a2

ðn� 3Þ2

 

xþ n

n� 1

� �
ð ~r ~UÞ2 � ~Vð ~UÞ þ ~Lð ~F; ~UÞ

�
;

ð10Þ

this action equals the action of Einstein–dilaton gravity

coupled to a Born–Infeld field, which has been studied in

[13]:

~IED ¼ � 1

16p

Z
M

dnþ1x
ffiffiffiffiffiffiffi
�~g

p �
~R� 4

n� 1
ð ~r ~UÞ2

� ~Vð ~UÞ þ ~Lð ~F; ~UÞ
�
;

ð11Þ

provided that

x ¼ ðn� 3Þ2

4ðn� 1Þa2
� n

n� 1
;

c ¼ exp
8a ~U
n� 3

� �
~c:

ð12Þ

In action (11), ~R and ~r are, respectively, the Ricci scalar

and covariant differentiation corresponding to the metric

~glm, and a is a constant which determines the strength of

coupling between the scalar and electromagnetic field. The

transformed Born–Infeld field ~Lð ~F; ~UÞ and ~Vð ~UÞ are given

by

~Lð ~F; ~UÞ ¼2~ce4a ~U=ðn�1Þ 1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ e�8a ~U=ðn�1Þ ~Flm ~F

lm

~c

s0
@

1
A;

ð13Þ

~Vð ~UÞ ¼VðUÞU�ðnþ1Þ=ðn�1Þ ¼ exp
4ðnþ 1Þa ~U

ðn� 1Þðn� 3Þ

� �
;

ð14Þ

for convenience, we set

~Lð ~F; ~UÞ ¼ 2~ce4a ~U=ðn�1Þð1 �
ffiffiffiffiffiffiffiffiffiffiffiffi
1 þ ~Y

p
Þ; ð15Þ
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where

~Y ¼ e�8a ~U=ðn�1Þ ~Flm ~F
lm

~c
: ð16Þ

Varying the action (11) with respect to ~glm, ~U and ~Flm, the

equations of motion are obtained as

~Rlm ¼
4

n� 1
~rl
~U ~rm

~Uþ 1

4
~V ~glm

� �

� 4e�4a ~U=ðn�1Þ~o ~Y
~Lð~YÞ ~Flg ~F

g
m

þ 2~c
n� 1

e4a ~U=ðn�1Þ 2~Y ~o ~Y
~Lð~YÞ � ~Lð~YÞ

h i
~glm;

ð17Þ

~r2 ~U ¼ n� 1

8

o ~V

o ~U
þ ~cae4a ~U=ðn�1Þ 2~Y ~o ~Y

~Lð~YÞ � ~Lð~YÞ
h i

;

ð18Þ

~rl e�4a ~U=ðn�1Þ~o ~Y
~Lð~YÞ ~Flm

h i
¼ 0: ð19Þ

In the present work, we wish to find charge rotating solu-

tions of Eqs. (6)–(8) with potential VðUÞ. Therefore, we

use conformal transformation (9) and solutions of

Eqs. (17)–(19).

Charge rotating solutions in ðnþ 1Þ-dimensions

The solutions of the field Eqs. (17) and (18) have been

obtained by many authors. Here, we want to obtain the

charge rotating solutions in ðnþ 1Þ-dimensional of Brans–

Dicke theory with Born–Infeld field. The ðnþ 1Þ-dimen-

sional charge rotating solution to the field equations (17)–

(19) has been obtained by [13] for a Liouville-type

potential:

~Vð ~UÞ ¼ 2K exp
4a ~U
n� 1

� �
: ð20Þ

By applying the conformal transformation (9), the potential

~Vð ~UÞ becomes VðUÞ ¼ 2KU2. The metric for this solution

was written as [13]:

d~s2 ¼� FðrÞ Ndt �
Xk
i¼1

aidui

 !2

þ r2

l4
R2ðrÞ

Xk
i¼1

aidt � Nl2dui

� �2

� r2

l2
R2ðrÞ

Xk
i¼1

ðaiduj � ajduiÞ2 þ dr2

FðrÞ þ
r2

l2
R2ðrÞdX2;

ð21Þ

where ais are k rotation parameters and

N2 ¼ 1 þ
Xk
i¼1

a2
i

l2
:

In metric (21), F(r) and R(r) are functions of r which

should be determined. The modified Maxwell equation (19)

for the metric (21) can be integrated, where all of the

components are zero except

~Ftr ¼
qNe4a ~U=ðn�1Þ

rRð Þn�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 2q2

~c rRð Þ2n�2

q ;

~Fur ¼� ai

N
~Ftr:

ð22Þ

It can be showed that F(r), R(r), and ~UðrÞ have solutions of

the form [13]:

FðrÞ ¼ 2Kða2 þ 1Þ2
c2b

ðn� 1Þða2 � nÞ r
2ð1�bÞ � m

rðn�1Þð1�bÞ�1

� 2~cða2 þ 1Þ2
c2br2ð1�bÞ

ðn� 1Þða2 � nÞ

� 1 �2 F1 � 1

2
;

a2 � 1

2ðn� 1Þ �
1

2

	 

;

a2 � 1

2ðn� 1Þ þ
1

2

	 

;

��

�2q2

~cc2bðn�1Þr2ðn�1Þð1�bÞ

��
;

ð23Þ

RðrÞ ¼ exp
2a ~U
n� 1

� �
¼ c

r

� �b
; ð24Þ

~UðrÞ ¼ ðn� 1Þa
2ð1 þ a2Þ ln

c

r

� �
; ð25Þ

where c and m are integration constants, and

b ¼ a2=ða2 þ 1Þ. One may note that in the limit c ! 1,

these solutions reduce to the solutions presented in [14]. In

the absence of dilaton field ða ¼ b ¼ 0Þ, these solutions

reduce to the charged rotating black brane solutions of

Einstein–Born–Infeld theory [15]. Using the conformal

transformation (9), the (nþ 1)-dimensional charged rotat-

ing solutions of BD theory in the presence of Born–Infeld

field can be obtained as follows:

ds2 ¼�AðrÞ Ndt�
Xk
i¼1

aidui

 !2

þ r2

l4
H2ðrÞ

Xk
i¼1

aidt�Nl2dui

� �2

� r2

l2
H2ðrÞ

Xk
i¼1

ðaiduj � ajduiÞ2 þ dr2

BðrÞ þ
r2

l2
H2ðrÞdX2;

ð26Þ

where A(r), B(r), H(r), and UðrÞ are
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AðrÞ ¼ 2Kða2 þ 1Þ2
c2bðn�5

n�3
Þ

ðn� 1Þða2 � nÞ r2ð1�b n�5ð Þ
n�3

Þ

� mcð
�4b
n�3

Þ

rðn�2Þ r
bððn�1Þþ 4

n�3
Þ þ 2cða2 þ 1Þ2

c�4bð n
n�3

Þ

ðn� 1Þða2 � nÞr�2ð1þbnþ3
n�3

Þ

� 1 �2 F1 � 1

2
;

a2 � 1

2ðn� 1Þ �
1

2

	 

;

��

a2 � 1

2ðn� 1Þ þ
1

2

	 

;
�2q2r2ðn�1Þ b�n�1

n�3ð Þ

cc
2bðn�1Þðn�5Þ

ðn�3Þ

��
; ð27Þ

BðrÞ ¼ 2Kða2 þ 1Þ2
c2bðn�1

n�3
Þ

ðn� 1Þða2 � nÞ r2ð1�b n�1ð Þ
n�3

Þ � mcð
2b
n�3

Þ

rðn�2Þ r
bððn�1Þ� 4

n�3
Þ

þ 2cða2 þ 1Þ2
c�4bð2n�1

n�3
Þ

ðn� 1Þða2 � nÞr�2ðð1�bÞ�2b n
n�3

Þ

� 1 �2 F1 � 1

2
;

a2 � 1

2ðn� 1Þ �
1

2

	 

;

��

a2 � 1

2ðn� 1Þ þ
1

2

	 

;
�2q2c2ðn�1Þ b�n�1

n�3ð Þ

cr
2bðn�1Þðn�5Þ

ðn�3Þ

��
; ð28Þ

HðrÞ ¼ c

r

� �ðn�5Þb
n�3

; ð29Þ

UðrÞ ¼ c

r

� �2ðn�1Þb
n�3

: ð30Þ

In the above solutions, c and m are integration constants.

We obtain for the electromagnetic fields

Ftr ¼
qNcð3�nÞb

r2þðn�3Þð1�bÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ 2q2c2bðn�3Þ

crð2n�6Þð1�bÞþ4

q ;

Fur ¼� ai

N
Ftr:

ð31Þ

Let us notice that as r ! 1, the electromagnetic fields (

31) become zero and, in the large c limit, reduce to the

Brans–Dicke–Maxwell theory [19]:

Ftr ¼
qNcð3�nÞb

r2þðn�3Þð1�bÞ ;

Fur ¼� ai

N
Ftr:

ð32Þ

Using the fact that 2F1ða; b; c; zÞ converges for jzj\1, so

we can study the behavior of the A(r) in the limiting case

where r ! 1. The Function A(r) for large r is given by

AðrÞ ¼ 2Kða2 þ 1Þ2
c2b n�5

n�3ð Þ
ðn� 1Þða2 � nÞ r2 1�b n�5ð Þ

n�3ð Þ � mc
�4b
n�3ð Þ

rðn�2Þ rb ðn�1Þþ 4
n�3ð Þ

þ 2q2ða2 þ 1Þ2
c�2bððn�2Þþ 2

n�3
Þr2 ð1�bÞþ 2b

n�3ð Þ

ðn� 1Þða2 þ n� 2Þr2 ðn�2Þð1�bÞ� 2b
n�3ð Þ

� q4ða2 þ 1Þ2
c�4b n

n�3ð Þ

cðn� 1Þ2ða2 þ 3n� 4Þr2 ð2n�3Þð1�bÞ�2b n
n�3ð Þ :

ð33Þ

Note that in the limit c ! 1 and a ¼ 0, it has the form

of the asymptotically AdS black holes. The last term in

the above equation is due to the Born–Infeld field in the

large c limit. We can see from Eq. (27) that the solution

is well-defined except for a ¼
ffiffiffi
n

p
. Therefore, we inves-

tigate two cases a[
ffiffiffi
n

p
and a\

ffiffiffi
n

p
separately. When

a[
ffiffiffi
n

p
, as r ! 1, the second term is dominant term,

and therefore, the spacetime has a horizon for positive

values of the mass parameter. In the second case, where

a\
ffiffiffi
n

p
, as r ! 1, the first term is dominant term, and

therefore, there exists a horizon provided that K[ 0. If

K\0, it is possible to have horizon depending on the

different values of the parameters m, q, and a. Because

exponential terms appear in (26), it is not straightforward

task to find the location of horizons for an arbitrary value

of a. However, we can obtain some information by

studying the temperature of the horizons.

Thermodynamic quantities

Temperature

By taking t ! is and ai ! iai, we define the Euclidean

section of the metric (26). The regularity of the metric at

rþ requires that we must identify s ! sþ bþ and

/i �/i þ bþXi, where bþ and Xi are the inverse tem-

perature and the angular velocity of the outer horizon

[16]

Xi ¼
ai

Nl2
: ð34Þ

The Killing horizon is a null hypersurface whose null

generators are tangent to a Killing field. It is easy to see

that the Killing vector:

v ¼ o

ot
þ
Xk
i¼1

Xi

o

o/i

; ð35Þ

is the null generator of the event horizon. The temperature

on the outer horizon rþ, is defined through the use of

definition of surface gravity j,

Tþ ¼ j
2p

; ð36Þ

where the surface gravity j ¼ 2p
bþ

is given by

j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 1

2
rlvm
� �

rlvmð Þ
r

¼ 1

2N
dFðrÞ

dr

� �
rþ

: ð37Þ

Then, it is a matter of calculation to show that
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1

bþ
¼Tþ ¼ ðn� a2Þm

4pNða2 þ 1Þ rþ
ðn�1Þðb�1Þ

� q2ða2 þ 1Þc2ð2�nÞb

pNða2 þ n� 2Þ r
2ð2�nÞð1�bÞ�1
þ

�2 F1

1

2
;

a2�1

2ðn� 1Þþ
1

2

	 

;

a2�1

2ðn� 1Þþ
3

2

	 

;

�

� 2q2r
2ðn�1Þðb�1Þ
þ

cc2ðn�1Þðb�1� 2b
n�3

Þ

�
;

ð38Þ

which shows that the temperature of the solution is

invariant under the conformal transformation (9). This

result concludes from this point that the conformal

parameter is regular at the horizon. There is also an

extreme value for the mass parameter in which the tem-

perature of the black hole is zero. Using the fact that

FðrþÞ ¼ 0, it is easy to show that

mext ¼
4q2ða2 þ 1Þ2

c2ð2�nÞb

ðn� a2Þða2 þ n� 2Þ r
ð3�nÞð1�bÞ�1
þ

�2 F1

 
1

2
;

a2�1

2ðn� 1Þþ
1

2

	 

;

a2�1

2ðn� 1Þþ
3

2

	 

;

� 2q2r
2ðn�1Þðb�1Þ
þ

cc2ðn�1Þðb�1� 2b
n�3

Þ

!
:

ð39Þ

Depending on the value of m, there are three cases to

consider separately. In the first case, where m[mext, the

metric of (26) has two inner and outer horizons ðr� and

rþÞ. In the case of m ¼ mext, we have an extreme black

brane and a naked singularity if m\mext. It is notable to

mention that in the absence of scalar field, where (a ¼ 0)

and c ! 1, mext reduces to the equation obtained in

[17, 18], while in the limiting case, where c ! 1, mext

reduces to the result in [19].

Charge and electric potential

Here, we want to calculate the electric charge and potential

of the solutions. We should consider the projections of the

electromagnetic field tensor on special hypersurfaces to

determine the electric field. The normal to such hypersur-

faces is

u0 ¼ 1

N
; ur ¼ 0; ui ¼ �Vi

N
; ð40Þ

where N and Vi are the lapse and shift function and the

electric field is El ¼ glaFaku
k. The electric charge per unit

volume, Q, can be obtained by calculating the flux of the

electric field at infinity, obtaining

Q ¼ Nq
4pln�2

: ð41Þ

By comparing the charge (41) with the charge of black

brane solutions of Einstein–Born–Infeld theory obtained in

[13], we notice that the charge Q is invariant under the

conformal transformation (9). The electric potential, U,

measured at infinity with respect to the horizon is defined

by the following [20, 21]:

U ¼ Alv
l

r!1 � Alv
l

 
r¼rþ

: ð42Þ

Here, v is the null generators of the horizon. The vector

potential Al corresponding to electromagnetic field (31)

can be obtained as

Al ¼ qcð3�nÞb

DrD 2
F1

1

2
;

a2�1

2ðn� 1Þþ
1

2

	 

;

a2�1

2ðn� 1Þþ
3

2

	 

;

�

� 2q2

cc2bðn�1Þðn�5Þ
n�3 r2ðn�1Þðn�3�bðn�5ÞÞ

Þ � Ndtl � aid
i
l

� �
;

ð43Þ

where D ¼ ð1 � bÞðn� 3Þ þ 1. Therefore, using (42) and

(43), the electric potential can be obtained as

U ¼ qcð3�nÞb

NDrþD
2

F1

1

2
;

a2�1

2ðn� 1Þþ
1

2

	 

;

a2�1

2ðn� 1Þþ
3

2

	 

;

�

� 2q2

cc2bðn�1Þðn�5Þ
n�3 r

2ðn�1Þðn�3�bðn�5ÞÞ
þ

�
:

ð44Þ

Entropy

For a charged rotating black hole, the first law of ther-

modynamics takes the form

TdS ¼ dM �
Xk
i¼1

XidJi þ UdQ; ð45Þ

where T and S are the horizon temperature and entropy, M,

J, U, and Q are the mass, angular momentum, electric

potential, and charge measured at infinity, and XH is the

angular velocity of the horizon. The first law of thermo-

dynamics connects the quantities M, J, U, and Q measured

at infinity with the local quantities S, T, A, and Xi on the

horizon. As studied in [22], in alternative theories of

gravity, the first law of thermodynamics (45) still holds

true, but the area law for the entropy S ¼ A
4G

is no longer

valid in these theories which has been known since 1980s

[23–27]. Some numerical studies showed that the area law

during the collapse of dust to black holes in alternative

theories of gravity is violated [28–30]. Black hole entropy

in Brans–Dicke theory was studied by Kang [31]. Kang

noticed that the problem is in the expression of the black

hole entropy, which is not one quarter of the area. The

relation for the entropy is
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S ¼ 1

4

Z
R

dn�1x

ffiffiffiffiffiffiffiffiffiffiffiffi
gðn�1Þ

q
U

¼AU
4

;

ð46Þ

where U is the Brans–Dicke scalar and gðn�1Þ is the deter-

minant of the metric glm to the horizon surface R: This

expression can be obtained by the replacement of the Newton

constant G with the inverse of Brans–Dicke scalar U. In the

Einstein frame, the gravitational coupling is a constant, but in

Brans–Dicke frame matter couples to the scalar field. Mas-

sive test particles which follow time-like geodesics of the

metric glm do not follow geodesics of the rescaled metric ~glm.

Null geodesics remain unchanged under conformal trans-

formation, and also null vectors and all forms of conformally

invariant matter. Therefore, a black hole event horizon which

is a null surface remains unchanged. The area of an event

horizon is not a null surface. Therefore, the change in the

entropy formula can be obtained as the change in the area due

to the conformal transformation of the metric glm. In fact,

glm ¼ X2~glm, and the relation between areas in two frames is

~A ¼
Z
R

dn�1x

ffiffiffiffiffiffiffiffiffiffiffiffi
~gðn�1Þ

q
¼
Z
R

dn�1xX�ðn�1Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
gðn�1Þ

q
¼ UA;

ð47Þ

where X ¼ U
�1
n�1 according to (9). Therefore, the entropy in

the Brans–Dicke and Einstein theory becomes equal

S ¼ AU
4

¼
~A

4
¼ ~S: ð48Þ

Denoting the volume of the hypersurface boundary at

constant t and r by Vn�1, it is easy to show that the entropy

per unit volume is

S ¼ Ncðn�1Þb

4ln�2
r
ðn�1Þð1�bÞ
þ : ð49Þ

It is notable to mention that the equality between black

hole entropies in the Brans–Dicke and Einstein theory is

not confined to scalar-tensor gravity but is valid in all

theories with action
R
dnþ1x

ffiffiffi
g

p
f ðRlm; glm;u;rluÞ [32].

Action and conserved quantities

In this section, we obtain the action and the thermodynamic

quantities of our solutions. In general, the action (1) does

not have a well-defined variational principle as well as is

divergent when evaluated on the solution. By variation of

the action (1), one encounters a total derivative which gives

rise to a surface integral involving the normal derivative of

dglm. These normal derivative terms are removed by the

variation of the surface term

Ib ¼ � 1

8p

Z
oM

dnx
ffiffiffiffiffiffiffi
�h

p
HU: ð50Þ

Here, hab is the determinant of the boundary metric and H

is the trace of extrinsic curvature Hab of the boundary. In

general, the action IBD þ Ib is divergent when evaluated on

the solutions. For asymptotically (A)dS solutions of Ein-

stein gravity, one can remove these divergences through

the use of counterterm method. In this method, we add a

finite number of surface integral to leave the action finite

[33]. In this paper, our solutions have zero curvature

boundary, and therefore, all the counterterms containing

the curvature invariants of the boundary are zero. Thus,

there exists one counterterm as

Ic ¼ � 1

8p

Z
oM

dnx
ffiffiffiffiffiffiffi
�h

p ðn� 1ÞUVðUÞ
a2 � n

� �1
2

; ð51Þ

it is notable that the counterterm has the same form as in

the case of asymptotically AdS solutions with zero curva-

ture boundary, where a ! 0 (U ¼ 1). The total finite action

can be written as

Itot ¼ IBD þ Ib þ Ic: ð52Þ

Using Eqs. (1), (50), and (51), we obtain the Euclidean

action per unit volume Vn�1 as

Itot

bþ
¼ � nða4 � 1Þmcðnþ1Þb

16plnða2 � nÞ r
ðnþ1Þ 1�bð Þ�1
þ

� 2cða4 � 1Þcb
n2�6nþ1

n�3

� �
r
n�4b n2�6nþ1

n�3

� �
þ

16pln�2ðn� 1Þða2 � nÞ

� 1 �2 F1 � 1

2
;

a2 � 1

2ðn� 1Þ �
1

2

	 

;

a2 � 1

2ðn� 1Þ þ
1

2

	 

;

��

�2q2

cc2bðn�1Þðn�5Þ
n�3 r2ðn�1Þð1�bn�5

n�3
Þ

��
:

ð53Þ

According to Refs. [34–36], we can calculate the entropy,

the mass and angular momentum through the relation

Itot ¼ bþM � S� bþðXiJi � QUÞ; ð54Þ

by comparing Eqs. (53) and (54), we can easily find that

S ¼ Ncðn�1Þb

4ln�2
r
ðn�1Þ 1�bð Þ
þ ; ð55Þ

M ¼ cðn�1Þb

16pln�2

ðn� a2ÞN2 þ a2 � 1

1 þ a2

� �
m; ð56Þ

Ji ¼
cðn�1Þb

16pln�2

n� a2

1 þ a2

� �
Nmai: ð57Þ

Comparing the thermodynamic quantities calculated in this

section with those obtained in the previous sections, we
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find that they are invariant under the conformal transfor-

mation. When ai ¼ 0, the angular momentum vanishes, and

so, ai is the ith rotational parameter of the spacetime. Black

hole entropy typically satisfies the so-called area law of the

entropy [37, 38], but it does not follow the area law in

Brans–Dicke theory [39–45]. Nevertheless, the entropy

remains invariant under conformal transformations. It is

notable to mention that the thermodynamic quantities cal-

culated above satisfy the first law of thermodynamics:

dM ¼ TdSþ
Xk
i¼1

XidJi þ UdQ: ð58Þ

Closing remarks

We presented the ðnþ 1Þ-dimensional BD-BI action cou-

pled to a scalar field U and obtained the field equations by

varying this action with respect to the gravitational field glm,

the dilaton field U, and the gauge field Al. In the special case

of the linear electrodynamics where we have LðYÞ ¼ � 1
2
Y ,

the system of equations reduced to the equations of Brans–

Dicke–Maxwell theory [19]. Because of the coupling

between the scalar field and curvature, solving the field

equations is complicated. Therefore, to solve field equations,

we present new conformal transformations. In this paper,

using these conformal transformations, we obtained the

charged rotating solutions of ðnþ 1Þ-dimensional ðn� 4Þ
BD-BI equations in the presence of a potential and studied

their properties. These solutions are neither asymptotically

flat nor (A)dS. In the particular case c ! 1, these solutions

reduce to the ðnþ 1Þ-dimensional charged rotating dilaton

black brane in Brans–Dicke theory with quadratic scalar field

potential [19]. These solutions are ill-defined for a ¼
ffiffiffi
n

p

(corresponding tox ¼ �3ðnþ3Þ
4n

), so we investigated two cases

a[
ffiffiffi
n

p
and a\

ffiffiffi
n

p
separately. We also computed the

entropy, temperature, charge, mass, and electric potential,

and found that these quantities are invariant under conformal

transformations and satisfy the first law of thermodynamics.

We show that the entropy does not obey the area law, but

remain invariant under the conformal transformation. In

addition, we found that when we have ða ¼ 0Þ, the scalar

field becomes a constant ðU ¼ 1Þ and the BD theory

degenerates into the Einstein theory of gravitation.
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