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Abstract In this paper, we discuss the relation of the
nonlinear Heisenberg algebras in two dimensions with
linear ones following the Nowicki and Tkachuk’s approach
for one-dimensional case. For one-dimensional harmonic
oscillator, we obtain the solution explicitly. For the non-
linear Heisenberg algebras in two dimensions, we intro-
duce two generators to transform this algebra into the linear
one. For the linear version of the nonlinear Heisenberg
algebras in two dimensions, we obtain the eigenfunction
for the position and angular momentum operator and solve
the harmonic oscillator problem in two dimensions.
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Introduction

The first form of the Heisenberg algebra giving the mini-
mal length uncertainty was first introduced by Kempf,
Mangano, and Mann [1] in the following form:

X, P] = ih(1 + pP?), (1)

which suggests the existence of the fundamental minimal
length

(AX)y = h/B. 2)

In this direction, much development has been accom-
plished in order to study the effect of minimal length on the
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quantum physical systems as well as on the classical ones,
but only a few problems are shown to be solved exactly.
They are one-dimensional harmonic oscillator with mini-
mal length uncertainty in position [1, 2] and also with
minimal length uncertainty in position and momentum [3,
4], D-dimensional isotropic harmonic oscillator [5, 6],
three-dimensional Dirac oscillator [7], (1 4+ 1)-dimen-
sional Dirac oscillator within Lorentz-covariant deformed
algebra [8], one-dimensional Coulomb problem [9], and
the singular inverse square potential with a minimal length
[10, 11]. Three-dimensional Coulomb problem with
deformed Heisenberg algebra was solved within the per-
turbation theory [12—15].

In this paper, we discuss the relation of the nonlinear
Heisenberg algebras in two dimensions with linear ones
following the Nowicki and Tkachuk’s approach [16] for
one-dimensional case. For one-dimensional harmonic
oscillator, we obtain the solution explicitly. For the non-
linear Heisenberg algebras in two dimensions, we intro-
duce two generators to transform this algebra into the linear
one. For the linear version of the nonlinear Heisenberg
algebras in two dimensions, we obtain the eigenfunction
for the position and angular momentum operator and solve
the harmonic oscillator problem in two dimensions.

One-dimensional deformed nonlinear Heisenberg
algebra

Recently, Nowicki and Tkachuk [16] considered a one-
dimensional deformed nonlinear Heisenberg algebra with
function of deformation f{P), namely

X, P] = if (P), (3)

where f(P) is an positive function obeying
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f(=P) =f(P). (4)

It means that the space has the same properties in two
opposite directions. The momentum representation reads

X =if(p)o, (5)

and acts on the square integrable functions ¢(p) €

P=p,

L*(—a,a;f), (a < oo) where the norm of ¢ is given by

¢ dp 2
W= [ Lo, 6
|l ﬂf(p)l (p) (6)
More general momentum representation is given in
“Appendix”.

Nowicki and Tkachuk extended the algebra (3) into the
three generator algebra by one additional generator F =
f(p) and obtain a concrete form of f as follows:

fp) =V1+pp. (7)

Now let us consider the harmonic oscillator with the
hamiltonian

1 1
H=—P+ - uw’X>. 8
TR T (8)

The Schrodinger equation reads
2
p- 1 .
|:2/.L + Eﬂwz(l\/ 1+ ﬂpzép)z} v =Ey. (9)

Let us change the variable like 1/Bp = sinh &, which means
that & goes to zero when f§ approaches zero. Then, Eq. (9)
becomes

” sinh? ¢
+le——— =0, 10
i’ ( (ﬁMW)2> v 1)
where
2FE
When we consider the small value of &, we have
V' + (e =0y =0, (12)
where
1
T By 13
Replacing & = z, we get
" + 2y + (e — oz)yy = 0. (14)
If we set
Y(z) = e 7y(2),
we get
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1 1 1 1
1 /
_ —le——)y=0. 1
zy +< Wz)y + (6 W)y 0 (15)

This equation can be solved using the Frobenius method. If
we adopt

y@) =D a (16)
n=0

and insert it into Eq. (15), we have

apA(A—1/2)=0 (17)

(n+14+)(n+1/24 Vans
1 1 1 .
_ [_Z <€_M_W) +M_W(n+ﬂ)]an, (n=0,1,...).
(18)
From the characteristic Eq. (17), we have two values of A:
A=0,1/2.
For 4 =0, we have
1 1 1
= F(-(1—- f—— 1
0@ =171 (30 - moig i) (19)
and for 1 = 1/2, we have

50 =151 (36 - w3 L), (20

where Kummer’s function is defined as

a i) — o (a),2"
\Fi(a; b;z) ;n!(iﬁn (21)
and
(@)g=1, (a),=ala+1)(@+2) - (a+n-1),
(22)

is the rising factorial.

Linearization of a two-dimensional deformed
nonlinear Heisenberg algebra

Let us consider a two-dimensional deformed nonlinear
Heisenberg algebra with deformation function f{P):

(X1, P1] = if(P), [Xa,P]=if(P), [P1,P2] =0,

(23)
where f(P) = f(P1, P,) is an positive function obeying
J(=P1,P2) =f(P1,P2), f(P1,=P2) =f(P1,P2). (24)

It means that the space has the same properties in two
opposite X;- and X,-directions. From the commutation
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relations (23), we have the momentum representation of the
operators as follows:

Py =ps
X = if(P)apn Xy = if(P)apz'

This fixes the remaining commutation relations, so the full
algebra is then given by

(X1, Pl =if(P), [Xa, P2 =if(P),
[X1,X2] = —f(0p,fOp, — Op,fOp,),

Pl = D1,
(25)

[P1,P2] =0
[X1,P2] = [X2,P1] =0.
(26)

Indeed one can easily check that the relation (26) obeys the
Jacobi identity.
Now we assume that the operators X, X,, P, and P, act

d(p1,p2) €
L*(—a,a;f), (a < oo) where the norm of ¢ is given by

1ot = [ [ E g

For the self-adjointness of X; and X,, we have
d(—a,p2) = £d(a,p)

and

b(p1, —a) = £¢(p1, a).

Now we extend this algebra by two additional operators
F=f(P)

G = if (Op,fOp, — Op,fOp, ).

Thus, the extended algebra £ is generated by the six gen-
erators. Using representation (25), one can easily find

[XlaF]:l:faPlfa [X27F]:lfaP2fa

on the square integrable functions

(27)

(28)

[P\, F] = [P, F] = 0.
(29)

We require that both {X;,P;,F} and {X,P,,F} form a
subalgebras of £. Then, one can put

fopf =o+ pPy+yF
fopf =d + P, +'F,

(30)
(31)

where o, B,7,0/, 8,7 are real parameters. Note that the
linear combination in the right-hand side of (30) (or 31)
does not contain X; (or X,) because fOp,f (or fOp,f) is a
function of Py, P, only. Using Eq. (24) and changing P, P
into —P;, —P,, respectively, one find

fopf = —o+ Py —yF (32)

fop,f = —od' + f'Py —y'F,

Comparing Eqs. (30) (31) or with Egs. (32) (or 33), one can
see

fopf = PP1, [fOp,f = pPs.

From now on we will restrict our concern to the case of
B =B =+*>> 0 for simplicity. From Eq. (34), we have

(33)

(34)

F(P) = /14 BP} + BP5. (35)

Thus, the algebra & reads

X1, Xo] =iG, [Xi,Pi]=iF, [X|,P;]=0,
[X17F] = iﬁplv [X17G] = iﬁXZa

(X2, P1] =0, [Xo,P2]=iF, [Xp,F]=ifP2, [X2,G]
:_iﬁXh [P17P2]:0a

[PlaF]:Ov [PlvG}:iﬁPZa [P27F]:Ov (36)
[P2,G] = —ipP,, [F,G]=0.

This is Lie algebra. One can find the Casimir operator
(invariant) for this algebra

1
2 2 2
K=P +P,—F
commuting with all elements of the algebra. Now let us

define the following operators:

1
A]:\1P17 Az:F7 A3=—X1
v

(37)

Ay = %Xz, As =G, Ag=vP;. (38)
Then, the algebra £ can be written as

[A1,A2) =0, [A3,A1] =4y, [A3,A) = iA4

[A4,Ar] = iAg, [A4,Ag] = iA2, [A6,A2] =0

[As,A1] = —iv*Ag, [As,A¢] = iv’A1, [A1,A¢] =0

1 . .
[A3;A4] = IV72A5’ [A47A5] = _lV2A37 [AS;A?)} = —lV2A4

AL, Ad =0, [As,As] =0, [As,Ag = 0. (39)

The algebra £ possess some subalgebras:

subalgebra £ generated by A;, A, A3
subalgebra £, generated by A;, A4, A¢
subalgebra £; generated by A, As, A¢
subalgebra £, generated by As, Ay, As.

=

It is convenient to use two pairs of commuting hermitian
operators P, and Q. defined as follows:

’r @ Springer
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P.=A +A,=vP, +F

P_.=A,—A =F — P,

Oy =Ar+As=VvPr +F

Q_=A,—A¢=F —vP;. (40)
Indeed one can easily check that

[P+, Q4] = 0. (41)

In this case, we have the algebra A generated by
Py,0Q+,A3,A4,As. Algebra £ has six generators, while 4
has seven ones. It seems to be nonsense because two
algebras should be isomorphic. To cure this problem, let us
consider the inverse relations of Eq. (40)

1
Ay = (P —P_), A2=§(P++P7)7
1

[ — N =

Ay=-(0: +0 ), As=5(0+ -0 ). (42)

2 2

We know that A, can be expressed in terms of both P, and

Q-+, which gives a constraint

P.+P. =0, +0_. (43)

This constraint decreases the number of generators of the
algebra A , so two algebras are isomorphic.

Besides Eq. (41), the remaining commutation relations
of the algebra A are

[A3,Py] = +iPy,

[A4a Qi] - :l:iQia

[P.,P_]=0
[Q+7Q—] =0

[A3,04] = é(& —P), [A4,Pi]= é(Q+ -

i .
[As,04] = EVZ(P+ —P.), [As,Pi] = Fiv’A

0-),

i . .
[A3,Aq] = 24 [As,As] = VA3, [As,As3] = —iVA,,
(44)
The Casimir operator is then given by
1
KZ;(A%_P+P7—Q+Q7)- (45)

This algebra has two subalgebras (namely ISO(1, 1)) gen-
erated by A3, P+ and A4, Q.

Two sets of the ladder operators can be expressed in
terms of the momentum operators as follows:

Py =\/1+V2(P?+P3) £ Py,
Qs+ =/1+V2(P} + P}) £ vP;.

If we set

(40)
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vP; =sinh £cosy, VP, = sinh &siny, (47)
we can express Py and Qy as

P, = cosh ¢ £ sinh cosy

Q. = cosh ¢ & sinh € sin vy. (48)

The ¢ and 7 can be expressed in terms of the momentum
operators as

n=tan"! (?), ¢ =sinh™'\/(vP1)* + (vP,)*.  (49)
1

Then, A3, A4, As can be written as
Az = i[cos Oz — coth & sin nd,]
Ay = i[sin n0s + coth & cos 10,

As =-0,. (50)
v

Eigenvectors of the position operator and angular
momentum operator

In this section, we discuss the eigenvalue equation for the
position operator and angular momentum operator. The
eigenvalues for the position operators read

de)(é, 17) = l]W(é, 71)4’(5, ’1)
Xa¢(&m) = bw(E,me (S n), (51)

where w(&,n) is a weight function. Inserting Eq. (50) into
Eq. (51) yields

iV[COS "af — coth é SiIl ’1@;1](15(5, ’7) = 11W(é, n)d)(év 17)
iv[sin 70¢ + coth & cos 0, (&, n) = Lw(&, n)d(E,n).

From Eq. (52), we have
w .
0: = . (I cosn + Lysinn)d

coth &0, ¢ :%(lz cosn — Iy sinn)g. (53)

If we set

P(&,n) =X(EY(n),
we have

1 .
X = Wi (Eywa(n)(ly cosn + L sinn)X

w(&, ) = wi(&wa(n),

1
Y = —wi (Ewa(n) (o cosy — Iy sinn)Y. (54)

If we adopt
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wi = —icoth¢,  w Z;., (55)  R'+R + l,uwvzé—lz—m—2 R=0. (65)
lycosn+ lpsing 4 4 47

we have Solving Eq. (65), we get

®(&, 1) = [sinh &1, cosy + I sinn)] 7" (56) !

Now let us investigate the eigenvalue of the angular
momentum operator L defined as

L= Einin = i(szapl —fP]apz) = —icosh 66,1 (57)
The eigenvalue equation reads
L®,, = mh®,,, (mec€2Z). (58)

Solving Eq. (58), we have

O(&,n) = e, (59)

cosh &

Two-dimensional Harmonic oscillator

Now let us consider the isotropic harmonic Hamiltonian

N 1 1
HZE(P%+P§)+§#W2(X12+X§)- (60)

Using Eq. (47) and Eq. (50), we obtain the expression of H:

2.2
1
“W2 " (0% + coth £3; + coth? &02) + 5 sinh® &,

H=—
2uv?

(61)
Then, the Schrodinger equation reads

uw?v?
2

1
(0 + coth &0, +coth® €07 +Wsinh2 Ely=Ey.
(62)
If we set y=R(&)e™!, we have
R" + coth éR' + (e — Asinh? & — m* coth? )R = 0, (63)

where

2E 1

€E=—— =—.
w22’ 2wyt

Now consider the case that ¢ is sufficiently small. In this
case, we have

1
sinhé~ ¢, cothé= E
Then, Eq. (63) reduces to

2
R”—i—éR’—k <e—A52—’Z—2)R:0. (64)

If we set & = uwv?z, we have

2 2 2 2
et () () ®
Uwy LW

and

Ewm=w(2n+m+1), n=0,1,..., m=0,1,... n
(67)

The ground state energy is given by

Egp = hw, (68)

which corresponds to the classical result.

Conclusion

Recently, Nowicki and Tkachuk [16] considered a one-
dimensional deformed nonlinear Heisenberg algebra with
function of deformation f{P), namely [X, P] = if (P). They
discussed the relation of the nonlinear Heisenberg algebras
with linear ones. We introduced the variable ¢ =
sinh~'(y/Bp) to solve the one-dimensional harmonic
problem for the small value of . We extended Nowicki
and Tkachuk’s work to the two-dimensional case. We
obtained the linearized algebra £ from the two-dimensional
nonlinear Heisenberg algebras by adding two generators.
Introducing two variables

¢ = sinh™' (v’p7 +v?p3)

—1(P2
n = tan '(p—]>,

we expressed all generators of the algebra £ in terms of & and
1. We also solved the eigenvalue equation for the position and
angular momentum operator. Finally, we discussed two-
dimensional isotropic harmonic oscillator problem and
obtained the corresponding energy eigenvalue and wave
function for the small value of £. We found that the ground
state energy for this model corresponds to the classical result.
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Appendix

More general solution of Eq. (3) is

X = if(p)0, + ig(p). (69)
We assume that the norm of ¢ takes the form
101F = [ aonte) 6(e)P (70)

where the measure function obeys u(—p) = p(p). For the
self-adjointness of X, we have

Wf +(f = 2g)u=0.

Solving Eq. (71), we get

1 g
u(p) = L2 J1r. (1)
Ex.1 For g = 0, we have p = 1.
Ex.2 For f = 1 + fp?,g = yp, we have u = f1/F-1,
Ex.3 For  f=+/1+pBp2 g=1p, we have
o= 1 e%\/ 1+/3p2.

\ 1+pp?
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