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Abstract

In this work, the charged black hole solution to the Brans—Dicke gravity theory in the presence of the nonlinear elec-
trodynamics has been investigated. To simplify the field equations, a conformal transformation has been introduced which
transforms the Brans—Dicke-Born-Infeld Lagrangian to that of Einstein-dilaton—Born-Infeld theory. A new class of
(n + 1)-dimensional black hole solution has been constructed out as the exact solution to the Brans-Dicke theory in the
presence of the Born—Infeld nonlinear electrodynamics. The physical properties of the solutions have been studied. The
black hole charge and temperature have been calculated making use of the Gauss’s law and the concept of surface gravity,
respectively. Also, the black hole mass and entropy have been obtained from geometrical methods. Trough a Smarr-type
mass formula as a function of the black hole charge and entropy the black hole temperature and electric potential, as the
intensive parameters conjugate to the black hole entropy and charge, have been calculated. The consistency of results of the
geometrical and thermodynamical approaches confirms the validity of the first law of black hole thermodynamics for this
new black hole solution. Finally, making use of the ensemble canonical method, the local stability or phase transition of the
new (n + 1)-dimensional Brans-Dicke-Born-Infeld black hole solution has been analyzed.

Keywords Brans-Dicke modified gravity theory - Charged black holes - Born-Infeld electrodynamics - Higher-dimensional

black holes

Introduction

Brans—Dicke (BD) theory of gravity [1] is the simplest
modification of general relativity in which gravity is
described by a metric g,, and a scalar ¥ whose inverse
plays the role of Newtonian constant of gravity. In addi-
tion, there is a parameter denoted by w, which represents
the strength of scalar—tensor coupling. The BD theory
passed a large value of experimental and theoretical tests
successfully and can be used to explain some physical
phenomena such as inflation [2], the cosmological constant
problem [3] and dark energy [4]. The first black hole
solutions of BD theory have been obtained by Brans in
1962 [5]. These solutions were four-dimensional and
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presented in four classes. Because of the coupling between
scalar field and curvature, higher-dimensional BD field
equations are too difficult to be solved directly. Fortu-
nately, as it is shown by many authors, there is a conformal
transformation which transforms the BD Lagrangian to that
of Einstein-dilaton theory. The Conformal transformation
is an interesting characteristic of the scalar—tensor theories
such as BD theory [6]. Using conformal transformation
enables us to solve BD field equations in a simpler. For
instance, we obtained charged rotating black branes in
Brans—Dicke—Born-Infeld (BDBI) theory by applying a
conformal transformation [7].

The appearance of an infinite self-energy for a point-like
charge at the charge position is one of the main problems of
the classical Maxwell theory. Although this divergence can
be removed in quantum electrodynamics, it still is a
problem in the classical electrodynamics. Born and Infeld
introduced a new Lagrangian to overcome this problem [§].
In addition to the Born-Infeld nonlinear electrodynamics,
other types of nonlinear electrodynamic fields such as the

\g
’r @ Springer


http://orcid.org/0000-0001-9759-6602
http://crossmark.crossref.org/dialog/?doi=10.1007/s40094-018-0293-0&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40094-018-0293-0&amp;domain=pdf
https://doi.org/10.1007/s40094-018-0293-0

148

Journal of Theoretical and Applied Physics (2018) 12:147-157

logarithmic, the exponential, and the power law Maxwell
field have received more attention [9—12]. These theories
are richer than linear electrodynamics and can reduce to
linear Maxwell theory. In addition, several authors have
studied cosmological models, including nonlinear electro-
dynamic fields [13—18]. Some authors have found charged
black hole and black brane solutions coupled to nonlinear
electrodynamics [19-26]. The thermal stability of the black
hole solutions in the presence of the linear and nonlinear
electrodynamics have been analyzed in [27-31]. So far,
exact charged spherical solutions of BD theory coupled to
Born—Infeld field have not been obtained. In the present
paper firstly, we introduce the action of BD theory with the
nonlinear Born-Infeld field and find the field equations.
Then, we construct charged black hole solutions in higher-
dimensional BD theory with the nonlinear Born-Infeld
field and investigate their properties.

The outline of this paper is as follows: The basic field
equations and conformal transformations between the
Einstein-dilaton theory and the BD theory are presented in
Sect. 2. Spherically symmetric higher-dimensional exact
solutions to the BDBI theory are obtained in Sect. 3. The
physical properties of the obtained solutions are investi-
gated in Sect. 4. Thermodynamics of the BD black hole
solution is studied in Sect. 5 and validity of the first law of
black hole thermodynamics is investigated. A thermal
stability analysis or phase transition is performed in Sect. 6.
Conclusions are presented in the last section.

Basic equations and conformal
transformation

The action of the (n+ 1)-dimensional BD gravitational
theory in the presence of nonlinear electrodynamics can be
written as

_ 1 n+l & ny
Iyp = *ﬁ. d x\/?g<TR - U(llj) - @g! VM‘PV"\F + L(F))7
(1)

where R is the Ricci scalar, ¥ denotes the BD scalar field,
and U(Y¥) is a potential for the scalar field ¥. The
parameter o is the scalar—tensor coupling constant. L(F) is
the Born—Infeld nonlinear electrodynamics and is given by

L(F)zy<1,/1+@>. 2)

Here, F,, denotes the electromagnetic tensor and 7 is the
parameter of nonlinearity. It is well known that for large
values of y — oo, L(F) reduces to Maxwell’s theory of
electrodynamics and in the limit y — 0, L(F) — 0. By
varying the action (1) with respect to the gravitational,
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scalar and the gauge fields, we get the following coupled
field equations as

1 w
Ruv - Egle = @ (VHIPVVLP
1 Uy
2g#v(V‘{") ) ( )gm +— (VNV‘,‘I’ guwV>Y)
WF F, FA
+ gm <1 dl ) ——
l—‘r o
(3)
S S S (E5)
(=Dl [ Tl [l D471
1 — m
< + [(n—1)w+ n))
‘I’
[(n—l —(n+1) U(‘I’)}7
(4)
P
2 =0, (5)

1+

The appearance of the second order derivatives in the
Eq. (3) makes the field equations too difficult to be solved,
directly. Therefore, we propose the following conformal
transformations

w = ngmw
- n(w+1)

—w
¥ Yoy, ©)

. Ag
Y = 7Vexp w3

with Q = W7 in the BD action (1). By using these
conformal transformations, the action (1) transforms to the
following action

1 =
IED — _F d"+1x /_g
(7)
~ oo~ 4 ~ ~ o~ o -~~~
(R —U(P) — ="V + L(F, LP)) ,

which is the action of Einstein-dilaton gravity with the
Born—Infeld electrodynamic field [32], provided that the
following relation are fulfilled

w=n11<(";af) —n)’ ®)

In action (7) R is the Ricci scalar and Vis the covariant
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differentiation with respect to the metric g,,. The param-

eter o is the coupling constant between the scalar and
electromagnetic field. The transformed nonlinear field

L(F,"¥) and U(P) are given by

o . —84%/(n—1) 7 vﬁ“”
L(F, \P) _ 2?6401‘1’/(;171) 1— \/1 + e - I3 ,

©9)
U(P) = uw)y (). (10)

By varying the action (7) with respect to g,,,, ¥, and /LL, we
get the following coupled field equations as

~ PR 1 o
R,uv = n—1 <VN‘I’VV‘I’ + Z Ug‘uv)
7 Lo 12
-~ —8a¥/(n—1 Tl
Y
5 L —1/2
1 = —8a¥/(n—1 M
n 2y AP/ (1) 1+ﬂ 1la
n— 1 ’,/, oW
(11)
~2. n—100
VY= 4 et/ =)
8 ov
i B g i\ 2 (12)
780(‘1’/(1171)1;' vFW
<1+e K —11,
Y

e—81@/(n—l)ﬁ‘!l“ﬁ“"

]

Here, we are interested on the charged spherically sym-
metric solutions of Eqs. (3)—(5). Since the field Eq. (11)
does not contain second order derivatives of scalar field W,
the field Eqgs. (11)—(13) can be solved in a simpler way.
These solutions are obtained in [33]. In the next section
first, we review these solutions then by using the conformal
transformations (6) the solutions of Egs. (3)-(5) are
obtained.

Spherically symmetric solutions in (n+1)-
dimensions

As we mentioned before, we cannot obtain the solutions of
BDBI gravity directly. In order to find the spherically
symmetric solutions of BDBI gravity in (n + 1)-dimen-
sions, we use the conformal transformations introduced in
Eq. (6). To do so, we should obtain the conformal solutions
of BDBI, the so-called Einstein-dilaton—-Born—Infeld solu-
tions. Such solutions have been presented in Ref. [33] and

we shall give a brief review, here. The general form of a
(n + 1)-dimensional spherically symmetric metric can be
written as

dr? 2772 2
H (r)dQ
Wy T )

n—1s

di* = —W(r)d® +

(14)

where inl is the metric of a unit (n — 1) sphere. In [33],
a Liouville-type potential as the solution to the scalar field
Eq. (12) has been introduced in the following form

n—1)(n—2)?

(%) = 206 4 ¢ 2@ 1) ¥, (15)
with

2 20
’7()—(”71)“; y’_(nfl) (]6)

Also, this type of potential was studied in Einstein—Max-
well-dilaton gravity, previously [34, 35] and Born—Infeld-
Dilaton black holes [36]. The solutions for the field
Egs. (11) and (12) are [33]

(n=2)(2+1)° % m
Wi = (2= 1)(n+o%—2) (Z) T e D(-p—1
2A =P +1)°E e\2#2 25(02 +1)% )22
e 6 e )
1 [ o1 1 o?—1 11 —24

x2h (757 {Z(n -1) 75}’ [Z(n -1 +§} G2

2= (1)

&) ),

(17)

5 -1
~ B
At =)' (19)
Ftr = qer’

(rH ()" 2L 2

where g and m are two integration constants and
B =o?/(o* + 1). It is notable to mention that these solu-
tions are ill-defined for o = 1,1/n. Using the mentioned
conformal transformation (6) and Eq. (8), the (n + 1)-di-
mensional charged spherical solutions of BDBI gravity for
(n>4) can be obtained as

dr

2
+ rzHZ(r)sz

ds? = Q%ds? = —A(r)d + B0 R

(21)

where A(r), B(r), ¥Y(r), and H(r) are
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 (n=2)(02+1)F 2y me¥

(2 — 1)(n+a272)( > T YD (I-p)-1
2A2 (2 +1)° (f)Z(lf/iHT 29(e2 4 1)? <r>2(lfﬂ)+w
(n—1)(e2 —n) \c (n—1)(c? — n)

(BB )

B(r) = <E>Y.W(r)

r

C

C

(22)

T

= (n—2)(o? + 1)2 (;)Zﬁ*T— - mc

((XZ _ 1)(n+ o2 — ) n—1)(1-p)—1
2AR(a? + 1)? (r)Z(l—ﬁ)—Y 29(e2 + 1) (r)Z(l—ﬁ)+(n—2)1‘
C.

(n—1)(e2 —n) (n—1)(e2 —n) \c

2 2 _
o (1—or (5 (B2 ),
2 [2n-2 2n -2

(23)

LII(V) _ (;) (nfl)Y/Z’ (24)

nn= (6" (25)
where Y =4f/(n — 3) and
24> /r\(n=D@F-Y)

S = A (&) ' 26)

Under the conformal transformations (6), the electric field
(20) and the scalar potential (15) become

F qc<37n>ﬁ
v 226-np (27)
7(n=3)(1=p)+2 1+yr22(?"*3)w
- 1)(1’! - 2) o2 (1 1)+ (n—3)o2
U(w) = 2497 4 " N
(¥) + c? o2 — 1

(28)

It is worth to note that these solutions are valid only for the
space times with dimensions equal or more than five (i.e.,
n>4) and do not exist for & = 1, y/n. One may note that as
y goes to infinity, these solutions reduce to the solutions of
Brans—Dicke—Maxwell gravity [37].

Physical properties of the solutions

In order to investigate the physical properties of the solu-
tions, we first study the behavior of the electric field. The
behavior of the electric field versus r for different values of
the parameter y has plotted in Fig. 1. From this figure, it is
clear that the electric field goes to zero for large r irre-
spective of the other parameters ¢, ¢ and f and has a finite
value at r = 0 in contrast to Maxwell electrodynamics. We
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also notice that with increasing 7y, the electric field
increases as r — 0. This result can be expected because for
large y our theory reduces to the Brans—Dicke—Maxwell
theory [37].

Next, we look for the curvature singularities. After some
calculation, we find that the Ricci scalar, R, and the
Kretschmann scalar R,w;,”R""i”, are finite for » #% 0 and
diverge at r =0

lim R = oo,
r—0%

Jim RiosR™" = co. (29)

These indicate that the spacetime has an essential singu-
larity located at » = 0. In order to have a better under-
standing of the behavior of our solutions, we expand the
metric function (22) for large r. We find

(n—2)(® +1)° [r\25+T
(02— 1)(n+o?—2) (_>
QA (22 +1)° /r\20-p)-Y
(n—l)(ocz—n)<) '

lim A(r) = —

r—o00

¢ (30)

C

It is notable that as @ — oo (¢ =f=0) and y — oo,
solutions (22) and (23) reduce to

m 2AF? n 24°
2 an—1) (n—1)(n—-2)r20-2’

(31)

which has the form of static and spherically symmetric
Reissner—Nordstrom black hole in (A)dS spacetime. In the
absence of scalar field as r goes to infinity, the metric
function (31) takes the following form

14

12r y=10

10 frmme — =200

E(r)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fig. 1 E(r) versus rforn =4, « =04, c=1and g =2
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. 2AP?

rILI?OA(r) =1- an 1) (32)
which describes an asymptotically flat, dS or AdS space-
times for A=0, A >0 and A<O, respectively. Never-
theless, as one can notice from Eq. (30), in the presence of
the scalar field, our solutions are neither asymptotically flat
nor (A)dS. For example, taking o = V3, n=5,and c =1,
we obtain

16 2A
lim A(r) = — P2 3—r7/27

33
r—00 5 15 (33)

which indicates that the metric function (22) is neither
asymptotically flat nor dS or AdS. After calculation of the
Ricci scalar in (rn 4 1) dimensions for large values of r, we
obtain

nt2

R A(C )“" 2 (34)

which does not have the same form of the Ricci scalar for
asymptotically dS or AdS spacetime. The horizons of
spacetime can be obtained by solving the relation
B(ry) =0,

(n—2 v

) +1)* »-x me
T (@ —=1Dn+a?—2) ( ) _r}ﬁ(”*l)(lfﬁ)fl

2AC (02 4+ 1)? 21-H-T  2p(a? +1)° 2(1-P)+(n-2)¥
M CECE n)<c> *(n—1)(a2—n)<*>

1 [0 =n] [®24+n—2
1—F (= TR ) ) =0
< (1-n (-3 5 [T ) e

unfortunately, Eq. (23) is more complicated to be solved
for an arbitrary value of «. Thus, we have plotted the
function of B(r) versus r in Figs. 2, 3 and 4. For simplicity,
the other metric parameters o, 7, ¢ and g have kept fixed.
As it is clear from Fig. 4, we notice that the number of
horizons decreases with increasing the value of «. In fact,
in the case of o <+/n, one encounters with two horizons,
extreme black holes and naked singularities depending on
the values of the parameters such as o, y, m and gq.

Some information can be obtained by calculating of the
mass parameter m as a function of the horizon radius ry,

(35)

2 _
m(rh) _ (n — 2)(0(2 + 1) c 2/;r/f(3fn)+n—2
(2 —1)(n+o2-2)"
2
202 + 1P g
(n—1)(a2—n) "
29(02 + 12 2#(5) )4 ()

1
(n=1)(@—n) "

(n( Y )

(36)

which comes from this fact that B(r,) = 0. We plot in

8
N m=1
6 —m=1.8
L =3
4|
= |
[4%) [ T
N __”_//,,
0
_2 L n n n n 1 n n n n 1 n n n n 1 n
0.0 0.5 1.0 15
r

Fig. 2 B(r) versus rforn =4, « =05, c=1,A=—6and g=1

B(r)

0.0 0.5 1.0
r

Fig.3 B(r) versus rforn =4, =05, c=1,A=—6and m=1

Figs. 5 and 6 the mass parameter m versus r, for a fixed
value of other parameters. These figures show that the
intersections of the curve m(r,) with the line m = constant
determines the number of black hole horizons. For some
certain value of the mass parameter m, there are two inner
and outer horizons (r_ and r;). There is also a minimum
value mey, in which the two horizons meet. It is the solution

of B(r)=B'(r) =0

’r @ Springer
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Fig. 4 B(r) versus rforn=4,g=1,c=1,A=—-6and m=1

21 =)@+ 1)’ ayiopren
(n—a®)(n+o2—-2) ™
447 (02 +1)°c2@ P Ln=3)(-1)-1
(n—a?)(n+o2—2)

(L2 2 )
2°12(n—1) 2 [2(n—1) 2| ™

(37)

Depending on the value of m, there are three cases to

consider separately. In the first case where m > mey, the

metric of (21) has two inner and outer horizons (r_ and

Mext =

ry). In the case of m = mey, we have an extreme black
hole and a naked singularity provided m < miey,.

Thermodynamics of Brans-Dicke black holes

In this section, we want to calculate the conserved and
thermodynamic quantities of the BD black hole solutions
with Born-Infeld field we just found. At first, it must be
noted that the Hawking temperature on the outer horizon
r = ry, is defined in terms of the surface gravity,

K
where the surface gravity x is given by
1
K= \/_ E (vuXv) (V#Xv)7 (39)

here y = 0, is the null Killing vector of the horizon. In the
Einstein-dilaton frame (14), we have x* = (1,0,0,...) and

’r @ Springer

Fig. 5 The mass parameter m versus r forn =4,y=2,c =1, A =
—6andg=1

14

12|H

10 Fi

Fig. 6 The mass parameter m versus r for n =4, « =04, c =1,
A=—-6andy=

1 = (=W(r),0,0,...). So, the Hawking temperature of
the Einstein-dilaton—Born-Infeld gravity becomes

- ok 1 1 ) o LdW(r)
T*E*E —E(VMV)(V”X)**

4 dr

‘r:r, .
(40)

In the BD frame (21), by applying conformal transforma-
tion, the Hawking temperature is given by [38]

_(@W(r) 41)
41 Q2 ’

using the fact that W(r,) = 0, it is a matter of calculation
to show that
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=
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- 2 Fil-|—m+— JE—— N I —
47'[(0( )C c 1<2a|:2(n_1)+2:|7 |:2(n_l)+2:|7 C>7
)

(o + 1)ye ¢ ap
2n(n—1) (Z) '

< (3l a) el )

g2 +1) (2211
(o +n—2)c3

ool el )
(42)

The mass of the black holes can be calculated through the
use of Brown and York method [39, 40]. Thus, the mass of
the solution per volume of the unit (n — 1) sphere Q,_; can
be obtained as [33, 41]

(n— 1)V

M=——
167(1 + 02)

(43)
Black hole entropy follows the area law which states that
the black hole entropy is one-quarter of the event horizon
area. In BD theory, where we have a scalar field, the
entropy is not one-quarter of the event horizon area and is
defined by [42]
AY A
S=—=— (44)
4 4’
where A and A are the horizon area in the BD and Einstein-
dilaton theory respectively. Therefore, the entropy per unit
volume of the hypersurface boundary can be obtained as
=1

Sz—ri"i

1(1-p) 45
i . (45)

The electric charge of the solutions, Q, can be calculated
through the Gauss theorem, obtaining

1 F;u q

— & xymg— =1 .
4n /rHoo W /1 +F F o Ax 1 (46)

The gauge potential A; corresponding to the electric field
(20) can be easily calculated through the relation
F,, =0,A, —0,A,. Since we deal with static solution, we
have 0,A, = 0, and hence the gauge potential A, can be
derived as

0=

where A =

g +1 + 1. The black hole’s electric potential @
on the horizon, measured at the reference point, is defined
by [43, 44]

¢ = AHX“|r~>oo - Auyll

U=y

(48)

where y = O, is the null generators of the horizon. There-
fore, the electric potential may be derived as

3—n)p 1 2_1 1 2_1 3
_qc + % z “ bl
“TAE (g ) e )

(49)

Finally, we check the first law of thermodynamics for the
black hole. For this purpose, we obtain the mass M as a
function of extensive quantities S and Q. Combining
equations for mass, the entropy and the charge given in
(43), (45) and (46) and by using the fact that B(r;.) = 0, we
can obtain a Smarr-type formula as

(s, 0) = - M= D=2 + DD i
’ 167(e? — 1)(e2 +n—2)
(% + 1) AP+ 45)% G 1)yck+D (45)%
8n(o> —n) 8n(a® —n)
(o e -2)
2°12(n—1) 2] |12(n—1) 2| 8 ’

(50)

making use of Eq. (50), we can calculate the intensive
parameters @ and 7T as the extensive parameters conjugate
to the black hole charge and entropy, respectively. After
some algebraic calculations, we obtain

2)(a? + 1)c P+

@L;)Q - b= 1672 — 1)S

- (12+ 1)AC[f(uz+1) v
8n(n—1)S

(2 + 1)ycf+D 45y
8n(n—1)S

o (1. F 1 [ o2=1 1
N\ 2 2=y 2)
2 1 +1 __27E2Q2
2mn—1) 2" 982
(12 + l)nQZC/f(a2+l)

_ A RO Ty
i in—og )

o (L[ [t 3] 2w
22— 2 2 —1) "2 s )

(51)

(4 S)L.i T
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00/)¢  4(c2+n—2)8?

<o F 1 o?—1 +1 o?—1 _._3. 212 Q?
2 2= "2 2(—1) "2 82 )

(52)

Note that in obtaining these equations the following rela-
tion has been used

0 F(a,b;c;z)  ab

2 272F1(a+1,b+1;c+1;z)7 (53)
regarding Eqgs. (45) and (46), it is easy to show
(a_zu) =T, (54)
oS/,
() o 59

Thus, these quantities satisfy the first law of black hole
thermodynamics,

dM(S, Q) = (%) st + (2—5) SdQ. (56)

It is worthwhile to note that the thermodynamic quantities
of our solutions coincide with the thermodynamic quanti-
ties of Einstein-dilaton theory in the presence of the Born—
Infeld field. This coincidence shows that these thermody-
namic quantities are invariant under the conformal trans-
formations. Thus, the satisfaction of the first law for BD
black holes in the presence of Born-Infeld field is expec-
ted. It is also notable that for large values of the Born—
Infeld parameter (y — o0), our conserved and thermody-
namic quantities reduce to those of Brans—Dicke-Maxwell
theory [37].

Stability analysis in the canonical ensemble

Here, we are interested in the investigation of the thermal
stability or phase transition of the new BD black holes
solutions, we just obtained. To do so, we need to calculate
black hole heat capacity with the black hole charge as a
constant. It is defined as

~1

M
co=7(5gt) - (57)
o5 ),

it is well known that the black hole with positive heat
capacity is thermodynamically stable. Unstable black hole
undergoes phase transition to be stabilized. The points at
which black hole heat capacity vanishes are known as the
points of type one phase transition. The divergent point of
heat capacity or the points at which the denominator of the
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black hole heat capacity vanishes are the points of type two
phase transition [31, 45]. Regarding the mentioned points,
we proceed to analyze the stability or Phase transition of
the new BD black holes introduced in this work. For this
purpose, we need to calculate the denominator of the black
hole heat capacity. That is

<62M> _ (n=2)(@ 4 1) (a5
Q

n—1

a2 16n(n —1)$?
4 _ DA BloP+1) s 4 _ 1 B2 +1) s
(DA e (e e
8n(n—1)°5? 8n(n—1)°5?

(G B -29)

- @[2( =5t [2( :llﬁﬂ*zzzsgz)
2 34 Bo2+1 )
B (“2& lln3nQ —CZ()SG )(4S)%
e h @’{25:]1)*%}’ {2:::11)@}‘27;32)'
(58)

The real roots of (%?i’) = 0, which we label by r, are the
points of type two phaSQe transition. Because of the com-
plexity of the statement given in (58), it can not be solved,
analytically. Therefore, we have plotted it in Figs. 7, 8 and
(9). The nominator of the black hole heat capacity is the
black hole temperature which has been shown in (42).
Thus, the real root(s) of the equation, T = 0 is the van-
ishing point(s) of black hole heat capacity at which type
one phase transition takes place. The plots of T versus ry
are shown in Figs. 7, 8 and 9, too. Thermodynamically
speaking, the black hole having positive temperature are
physically reasonable, and those with negative temperature
are known as the physical black holes. Therefore, the

physical black holes with (%QTAZ”)Q > ( are locally stable.

As it is shown in Figs. 7, 8 and 9, three following cases
are distinguishable:

1. T =0 has two real roots labeled by rjex and ryex and

(%251‘2’1 ) Q: 0 has only one real root denoted by 7. In this

case, the black holes are stable if 7, > rpext > Fiext.
Type two phase transition takes place at point r = r,
where the black hole heat capacity diverges. The black
holes undergo type one phase transition at the point
Fi = Flext and ry = ryex (Fig. 7).

2. T =0 has only one real root located at r = rex and

(%ZSAZ”)Q vanishes at rg. In this case, type one phase

transition occurs at r, = rex and black holes with r, =
ro undergo type two phase transition to be stabilized.
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Also, black holes with
stable (Fig. 8).
M

3. T =0 does not has any real roots and ( asZ)Q has a

r. >ry are locally

real root located at r; = ry. In this case, no type one
phase transition occurs. The black holes with r, = ry
undergo type two phase transition. Also the black holes
with r; > ry have positive heat capacity and are
thermodynamically stable (Fig. 9).

_2:....|....|....|....|....|....
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r

+
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Fig. 9 T (continuous line) and 0.6 (azM ) (dashed line) versus r for
0

Conclusions

In this paper, we presented the (n 4 1)-dimensional BDBI
action and obtained the coupled field equations by varying
this action with respect to the gravitational field g, the
dilaton field ¥, and the gauge field A,. Because of the
coupling between the scalar field ¥ and curvature R,
solving the field equations is complicated. For this purpose,
new conformal transformations are presented to transform
the Einstein-dilaton—Born—Infeld gravity Lagrangian to the
BDBI gravity Lagrangian. Then, by using these conformal
transformations, we constructed a new class of charged
black hole solutions in (n + 1)-dimensional BDBI theory
in the presence of the generalized Liouville-type potential.
These solutions are neither asymptotically flat (A = 0) nor
(A)dS. In addition, our solutions can describe black holes
with two horizons, an extreme black hole or naked singu-
larity depending on the value of the solution parameters in
theory. In the limiting case y — oo, our solutions are
reduced to Brans-Dicke-Maxwell black hole solutions,
which are presented in [37]. We also obtained charge and
thermodynamic quantities and found that these quantities
satisfy the first law of black hole thermodynamics. We also
found out that the conserved and thermodynamic quantities
are invariant under conformal transformations. Finally, we
performed a thermal stability analysis making use of the
black hole heat capacity with the black hole charge as a
constant. We showed that black holes with r, =ry
undergo type two phase transition and those these with
Fi = Flext OF I't = Fpex Undergo type one phase transition.
Also, the black holes with r; > ryex > riexe are locally
stable (Fig. 7). We showed that, for properly fixed

’r @ Springer
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parameters, 7 = 0 has only one real root located at rex. In
this case, rex 1S a point of type one phase transition, ry is a
type two phase transition point, and black holes with
ri > rg > rex are locally stable (Fig. 7). It is possible to fix
the parameters such that the black hole temperature be
positive everywhere. In such a case there is no type one
phase transition. The black holes with r, = ry undergo
type two phase transition and the black hole with r. > ry
are thermodynamically stable (Fig. 8). As for future work,
it would be interesting to study the rotating black hole
solutions. In addition, one may consider other types of
nonlinear electrodynamic fields such as the logarithmic or
exponential field [46, 47].

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creative
commons.org/licenses/by/4.0/), which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.
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