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Abstract The nonlinear Schrödinger equation (NLS) that

describes the propagation of high intensity laser pulse

through plasma is obtained by employing the multiple

scales technique. One of the arresting solution for NLS

equation is soliton like envelope for vector potential that is

called electromagnetic soliton. The type and amplitude of

electromagnetic soliton (EM) depends on the distribution

function of plasma’s particles. In this paper, distribution

function of electrons obey the Cairns–Tsallis model and

ions are assumed as stationary background. There are two

flexible parameters, affect on the formation of EM soliton.

By variation of nonextensive and nonthermal parameters,

bright soliton could convert to dark one or versus. Due to

positive kinetic energy, there are the limited region for

nonextensive and nonthermal parameters as q[ 0.6 and

0\ a\ 0.25. The variation of EM soliton’s amplitude is

discussed analytically.

Keywords Electromagnetic soliton � Weakly relativistic

plasma � Cairns–Tsallis model � Fluid equation � Nonlinear

interaction � Multiple scales technique

Introduction

Soliton is a localized structure which can propagate in

medium without diffraction spreading. Ion acoustic soliton,

electrostatic soliton and electromagnetic soliton (EM) are

different types of solitons that could be created in plasma

medium [1–4]. EM soliton is one of the spectacular phe-

nomena due to the nonlinear interaction between high

intensity laser pulse and plasma. The electromagnetic

solitons have reach variety applications such as laser

fusion, plasma-based particle accelerators and etc. [5, 6].

This type of soliton is a result of various physical effects

that betide in the propagation of strong laser pulse through

plasma, including relativistic mass change of electrons,

alteration of plasma density due to ponderomotive force

and dispersion effects. The electromagnetic solitons were

investigated by Kozlov et al. [7]. In the theoretical aspects,

EM solitons are assumed as coupling between modulated

laser pulse and electron plasma wave that have been

studied by many different researchers continuously [8, 9].

For discussion on the formation and features of EM soliton,

the Maxwell and fluid equations should be solved. A

multiple scales technique is used to solve the fluid-Max-

well equations in cold plasma [10–14]. Kuehl and Zhang

[15] have expressed the creation of bright and dark EM

soliton in weakly relativistic approximation. Also, Borha-

nian et al. [16] employed same technique for investigation

of EM solitons in magnetized plasma.

The presence of energetic particles in plasma, is an

inherent factor in many space and laboratory evidences

[17, 18]. In this case, the distribution function of plasma’s

particles don’t obey Maxwell–Boltzmann distribution

function [19]. It is obvious, existence and feature of non-

linear phenomena in plasma tightly depend on properties of

plasma and distribution function of particles.

Observations by Viking spacecraft [20] and Freja

satellite [21] indicated on existence of electrostatic solitary

structure in magnetosphere which couldn’t be expressed by

Maxwell distribution function.

The nonthermal distribution function for plasma’s par-

ticles of was proposed by Cairns et al. This distribution
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function could express the presentation of rarefactive ion

sound solitons very similar to those observed by Freja

satellite and Viking spacecraft [22]. In the nonthermal

distribution function, population of the nonthermal parti-

cles are shown by a which could vary between 0 and 1. In

the case a ? 0, the Maxwellian distribution function is

recovered. Many researchers have assumed the Cairns

distribution function in plasma’s model and investigated

the phenomena in the presence of these particles [23–25].

In an attempt to generalize the Boltzmann–Gibbs (BG)

entropy, Tsallis proposed the nonextensive statistical

mechanic to describe the systems with long interaction

[26, 27], as usually happen in astrophysics and plasma

physics. Nonextensive statistic has been used for describ-

ing various phenomena in plasma such as dissipative

optical lattices [28], plasma wave propagation [29, 30]. The

foremost character of Tsallis distribution function, is q

parameter which stands on the degree of nonextensivity.

The nonextensive parameter has two separate states. For

-1\ q\ 1, particles cover all velocity. While in q[ 1,

the distribution function has a cutoff on the maximum

permitted value for velocity of the particles, given by

vmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2= q� 1ð Þ
p

vT . In which, v2
T ¼ 2kT=m is thermal

velocity of the plasma particle, T and m is the temperature

and mass of the particle respectively. In the case q\-1,

distribution function is unnormalized.

Comparison of Maxwellian and nonextensive distribu-

tion function demonstrate, for q[ 1, high energy states are

more likely in the Maxwellian distribution function.

Although, for -1\ q\ 1 high energy status are more

probable in the nonextensive distribution function. In

condition, q ? 1, Tsallis distribution function converts to

Maxwell–Boltzmann distribution function.

Ion acoustic solitary wave was investigated in a two

component plasma with nonextensive electrons by Tri-

beche et al. [31]. They realized this model of plasma could

explain both rarefactive and compressive solitons. A recent

study by them has proposed a hybrid Cairns–Tsallis dis-

tribution function, which purports to offer enhanced para-

metric flexibility in modeling nonthermal plasmas.

Whereas such a two-parameter demonstration of the dis-

tribution function could be useful in fitting to a wider range

of experimental plasmas. Subsequently, Amour et al. [32]

applied this distribution to the study of acoustic solitary.

Motivated by these efforts to explain various phenomena in

the presence of non-Maxwellian particles, we investigate

the electromagnetic soliton in non-Maxwellian plasma.

In the present paper we analyze the circularly polarized

intense EM wave propagating in a weakly relativistic

plasma. The electrons of plasma obey the mixed Cairns–

Tsallis distribution function. The ions of plasma are

assumed to be stationary. The relevant nonlinear

Schrödinger equation is introduced. Roles of mixed elec-

trons on the existence of bright and dark solitons and

amplitude of them were discussed in detail.

The layout of this article goes as follows; following the

introduction in ‘‘Introduction’’ section, we present the basic

equations describing the dynamics of the nonlinear inter-

action of laser and plasma. We use the reductive pertur-

bation method to derive the nonlinear Schrödinger (NLS)

equation. In ‘‘Results and discussion’’ section, numerical

results and discussion are presented and finally ‘‘Conclu-

sion’’ section is devoted to conclusion.

Model description

We start with description of the propagation of a circularly

polarized electromagnetic pulse in a weakly relativistic

plasma in x direction. In this paper, we consider colli-

sionless, unmagnetized, two component plasma, and ion is

assumed as immoble singly charged positive particle.

Then, we employ the momentum and continuity equations

for electrons as Eqs. (1)–(2) respectively. Equations (3)

and (4) are giving an expressions for the Poisson’s equation

and electromagnetic wave equation in the Coulomb gauge

meNe

o

ot
þ ve � r

� �

ve ¼ �eNeE � e

c
Neve � B�r � Pe

ð1Þ
oNe

ot
þ o

ox
Neveð Þ ¼ 0 ð2Þ

o2/
ox2

¼ 4pe Ne � Nið Þ ð3Þ

o2A

ox2
� 1

c2

o2A

ot2
� 1

c

o

ot
r/ ¼ 4pe

c
Neve � Nivið Þ ð4Þ

with one-dimensional approximation in which q/qy = q/

qz = 0, set of the normalized hydrodynamic equations

(continuity and momentum) for electrons of plasma and

Maxwell’s equations for the scalar and vector potentials, /
and A, can be written as

ne
o

ot
þ ue

o

ox

� �

cueð Þ ¼ ne
o/
ox

� ne

2c
oA2

?
ox

� 1

m0N0c2

oPe

ox

ð5Þ

ue? ¼ A?
ce

ð6Þ

one

ot
þ o

ox
neueð Þ ¼ 0 ð7Þ

o2/
ox2

¼ ne � 1 ð8Þ
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o2A?
ox2

� o2A?
ot2

¼ neA?
c

y ð9Þ

Here c is the relativistic factor.

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 þ A2
?Þ=ð1 � u2

eÞ
q

ð10Þ

In writing the above equations, length, time, velocity,

scalar and vector potential and density are normalized over

c/xpe0, x�1
pe0, c, m0c

2/e and N0, respectively; xpe0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4pN0e2=m0

p

is the electron plasma frequency. m0 is the

rest mass of electron and N0 is the unperturbed electron

background density.

We also rewrite momentum equation in parallel direc-

tion by using following expression

oPe

ox
¼ dPe=d/

dNe=d/

� �

oNe

ox
� dPe

dNe

� �

/¼0

oNe

ox
¼ m0c

2
se

oNe

ox

ð11Þ

where

c2
se ¼

1

m0

dPe

dNe

� �

/¼0

" #

ð12Þ

As it is mentioned, in our plasma model, the electrons

distribution function of plasma obey the Cairns–Tsallis

distribution function as follow [31, 32]

fe vxð Þ ¼ Cq;a 1 þ a
v4
x

v4
te

� �

1 � q� 1ð Þ v2
x

2v2
te

� �

1
q�1

ð13Þ

where Cq,a is the constant of normalization which depends

on q and a

Cq;a ¼ N0

ffiffiffiffiffiffiffiffiffiffi

me

2pTe

r C 1
1�q

� �

1 � qð Þ5=2

C 1
1�q

� 5
2

� �

3aþ 1
1�q

� 3
2

� �

1
1�q

� 5
2

� �

1 � qð Þ2
h i

for � 1\q\1

and

Cq;a ¼ N0

ffiffiffiffiffiffiffiffiffiffi

me

2pTe

r C 1
1�q

þ 3
2

� �

q� 1ð Þ5=2 1
1�q

þ 3
2

� �

1
1�q

þ 5
2

� �

C 1
1�q

þ 1
� �

3aþ 1
1�q

� 3
2

� �

1
1�q

� 5
2

� �

1 � qð Þ2
h i

for q[ 1

ð14Þ

Here a is the parameter indicating the proportion of non-

thermal electrons and q implicates nonextensive parameter,

and C represents the standard Gamma function.

To derive the number density expression in the Cairns–

Tsallis distribution function, Eqs. (13)–(14) are employed

with replacing v2
x by v2

x � 2eu=með Þ in two ranges, q[ 1

and -1\ q\ 1. Then

Ne /ð Þ ¼
R vmax

�vmax
fe vxð Þdvx q[ 1

Rþ1
�1 fe vxð Þdvx �1\q\1

(

¼ Ne0 1 þ q� 1ð Þ e/
kTe

� � 1
q�1

þ1
2

� 1 þ A
e/
kTe

� �

þ B
e/
kTe

� �2
( )

ð15Þ

where the confidences of A and B are expressed as

A ¼ �16qa=ð3 � 14qþ 15q2 þ 12aÞ ð16Þ

B ¼ 16 ð2q� 1Þqa=ð3 � 14qþ 15q2 þ 12aÞ ð17Þ

It is noted in the case q ? 1, nonextensive density

converts to pure Cairns et al. (nonthermal) as follow

Ne /ð Þ ¼ Ne0 1 þ A
e/
kTe

� �

þ B
e/
kTe

� �2
( )

exp
e/
kTe

� �

ð18Þ

Beside, in the limit a = 0, Tsallis pure density is

recovered as

Ne /ð Þ ¼ Ne0 1 þ q� 1ð Þ e/
kTe

� � 1
q�1

þ1
2

ð19Þ

it is useful to determine the integral v2
x

	 


¼
R

v2
xfe vxð Þdvx

over all permitted velocity as follow

v2
x ¼

R vmax

�vmax
v2
xfe vxð Þdvx q[ 1

Rþ1
�1 v2

xfe vxð Þdvx �1\q\1

(

¼ 2 35q2 � 46qþ 60aþ 15ð Þ
7q� 5ð Þ 12aþ 5q� 3ð Þ 3q� 1ð Þ½ �N0v

2
t

ð20Þ

it is noted that the kinetic energy should be positive. So, the

acceptable range for q is narrowed to the area that mean

value of square velocity to be positive. Moreover, it is well

known that the Cairns distribution for a[ 0.25 presents

unstable behavior as it develops side wings, possibly

leading to a kinetic instability. One would not expect

stable nonlinear structures such as solitons to be supported

by such a linearly unstable situation. That implies a need to

introduce a cutoff in a governed by this consideration [33].

Indeed Williams et al. [3] demonstrated that the region for

nonextensive parameter in the case -1\ q\ 1, is

restricted to 0.6\ q\ 1.

Using of Eq. (20), the pressure term in Eq. (5) is

determined as

Pe ¼
m0

3

Z

v2fe vð Þdv

¼ 2 35q2 � 46qþ 60aþ 15ð Þ
3 7q� 5ð Þ 12aþ 5q� 3ð Þ 3q� 1ð Þ½ �N0kTe ð21Þ

By replacing Eqs. (10), (21) in the momentum equation,

Eq. (5) is written in the following model
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ne
o

ot
cueð Þ ¼ ne

o

ox
/� cð Þ � c2

se

c2

one

ox
ð22Þ

Now we apply the multiple scales technique [34] to treat

Eqs. (7)–(10) and (22). According to this method, the

amplitude of all wave harmonics such as density, velocity,

scalar and vector potential will be assumed to have an

envelope with the slower space/time evolution which are

distinguish from the fast carrier wave (phase) dynamics.

Let S = (n, u, U, A) is given by

S ¼ Sð0Þ þ
X

n

n¼�1
enSðnÞ ð23Þ

where S(0) = (1, 0, 0, 0) indicates the equilibrium state of

the system and e is a smallness parameter which provides

evolution equations for different harmonic amplitude in

successive orders en. We suppose S(n), the perturbed state,

contains fast and slow part as

SðnÞ ¼
X

1

l¼�1
S

nð Þ
l Xm� 1; Tm� 1ð Þ exp ilðkx� xtÞð Þ ð24Þ

The fast variables of state depend on the phase

w = kx - xt, which k and x are the normalized wave

number and frequency of the pulse by kpe = xpe/c and xpe.

The slow part, enter the argument of the l-th harmonic

amplitude S
ðnÞ
l , depends on the stretched space and time

slowly, which are considered as

Xm ¼ emx; Tm ¼ emt ð25Þ

It must be noted that m = 0 corresponds to the fast

carrier space/time scale, while m C 1 corresponds to the

slower envelope scales. Assuming variable independence,

time and space differentiation are obtained as follow

o

ot
¼ o

ot0
þ e

o

oT1

þ e2 o

oT2

þ � � � ð26Þ

o

ox
¼ o

ox0

þ e
o

oX1

þ e2 o

oX2

þ � � � ð27Þ

For obtaining the set of reduced equations, using

Eqs. (23)–(24), all parameters are defined as

S ¼ S 0ð Þ þ eS 1ð Þ
0 þ eS 1ð Þ

1 eiw þ e2S
2ð Þ

0 þ e2S
2ð Þ

1 eiw þ e2S
2ð Þ

2 e2iw

þ e3S
3ð Þ

0 þ e3S
3ð Þ

1 eiw þ e3S
3ð Þ

2 e2iw þ e3S
3ð Þ

3 e3iw þ c:c

ð28Þ

For all state variables, the reality condition as S
nð Þ
�l ¼

S
nð Þ�
l is true. By replacing Eqs. (26)–(28) into Eqs. (7)–(10)

and (22) and collect the terms of the same order in e for l-th

harmonic amplitudes, S
ðnÞ
l , the set of reduced equations are

obtained which must be solved separately.

In the first order (n = 1) and for zeroth harmonic

(l = 0), equations convert to

n
ð1Þ
0 ¼ u

ð1Þ
0 ¼ A

ð1Þ
0 ¼ 0 ð29Þ

For the first harmonic of the first order (n = 1, l = 1)

the following relations are get

�xnð1Þ1 þ ku
ð1Þ
1 ¼ 0 ð30Þ

�k2/ð1Þ
1 ¼ n

ð1Þ
1 ð31Þ

x2 � k2
� �

A
ð1Þ
1 ¼ A

ð1Þ
1 ð32Þ

xuð1Þ1 þ k/ð1Þ
1 ¼ 0 ð33Þ

from Eq. (32) linear dispersion relation for the propagation

of electromagnetic wave into plasma is obtained as

x2 - k2 = 1, indeed from other equations, we have

n
ð1Þ
1 ¼ u

ð1Þ
1 ¼ /ð1Þ

1 ¼ 0 ð34Þ

It is obvious, there are not any perturbation in electron

density, parallel velocity, and scalar potential in the first

order.

For the second order and the zeroth harmonic amplitude,

it is obtained

n
ð2Þ
0 ¼ u

ð2Þ
0 ¼ A

ð2Þ
0 ¼ o/ð1Þ

0

oX1

¼ 0 ð35Þ

For the second order and first harmonics (n = 2, l = 1)

equations convert to

n
ð2Þ
1 ¼ u

ð2Þ
1 ¼ /ð2Þ

1 ¼ 0 ð36Þ

oA
ð1Þ
1

oT1

þ vg

oA
ð1Þ
1

oX1

¼ 0 ð37Þ

Here vg ¼ k
x, is the group velocity and this relation indi-

cates, up to second order of e, wave packet moves with

constant group velocity.

Proceeding in the perturbation analysis, for (n = 2,

l = 2) we have

u
ð2Þ
2 ¼ x

k
n
ð2Þ
2 ð38Þ

�4k2/ð2Þ
2 ¼ n

ð2Þ
2 ð39Þ

xuð2Þ2 ¼ k

2
A
ð1Þ
1

� �2

�k/ð2Þ
2 þ k

c2
se

c2
n
ð2Þ
2 ð40Þ

Then we could derive second harmonics in the density

perturbation as a result of nonlinear self-interaction of

wave envelope as

n
ð2Þ
2 ¼ 2k2

4x2 � 1 � 4k2 c2
se

c2

� � A
ð1Þ
1

� �2

ð41Þ

Finally, for the third order perturbation following rela-

tions are obtained.

In the zeroth harmonics (n = 3, l = 0)
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/ð2Þ
0 ¼

A
ð1Þ
1



















2

2
ð42Þ

This relation indicates that zeroth scalar potential is

generated by nonlinear self-interaction of envelope.

For the first harmonic (n = 3, l = 1)

n
ð3Þ
1 ¼ u

ð3Þ
1 ¼ /ð3Þ

1 ¼ 0 ð43Þ

And wave equation converts to

i
oA

ð1Þ
1

oT2

þ vg

oA
ð1Þ
1

oX2

 !

þ 1

2x
o2A

ð1Þ
1

oX2
1

� o2A
ð1Þ
1

oT2
1

 !

þ 3

4x
A
ð1Þ
1



















2

A
ð1Þ
1 � 1

2x
n
ð2Þ
2 A

ð1Þ�
1 ¼ 0

ð44Þ

Using by Eqs. (37) and (41) in Eq. (44), the following

equation is obtained

i
oA

ð1Þ
1

oT2

þ vg

oA
ð1Þ
1

oX2

 !

þ P
o2A

ð1Þ
1

oX2
1

þ Q A
ð1Þ
1



















2

A
ð1Þ
1 ¼ 0 ð45Þ

where

P ¼ 1

2x3
ð46Þ

and

Q ¼ 3

4x
� k2

x 4x2 � 1 � 4k2 c2
se

c2

� � ð47Þ

are the dispersion and nonlinear coefficients, respectively.

By introducing the coordinate transformation n = x - vgt

and s = t, Eq. (45) converts to the nonlinear Schrödinger

equation as

i
oa

os
þ P

o2a

on2
þ Q aj j2a ¼ 0 ð48Þ

where a represents the slower component of the vector

potential as

A ffi A
ð1Þ
1 eiðkx�xtÞ þ c:c ¼ aeiðkx�xtÞ þ c:c ð49Þ

Equation (48) indicates the wave envelope modulation

with the effects of dispersion and nonlinearity terms. It

could be predicted different types of envelop excitation in

the propagation of laser in plasma. We consider the solu-

tion as follow for the nonlinear Schrödinger equation.

a ¼ R exp iHð Þ ð50Þ

then Eq. (48) converts to KdV equation as

o2R

on2
þ Q

P
R3 � E

P
R ¼ 0 ð51Þ

where E is the positive constant value, H indicates the

phase correction, and oH=ox ¼ v x; tð Þ [35].

The first integral of Eq. (51) is

1

2

oR

on

� �2

þQ

P
R4 � E

P
R2 ¼ constant ð52Þ

which can be assumed as energy equation for pseudo-

particle. So, the Sagdeev potential is as follow

V Rð Þ ¼ Q

P
R4 � E

P
R2 ð53Þ

In the present paper we assume v = v0 as a constant.

If in the above equation, (Q/P)[ 0 and (E/P)[ 0, the

Sagdeev potential has a minimum and bright soliton is

formed [36].

In this case R is satisfied the following boundary con-

ditions in the n-space

lim
n!
1

R nð Þ ¼ 0 ð54Þ

and Eq. (51) has the following bright soliton answer as

R nð Þ ¼ R0sech
n� v0s

L

� �

ð55Þ

whereR0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

2E=Q
p

; L ¼
ffiffiffiffiffiffiffiffiffi

P=E
p

is the amplitude and width

of the pulse respectively. v0 represents the bright soliton

envelope group velocity. The amplitude and width of soliton

are independent of velocity and LR0 = (2P/Q)1/2 = constant.

On the other side, if in Eq. (51) (Q/P)\ 0 and (E/

P)\ 0, bright soliton will not be formed in the plasma

medium. In this case, we consider R with the following

boundary condition

lim
n!
1

R nð Þ ¼ R0j j ð56Þ

in which

R nð Þ � R0 þ R1 nð Þ ð57Þ

where lim
n!
1

R1 nð Þ ¼ 0

As a result, dark soliton will be formed which intensity

of wave packet is zero at the center of pulse and reaches a

nonzero value at the boundary. The dark soliton can be

express as follow

R nð Þ ¼ R0 tanh
n� v0s

L

� �
























ð58Þ

where R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

2E=Q
p

; L ¼
ffiffiffiffiffiffiffiffiffi

P=E
p

are the amplitude and

width of the pulse respectively. The amplitude of the pulse

does not depend on velocity of the pulse as was discussed

in the case of bright type soliton.
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Result and discussion

The coupling between the transverse electromagnetic wave

and plasma wave could lead to form the EM soliton. In this

paper distribution function of electron is assumed to be

mixed. The influence of nonextensive and nonthermal

parameters on the structure of bright and dark solitons are

discussed.

Equation (51) looks like as energy equation of a pseudo-

particle. First term is kinetic energy, while two other terms

refer to potential energy or Sagdeev potential. For deter-

mining soliton solution, Sagdeev potential should have at

least one maximum or one minimum. If (Q/P)[ 0 and (E/

P)[ 0, Sagdeev potential has a minimum and the bright

soliton would be arisen. While for (Q/P)\ 0 and (E/

P)\ 0 Sagdeev potential has two symmetric maximum on

the two sides of R = 0 [36]. The sort of soliton (bright or

dark) depends on sign of Q and P, consequently. It is

obvious, P is positive, and the magnitude of its decreases as

frequency increase. The dispersion term, P, is independent

of value of nonextensive and nonthermal parameters.

While, sign and value of nonlinear term, Q, depends on the

fast varying frequency, population of nonthermal electrons

and nonextensive parameters.

In Figs. 1, 2 and 3, the variation of nonlinear term, Q in

Eq. (47), is plotted versus x for kTe = 1 MeV and a = 0.2

for two different region of nonextensive parameter. As it is

mentioned, there are two different regions for q. The

nonextensive parameter can vary in 0.6\ q\ 1 or q[ 1.

Since the kinetic energy must be positive value, it is neces-

sary that the nonextensive parameter to be more than 0.8 for

a = 0.2 [3]. In Fig. 1, q is 0.8, 0.9 and 1. In the limit q = 1,

distribution function tends to the nonthermal distribution

function. It is shown, there are singularity in the nonlinear

terms for all value of nonextensive parameters. The nonlin-

ear term, Q, contains two nonlinear terms. The first term,

Q1 = 3/4x stands on the relativistic nonlinearity. On the

other hand, Q2 ¼ k2=x 4x2 � 1 � 4k2 c2
se

c2

� �

indicates the

electron density perturbation due to ponderomotive force

and pressure. The relativistic nonlinearity diminishes as

frequency increases, and it is invariable for all magnitude of

q and a. The value and signs of the second term, Q2, depends

tightly on frequency, nonextensive and nonthermal param-

eters of plasma. The second nonlinear term, Q2 is positive

and less than relativistic nonlinearity in x\x1. While, it is

positive and is more than relativistic nonlinearity term, in the

rangex1\x\x2,wherex1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð3b2 þ 0:25Þ=ð3b2 � 2Þ
q

,

x2 ¼ 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 � 4b2Þ=ð1 � b2Þ
q

and

b2 ¼ 1

3

kTe

mec2

2 35q2 � 46qþ 60aþ 15ð Þ
7q� 5ð Þ 12aþ 5q� 3ð Þ 3q� 1ð Þ½ � ð59Þ

Therefore, the nonlinear term in x1\x\x2 is nega-

tive and the dark EM soliton could be developed. In the

steady nonthermal parameter, by increasing q, its region be

wider. It is noted, out of mentioned region, Q2 is negative,

so the nonlinear term is positive. As a result, the bright EM

soliton could be performed for all value of nonextensive

parameter.

By increasing of nonextensive parameter, more than 1,

feature of mixed distribution function is substituted. In the

region q[ 1, raising of nonextensive parameter makes

reducing of probability of high energy electron’s existence.

In a = 0.2 and q = 1.1, there is singularity in the nonlinear

term. Whereas, for q C 1.2 in the same nonlinear param-

eter, Q declines as frequency increases. In Fig. 2, the

variation of Q is shown versus x for kTe = 1 MeV,

a = 0.2 and q = 1.2, 1.3 and 1.4. As it is shown, for

q = 1.2, and x approximately more than 2.2, the nonlinear

term is negative. It indicates, the dark EM soliton is formed

in plasma. But, for q = 1.3 and q = 1.4, the nonlinear term

is positive for all frequency, so only bright EM soliton is

performed. This figure, denotes, for a = 0.2, by increasing

Fig. 1 Variation of Q is plotted

versus x for kTe = 1 MeV,

a = 0.2 and q = 0.8, 0.9 and 1
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of the nonextensive parameter from 1.2 to 1.3, dark soliton

converts to the bright soliton.

In Fig. 3, the variation of Q is plotted versus x for

kTe = 1 MeV, a = 0.2 and q = 1.5, 2 and 5. The second

nonlinear term, in the plasma with a = 0.2 and q C 1.3 is

positive and less than relativistic term, for all amount of

frequency. So, the bright soliton is organized in this case.

By increasing frequency, Q2 increases in low frequency

and then reduces in higher magnitude of frequency.

Checking of the second nonlinearity term specifies that it

decreases as nonextensive parameter raises. Therefore, as

q increases, the influence of pressure term diminishes. a

result, in the region q[ 1.3, nonlinear term, Q, increases

by enhancement of q for steady value of a.

In this paper, the distribution function of electrons are

assumed to obey Cairns–Tsallis model. In mixed model, there

are two flexible parameters to vary, nonthermal and nonex-

tensive. In Fig. 4, the variation of Q is shown versus x for

kTe = 1 MeV for steady nonextensive parameter. The non-

thermal parameter is 0, 0.1 and 0.2 for q = 0.9. In the mixed

model, when nonthermal parameter tends to zero, the density

of electrons convert to nonextensive distribution function. It

indicates, for pure nonextensive distribution with q = 0.9, the

nonlinear term decrease as frequency arises. The nonlinear

term is positive, so bright soliton is formed. The positive

nonlinearity requires the relativistic nonlinearity to be more

than perturbation of density (Q1[Q2). By increasing non-

thermal parameter, population of high energy electrons grow.

It represents, there are singularity for q = 0.9, a = 0.1 and

a = 0.2. Therefore, accretion of the nonthermal parameter

results to form the dark soliton in the limited region of fre-

quency. By increasing of nonthermal parameter, the allowed

region of frequency to perform of dark EM soliton improves

and it is shifted to higher frequency.

In Fig. 5, the variation of Q is plotted versus x for

kTe = 1 MeV and state value of nonextensive parameter.

The nonthermal parameter is 0, 0.1 and 0.2 for q = 1.2. It

is shown, by increasing frequency, the nonlinear term falls.

So, by increasing of nonthermal parameter, the nonlinear

term reduces. For a = 0 and 0.1, the nonlinear term is

positive for all value of frequency. Therefore, the effects of

relativistic nonlinear term is more than perturbation den-

sity. As the nonthermal parameter and population of high

energy particle enhance, the influence of density pertur-

bation, Q2, raises. It could be result that the influence of

pressure decreases, while the nonlinear term increases. In

Fig. 2 Variation of Q is plotted

versus x for kTe = 1 MeV,

a = 0.2 and q = 1.2, 1.3 and

1.4

Fig. 3 Variation of Q is plotted

versus x for kTe = 1 MeV,

a = 0.2 and q = 1.5, 2 and 5
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q = 1.2 for a = 0 and 0.1, only bright soliton could be

formed. By increasing nonthermal parameter the amplitude

of the bright soliton amplifies. As the frequency increases,

the nonlinear term becomes negative. So, the bright soliton

converts to dark soliton in a = 0.2.

The contour of P/Q versus q and a is shown in Fig. 6 for

x = 1 and kTe = 1 MeV. The coefficient of P/Q is posi-

tive except in the narrow region, between two lines. Then it

is shown, for most of value of nonthermal and nonexten-

sive parameters in the plasma with mixed distribution

function, the bright soliton is formed. In Fig. 7 the varia-

tion of P/Q versus q and a is plotted for x = 1 and

kTe = 1 MeV. In Fig. 7a, 0.8\ q\ 1 and 0.1\ a\ 0.2,

while in Fig. 7b 1.3\ q\ 1.5 and 0\ a\ 0.2. As it is

shown, in Fig. 6 for both of these regions the factor of P/

Q is positive and the bright soliton is created in plasma.

Fig. 4 Variation of Q is plotted

versus x for kTe = 1 MeV,

q = 0.9, a = 0, 0.1 and 0.2

Fig. 5 Variation of Q is plotted

versus x for kTe = 1 MeV,

q = 1.2, a = 0, 0.1 and 0.2

Fig. 6 Variation of P/Q is

plotted versus a and q for x = 2
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The amplitude and width of the bright soliton is indepen-

dent of the velocity and LR0 = (2P/Q)1/2 = constant [11].

As it is shown in Fig. 7, by increasing of the nonextensive

parameter, P/Q decreases, so LR0 reduces. While, growth

of the nonthermal parameter has contrary effect on P/Q. In

both regions of q, increasing of the nonthermal electrons

lead to raise of P/Q and LR0.

Conclusion

In the present paper, the role of mixed electron on prop-

erties of the relativistic electromagnetic soliton is investi-

gated. Results show that two types of soliton, bright and

dark, may be formed in the interaction of laser pulse and

plasma, with mixed distribution of function. In the propa-

gation of laser pulse into plasma, relativistic effect and

perturbation of electron density modify the nonlinear term.

If nonlinear term is positive, the bright soliton establishes,

otherwise the dark soliton forms. Parameter of nonexten-

sive and nonthermal of electrons and frequency of the

pulse, adapt the sign and value of the nonlinear term. The

nonextensive parameter is a real number, and it must be

more than 0.6, while the nonthermal parameter varies in the

range 0 till 0.25. It is shown by variation of nonextensive

and nonthermal parameters, the sign and magnitude of the

nonlinear term changes, so the properties of soliton vary.

The effects of the nonthermal and nonextensive parameters

are contradictory. Growing of the nonthermal electrons,

increase P/Q, so the amplitude of soliton increases. While

rising of the nonextensive electrons decrease P/Q, and the

amplitude of soliton decreases.
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