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Abstract We discuss a generic form of the scalar

potential appearing in the geometric scalar theory of

gravity. We find the conditions on the potential by con-

sidering weak and strong gravity. The modified black hole

solutions are obtained for generic potentials and the inverse

problems on a black hole and on a spherical body (‘pseudo-

gravastar’) are investigated.

Keywords Modified gravity � Black holes � Newtonian
approximation � Compact objects

Introduction

General relativity (GR) is a unique theory of gravity which

passes various experimental tests, at least to our present

knowledge. The modifications of GR are, however, studied

by many researchers for the reason that they may resolve

the cosmological riddles about dark matter and/or dark

energy [1–3].

In recent years, Novello and collaborators advocated a

novel theory of gravity, called geometric scalar gravity

(GSG) [4–8]. In this theory, the dynamic field is a single

scalar field, but a normalized derivative of the scalar field

expresses a part of the dynamical metric, as well as the

scalar field itself. Therefore, it is possible to avoid the

difficulty in old scalar gravitation theories not including

derivative terms [9–12].1

Novello is also insisting [13] that more scalar degrees of

freedom are necessary to explain the gravitational field

around the spinning source more practically. However, it is

a challenging problem for theorists to clarify how GSG, as

the simplest model or as a case where many scalar degrees

of freedom freeze, can be adjusted to realistic gravity.

As a modified theory of gravity, mimetic gravity [14]

has been proposed, where a normalized scalar derivative

term is also used for the dynamical metric. If one would

construct such a modified theory of gravity from tensor and

scalar fields, it is worth examining the behavior of the

scalar model in the limit of a few degree of freedom and

pursuing how many aspects can be found through the study

of the simplest theory. Based on the research, we could

advance the study of theories including a vector field, such

as TeVeS [15], and more complicated theories.

Novello and collaborators chose the specific form for the

potential of the scalar field from which the Schwarzschild

spacetime is derived as a spherically symmetric vacuum

solution, and further advanced towards the discussion of

the (exotic) cosmology based on it [4–8]. However,

because the dynamics of gravity in GSG is completely

different from GR, so we need not require perfect coinci-

dence of the solution with an exact solution of GR. Actu-

ally, we have to check observational validity through

description of the parametrized post-Newton treatment of

the weak gravitational field (see for example, [16, 17]).

Therefore, there may be a finite ambiguity in the form of

the permissible potential. At first, we pay attention to this
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point and expose the necessary condition that the potential

should satisfy.

Another important issue of the non-linear theory of

gravity is avoidance of the singularity. A singular point is

concealed by a horizon of a black hole in GR. There is

room of argument for whether GSG can also be used

without a correction in the strong gravity, but we wish to

know what kind of the potential provides a spherically

symmetric black hole solution with a horizon in GSG.

From these two discussions about weak and strong

gravity, we consider possible forms of the scalar potential

and some restrictions on GSG.

This paper is organized as follows. In ‘‘A brief review of

GSG’’, we begin by reviewing GSG to make this paper self-

contained. Then, we consider a spherical gravitational field

in GSG and clarify the condition on the relation between the

scalar potential and parametrized post-Newtonian descrip-

tion in ‘‘A static spherical solution and the post-Newtonian

parameters’’. A possible singularity in the spherical vacuum

solution in GSG is studied in ‘‘A static spherical vacuum

solution and singularity’’. The condition on the scalar

potential for emerging a horizon is revealed. In ‘‘Inverse

problems in GSG’’, the potential which leads to a slightly

modified Schwarzschild solution is obtained, such as an

inverse problem. In this section, we also consider the

spherical body and investigate behaviors of the energy

density and the pressure of the static fluid for a given de

Sitter-like spacetime as another inverse problem. Finally, we

give summary and prospects in ‘‘Summary and prospects’’.

A brief review of GSG

In this section, we briefly review GSG [4] to make the

present paper self-contained. In GSG, the physical metric

qlm is described by a scalar field U as

qlm ¼ e2U glm �
e�4UVðUÞ � 1

e�4UVðUÞ
olUomU

w

� �
; ð2:1Þ

where

w � glmolUomU; ð2:2Þ

and glm is a flat Minkowski metric with the signature

ðþ � ��Þ. The inverse of the metric is then written as

qlm ¼ e�2U glm þ e�4UVðUÞ � 1

w
glqgmroqUorU

� �
; ð2:3Þ

and note that

ffiffiffiffiffiffiffi�q
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� det qlm

p
¼ e6Uffiffiffiffiffiffiffiffiffiffiffi

VðUÞ
p ffiffiffiffiffiffiffi�g

p
: ð2:4Þ

We should also note that qlmomU ¼ e�6UVðUÞglmomU.

We call VðUÞ the (scalar) potential in the present paper.

This function determines the dynamics of the scalar U, and
only the property of gravity constrains its concrete form, as

far as we do not assume any symmetry argument.

The action governing the dynamics of the scalar field U
with a potential VðUÞ is given by

SU ¼ 1

j

Z ffiffiffiffiffiffiffi�q
p ffiffiffiffiffiffiffiffiffiffiffi

VðUÞ
p

qlmolUomUd
4x; ð2:5Þ

where j is a constant. The variation of the action with

respect to the scalar U is calculated as

dSU ¼ � 2

j

Z ffiffiffiffiffiffiffi�q
p ffiffiffiffiffiffiffiffiffiffiffi

VðUÞ
p

ðhUÞdUd4x; ð2:6Þ

where

hU � 1ffiffiffiffiffiffiffi�q
p olð

ffiffiffiffiffiffiffi�q
p

qlmomUÞ

¼ e�6UVðUÞ 1ffiffiffiffiffiffiffi�g
p olð

ffiffiffiffiffiffiffi�g
p

glmomUÞ þ
w

2

d

dU
lnVðUÞ

� �
:

ð2:7Þ

The action for matter fields is presumed as

Sm ¼
Z ffiffiffiffiffiffiffi�q
p Lmd

4x; ð2:8Þ

and its variation with respect to the metric is written as

follows:

dSm ¼ � 1

2

Z ffiffiffiffiffiffiffi�q
p

Tlmdqlmd
4x; ð2:9Þ

where

Tlm �
2ffiffiffiffiffiffiffi�q

p
o
ffiffiffiffiffiffiffi�q

p Lm

oqlm
ð2:10Þ

is the energy–momentum tensor of matter fields. Some

manipulation leads to the following result on the variation

with respect to the scalar U:

Tlmdqlm ¼ 2T þ 4� 1

V

dV

dU

� �
E

� �
dU� 2CkokdU;

ð2:11Þ

where

T ¼ Tlmqlm; E ¼ TlmolUomU
X

;

Ck ¼ e�4UV � 1

X
ðTkm � EqkmÞomU;

ð2:12Þ

with

X � qlmolUomU ¼ e�6UVw: ð2:13Þ

We then obtain the variation of the action for matter fields

with respect to U as
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dSm ¼ �
Z

T þ 2� 1

2V

dV

dU

� �
E þrkC

k

� �
dU

ffiffiffiffiffiffiffi�q
p

d4x; ð2:14Þ

where

rkC
k � 1ffiffiffiffiffiffiffi�q

p ðok
ffiffiffiffiffiffiffi�q

p
CkÞ: ð2:15Þ

Now we define the total action of the gravitating system as

S ¼ S/ þ Sm: ð2:16Þ

The equation derived from this total action can be written

as ffiffiffiffiffiffiffiffiffiffiffi
VðUÞ

p
hU ¼ jv; ð2:17Þ

where

v ¼ � 1

2
T þ 2� 1

2V

dV

dU

� �
E þrkC

k

� �
: ð2:18Þ

Let us consider the Newtonian limit. The gravitating source

can be estimated as

T00 � q; ð2:19Þ

where q is the energy density and the other components of

the energy–momentum tensor Tlm can be neglected.

Novello et al. then assumed

q00 ¼ e2U � 1þ 2UN ; ð2:20Þ

where UN denotes the static Newtonian potential. The other

elements of the metric tensor are taken as those of the

Minkowski metric.

We would like to consider the case with the non-zero

asymptotic value of the scalar field U1. The redefinition of

the time coordinate yields the metric component q00 ¼
e2U1 ! 1 in the asymptotic region. In this case, since

jU� U1j � jUN j � 1, we find that the dynamical equa-

tion (2.17) can be approximated asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðU1Þ

p
r2U ¼ j

2
q: ð2:21Þ

Thus, if we set, with the definition of the Newton constant

G

jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðU1Þ

p ¼ 8pG; ð2:22Þ

we have a correct Newtonian limit.

A static spherical solution and the post-Newtonian
parameters

Novello et al. considered a static spherical solution in GSG

[4]. We are interested in generic spherically symmetric

solutions of this theory. We start with their argument in this

section. First, they considered the flat metric in the spher-

ical coordinates,

glmdx
ldxm ¼ dT2 � dR2 � R2dX2; ð3:1Þ

with dX2 is the line element on a unit sphere. Because the

spherical symmetry enforces that U ¼ UðRÞ, the physical

line element is given as

ds2 ¼ qlmdx
ldxm ¼ e2UdT2 � e6U

VðUÞ dR
2 � e2UR2dX2:

ð3:2Þ

Now, defining t � eU1T and converting the radial coordi-

nate to r � eUR, we find

ds2 ¼ BðrÞdt2 � AðrÞdr2 � r2dX2; ð3:3Þ

where

BðrÞ ¼e2ðU�U1Þ; ð3:4Þ

AðrÞ ¼ e4U

VðUÞ 1� r
dU
dr

� �2

: ð3:5Þ

To obtain an asymptotically flat spacetime, we assume

lim
r!1

UðrÞ ¼ U1; lim
r!1

rU0ðrÞ ¼ 0; e�4U1VðU1Þ ¼ 1;

ð3:6Þ

where U0ðrÞ is the first derivative of UðrÞ.
The equation of motion in vacuum hU ¼ 0 implies

d

dr

ffiffiffiffiffiffiffiffiffi
BðrÞ
AðrÞ

s
r2
dU
dr

" #
¼ 0: ð3:7Þ

Novello et al. [4] insisted that the form for VðUÞ is chosen
so as to realize the exact Schwarzschild solution. So, they

chose

U1 ¼ 0; VðUÞ ¼ VNðUÞ ¼
1

4
e2Uð1� 3e2UÞ2: ð3:8Þ

This criterion for the choice of VðUÞ is too severe for a

model of weak gravity, we think. The Newtonian limit has

been examined in the previous section. We study here the

post-Newtonian limit. The possible asymptotic behavior

determines the form of the scalar field as

UN � U� U1 ¼ �GM

r
� g

G2M2

r2
þ OððGM=rÞ3Þ;

ð3:9Þ

where M is the gravitational mass and g is a constant of

dimensionless. The potential VðUÞ is assumed up to the

linear order in UN , corresponding to the perturbative

regime and we set

e�4UVðUÞ ¼ 1þ 4kUN þ OðU2
NÞ: ð3:10Þ
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Then the metric components B(r) and A(r) are expressed in

terms of the parameters as

BðrÞ ¼1� 2GM

r
þ 2ð1� gÞG2M2

r2
þ OððGM=rÞ3Þ;

ð3:11Þ

AðrÞ ¼1þ 2ð2k � 1ÞGM
r

þ OððGM=rÞ2Þ: ð3:12Þ

and we then find thatffiffiffiffiffiffiffiffiffi
BðrÞ
AðrÞ

s
r2
dU
dr

¼ GM þ 2ðg� kÞG2M2

r
þ OðGMðGM=rÞ2Þ:

ð3:13Þ

Therefore up to the order in the present consideration, the

combination of the dynamic Eqs. (3.7) and (3.13) tells us

g ¼ k, so we obtain

BðrÞ ¼ 1� 2GM
r

þ 2ð1�kÞG2M2

r2
þ OððGM=rÞ3Þ.

According to the metric form with two post-Newtonian

parameters b and c [16, 17]

BðrÞ ¼1� 2GM

r
þ 2ðb� cÞG2M2

r2
þ OððGM=rÞ3Þ;

ð3:14Þ

AðrÞ ¼1þ 2cGM
r

þ OððGM=rÞ2Þ; ð3:15Þ

we can express two of the post-Newtonian parameters b
and c by using the linear coefficient k in VðUÞ as

b ¼ k; c ¼ 2k � 1: ð3:16Þ

For the experimentally viable values b ¼ c ¼ 1 [16, 17],

we should take k ¼ 1. Of course, the expansion of the

potential chosen by Novello et al. (3.8) shows that it is in

the case.

To summarize, we should select the form of the scalar

potential VðUÞ as
e�4UVðUÞ ¼ 1þ 4UN þ OðU2

NÞ; ð3:17Þ

with UN ¼ U� U1 for viable post-Newtonian parameters

b and c. The equivalence of the gravitational and the

inertial mass of the spherical gravitating body then holds.

Note that (3.17) is equivalent to

1

VðUÞ
dVðUÞ
dU

¼ 8 at U ¼ U1: ð3:18Þ

Since a condition for the potential is obtained now, we also

try to investigate the asymptotic gravitational field around an

electric point charge in GSG. We introduce a point charge

and consider the spherically symmetric solution. The

Lagrangian density for the electromagnetic field is given by

LEM ¼ � 1

16p
FlmF

lm; ð3:19Þ

where Flm � olAm � omAl. The energy–momentum tensor

obtained from this Lagrangian is

Tlm ¼ � 1

4p
F2
lm �

1

4
F2qlm

� �
; ð3:20Þ

where F2
lm � FlqFmrq

qr and F2 � F2
lmq

lm.

A spherically symmetric solution for the equation of

motion rlF
lm ¼ 0 is given by

F0r ¼
Q

r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðrÞAðrÞ

p
; ð3:21Þ

where Q is a constant corresponding to the electric charge

and we use the standard metric (3.3). Then we find

T ¼ 0; E ¼ 1

8p
Q2

r4
; Ck ¼ 0; ð3:22Þ

in v (2.18) in the right-hand side of the equation for the

scalar field (2.17). The equation of motion for the scalar

field UðrÞ becomesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðUðrÞÞ
AðrÞBðrÞ

s
1

r2
d

dr

ffiffiffiffiffiffiffiffiffi
BðrÞ
AðrÞ

s
r2
dUðrÞ
dr

" #
¼ j
16p

2� 1

2V

dV

dU

� �
Q2

r4
;

ð3:23Þ

In the asymptotic region of large r, using (3.17), we can

approximate the equation asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðU1Þ
AðrÞBðrÞ

s
1

r2
d

dr

ffiffiffiffiffiffiffiffiffi
BðrÞ
AðrÞ

s
r2
dUðrÞ
dr

" #
� � j

8p
Q2

r4
; ð3:24Þ

and we can also find an approximate solution

BðrÞ ¼ 1� 2GM

r
� GQ2

r2
þ OððGM=rÞ3Þ: ð3:25Þ

Unfortunately, this does not coincide with the Reissner–

Nordström solution in GR, because of the wrong sign in

front of the r�2 term. We should note that there is no reason

to match exactly the solutions to GSG and GR.

Although we do not pursue the charged solution in GSG

further in this paper, we suppose that the presence of non-

minimal couplings between the vector and scalar fields

could change the asymptotic behavior and it will be worth

studying this possibility.

A static spherical vacuum solution and singularity

As we have seen in the previous section, the vacuum

solution with spherical symmetry satisfies
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ffiffiffiffiffiffiffiffiffi
bðrÞ
AðrÞ

s
r2
dU
dr

¼ 1

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞbðrÞ

p r2
dbðrÞ
dr

¼ GMeU1 [ 0;

ð4:1Þ

where bðrÞ � e2UðrÞ and A(r) has been defined as (3.5). In

this section, we start with undetermined asymptotic value

for the scalar, U1. The Eq. (4.1) means that q00 ¼ BðrÞ ¼
bðrÞe�2U1 is a monotonically increasing function of r.

Moreover, if the value of b is positive everywhere, the

above equation can be rewritten asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðUðrÞÞ=bðrÞ

p
2bðrÞ � rb0ðrÞj j r

2b0ðrÞ ¼ GMeU1 ; ð4:2Þ

where the prime (0) stands for the derivative with respect to

r.

If we assume that b[ 0 and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðUðrÞÞ=bðrÞ

p
is finite in

the vicinity of r ¼ 0, we see that

b0ðrÞ
bðrÞ ! 1 as r ! 0: ð4:3Þ

(and also U0ðrÞ ! 1) from Eq. (4.2). As far as we assume

a non-singular potential (VðUÞ\1 for �1\U�U1)

and non-singular metric q00 / b for r[ 0, the vacuum

solution has a singularity at the origin. This fact might

bring about a possibility that a naked singularity emerges

after a possible gravitational collapse.2 The difficulty of

obtaining non-singular vacuum solution forces us to

examine the solution of which metric becomes singular at

finite r, which can be regarded as a horizon radius.3 If we

set bðrgÞ ¼ 0 and b0ðrgÞ 6¼ 0 at the radius (of infinite-red-

shift) r ¼ rg [ 0, Eq. (4.1) tells us that

0\ lim
r!rg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞbðrÞ

p
\1: ð4:4Þ

This condition is a necessary condition that the radius r ¼
rg can be the horizon radius. Then, because

limr!rg UðrÞ ¼ �1, it should be satisfied that

0\ lim
U!�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðUÞ=bðrÞ

p
\1: ð4:5Þ

Further observation leads to that fact that the specific

combination 2� rb0

b
in (4.2), which comes from A(r),

becomes negative at r ¼ rg. Since this must be positive for

a large r, we conclude that the quantity 2� rB0

B
vanishes at a

certain radius r ¼ r0 [ rg. This condition requires

VðUðr0ÞÞ ¼ 0; ð4:6Þ

because the both sides of (4.2) should be finite. Therefore

the differential equation (4.2) for b(r) is rewritten as

r

2

b0ðrÞ
bðrÞ ¼ 1� r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðUðrÞÞ=bðrÞ

p
GMeU1

 !�1

for rg\r\r0;

ð4:7Þ

r

2

b0ðrÞ
bðrÞ ¼ 1þ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðUðrÞÞ=bðrÞ

p
GMeU1

 !�1

for r[ r0;

ð4:8Þ

In order to obtain the smooth function (such as bðrÞ 2 C1),

it should be assumed that

VðUÞ=b ¼ ½FðbÞ�2; ð4:9Þ

and F(b) has a vanishing point, according to Eq. (4.6).

Then the horizon radius rg is determined as

GMeU1

rg
¼ jFð0Þj � F0: ð4:10Þ

We will examine the case that the equation has exact

analytic solutions. In the simplest case, F is linear in b such

that

FðbÞ ¼ F0 1� f1bð Þ; ð4:11Þ

where F0 and f1 are positive constants. Adopting a new

variable y � 1� rg=r, the differential equation for b(y)

becomes

db

dy
¼ 2b

�yþ 1� FðbÞ=F0

¼ 2b

�yþ f1b
; ð4:12Þ

and the boundary condition is bð0Þ ¼ 0. The solution is

b ¼ 3

f1
y ¼ 3

f1
1� rg

r

� �
: ð4:13Þ

Then, we find e2U1 ¼ bð1Þ ¼ 3
f1
and

BðrÞ ¼e2ðU�U1Þ ¼ 1� rg

r
; ð4:14Þ

AðrÞ ¼ 3

4F2
0 f1

1� rg

r

� ��1

: ð4:15Þ

To obtain asymptotic flat spacetime, we must choose

F2
0 ¼ 3

4f1
: ð4:16Þ

Then, remembering b ¼ e2U, the scalar potential has the

form

VðUÞ ¼ 3

4f1
e2U 1� f1e

2U
	 
2

¼ e4U1

4
e2ðU�U1Þ 1� 3e2ðU�U1Þ

h i2
;

ð4:17Þ
2 The time-dependent dynamics in GSG has not been studied,

however. We should study the gravitational collapse in GSG.
3 The existence of naked singularity in nature is still controversial,

however. For example, see Ref. [18–20].
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and VðU1Þ ¼ e4U1 . Thus, the post-Newtonian condition

(3.17) is satisfied. The spacetime is the Schwarzschild

spacetime, and thus b ¼ c ¼ 1. The Newton limit also tells

rg ¼ 2GM, where G ¼ j=ð8p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðU1Þ

p
Þ ¼ f1j=ð24pÞ. The

potential (4.17) is essentially the Novello’s potential

VNðUÞ, provided that f1 ¼ 3 (which implies U1 ¼ 0).

Incidentally, choosing the function F(b) as

FðbÞ ¼ F0 1� fpb
p

	 

; ð4:18Þ

where fp is a constant, the differential equation for b(y)

becomes

db

dy
¼ 2b

�yþ fpbp
; ð4:19Þ

and then the equation is analytically solved as

b ¼ 2pþ 1

fp

� �1=p

y1=p ¼ 2pþ 1

fp

� �1=p

1� rg

r

� �1=p
;

ð4:20Þ

and e2U1 ¼ 2pþ1
fp

� �1=p
. The components of the metric are

then

BðrÞ ¼e2ðU�U1Þ ¼ 1� rg

r

� �1=p
; ð4:21Þ

AðrÞ ¼ 1

4pF2
0

2pþ 1

fp

� �1=p

1� rg

r

� ��2þ1=p

: ð4:22Þ

If we choose 1
4pF2

0

2pþ1
fp

� �1=p
¼ 1, the solution describes an

asymptotically flat spacetime, i.e.,

ds2 ¼ 1� rg

r

� �1=p
dt2 � 1� rg

r

� ��2þ1=p

�r2dX2: ð4:23Þ

The location r ¼ rg is, however, a singularity of the metric

(4.23), which comes from the fact that db=drjr¼rg
does not

take a finite value (i.e., b0ð0Þ ¼ 0 or b0ð0Þ ¼ 1, where

b0ðyÞ is the first derivative of b(y)).

The physical condition b ¼ c adopted in the previous

section, i.e., the absence of 1=r2 term in the expansion of

B(r) in terms of powers of 1/r, is transformed as

limy!1 b
00ðyÞ ¼ 0, where b00ðyÞ is the second derivative of

b(y). Moreover, we can rewrite the condition (3.18), using

the differential equation for b(y), as

2bð1ÞF0ðbð1ÞÞ ¼ 3Fðbð1ÞÞ; ð4:24Þ

where F0ðbÞ is the first derivative of F(b).

We further quest another possible potential, which leads to

the existence of a horizon aswell as the nice behavior at weak

gravity, b ¼ c ¼ 1. We assume, with constants f1, f2 and f3,

FðbÞ ¼ F0 1� f1b� f2b
2 � f3b

3
	 


: ð4:25Þ

To satisfy limy!1 b
00ðyÞ ¼ 0, we must choose a set of

parameters, f1, f2 and f3. A set of parameters can be found

numerically as f1 ¼ 3, f2 ¼ 1 and f3 � �0:52226. Then,

bð1Þ � 0:893544 and F0 � 0:448751. Therefore, the hori-

zon radius is rg � 2:10645GM. Another set is f1 ¼ 3, f2 ¼
�1 and f3 � 0:39273. Then, bð1Þ � 1:18827. and

F0 � 0:601671. The horizon radius is rg � 1:81175GM in

this case. The solutions for b(y) are displayed in Fig. 1. We

find that the horizon radius can become larger or smaller

than 2GM by selecting the parameters, i.e., the form of the

scalar potential VðUÞ.

Inverse problems in GSG

An inverse problem on black holes

By now, we have found the conditions for the scalar potential

VðUÞ. Vast ambiguity in the form of the potential remains

with the conditions. In this section, we consider an ‘inverse

problem’, which require the potential form to obtain a given

simple metric component.We assume the simplest ‘solution’

which is permissible up to the post-Newtonian order,

b ¼ 3

f
yþ h y2 � 1

3
y3

� �� �
; ð5:1Þ

where f ([ 0) and h ([ � 1) are constants. Since

y ¼ 1� rg=r, we have

b ¼ e2U ¼ e2U1 1� 2GM

r
þ 4

3
d
ð2GMÞ3

r3

" #
; ð5:2Þ

where

e2U1 ¼ 3

f
1þ 2

3
h

� �
; d ¼ h

4

1þ 2
3
h

	 
2
ð1þ hÞ3

; ð5:3Þ

rg

2GM
¼ eU1

2F0

¼
1þ 2

3
h

1þ h
; F2

0 ¼ 3

4f

ð1þ hÞ2

1þ 2
3
h
: ð5:4Þ

0.2 0.4 0.6 0.8 1
y

0.2

0.4

0.6

0.8

1

1.2
b

Fig. 1 The solutions for b(y) are plotted against y. The rigid line

exhibits the case with f1 ¼ 3, f2 ¼ 0 and f3 ¼ 0. The dotted line

exhibits the case with f1 ¼ 3, f2 ¼ 1 and f3 � �0:52226. The broken

line indicates the case with f1 ¼ 3, f2 ¼ �1 and f3 � 0:39273
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If we solve the Eq. (5.2) for 2GM / r, we find

2GM

r
¼ 1ffiffiffi

d
p sin

1

3
arcsin 3

ffiffiffi
d

p
ð1� e�2U1bÞ

n o� �
for d[ 0;

ð5:5Þ
2GM

r
¼ 1ffiffiffiffiffiffi

jdj
p sinh

1

3
arcsinh 3

ffiffiffiffiffiffi
jdj

p
ð1� e�2U1bÞ

n o� �

for d\0: ð5:6Þ

The function F(b) defined in the previous section can be

rewritten as

FðbÞ ¼ F0ð1� fuðbÞÞ; ð5:7Þ

and then we find that the function uðbÞ satisfies u0ð0Þ ¼ 1.

Substituting the ‘solution’ into the equation of motion, we

get

fuðbÞ ¼ YðbÞ þ 2fb

3 1þ hð2YðbÞ � YðbÞ2Þ
h i ; ð5:8Þ

where

YðbÞ ¼1� 2
ffiffiffiffiffiffiffiffiffiffiffi
1þ h

p
ffiffiffi
h

p sin
1

3
arcsin

3
ffiffiffi
h

p
1þ 2

3
h

	 

2ð1þ hÞ3=2

("

	 1� f

3þ 2h
b

���
for h[ 0;

ð5:9Þ

YðbÞ ¼1� 2
ffiffiffiffiffiffiffiffiffiffiffi
1þ h

p
ffiffiffiffiffiffi
jhj

p sinh
1

3
arcsinh

3
ffiffiffiffiffiffi
jhj

p
1þ 2

3
h

	 

2ð1þ hÞ3=2

("

	 1� f

3þ 2h
b

� ���
for h\0:

ð5:10Þ

In the limit of h ! 0, we obtain fuðbÞ ¼ fb as we have

already known. On the other hand, another limiting case

h ! 1 yields, if we set f ¼ 3þ 2h for further simplicity,

rg ¼ 4GM
3

and one can find

b¼ 1� 2GM

r
þ 4

27

ð2GMÞ3

r3
¼ 1� 3rg

2r
þ

r3g

2r3
¼ 3

2
y2� 1

3
y3:

ð5:11Þ

The shape of the potential is shown in Fig. 2. Unfortu-

nately the potential varies very slightly with h in the pre-

sent assumption for parametrization.

An inverse problem on a spherical body: pseudo-

gravastar

Next, we consider a spherical configuration of a gravitating

perfect fluid. We assume that the outside of the radius of

such a ‘star’ is empty vacuum. The vacuum solutions and

the corresponding scalar potential have been assumed and

found in the previous subsection.

We assume that the energy–momentum tensor is given

in the form of a perfect fluid

Tlm ¼ ðqþ pÞulum � pqlm; ð5:12Þ

where ul is the four-velocity which satisfies qlmu
lum ¼ 1, q

is the energy density and p is the pressure of the fluid. In

the static case, the four-velocity has only the time-like

component. Then, the quantities in (2.12) read

T ¼ q� 3p; E ¼ �p; Ck ¼ 0: ð5:13Þ

The dynamical Eq. (2.17) is expressed, with the metric

(3.3), as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðUðrÞÞ
AðrÞBðrÞ

s
1

r2
d

dr

ffiffiffiffiffiffiffiffiffi
BðrÞ
AðrÞ

s
r2
dUðrÞ
dr

" #

¼ VðUÞ
r2e3Uj1� rU0j

ffiffiffiffiffiffiffiffiffiffiffi
VðUÞ

p
r2U0

eUj1� rU0j

" #0
¼ j

2
qðrÞ � 5� 1

2V

dV

dU

� �
pðrÞ

� �
:

ð5:14Þ

where the prime 0 denotes the derivative with respect to the

radial coordinate r. On the other hand, the conservation of

the energy–momentum tensor leads to the equation

rlT
lm ¼ 1ffiffiffiffiffiffiffi�q

p olð
ffiffiffiffiffiffiffi�q

p
TlmÞ þ Cm

qrT
qr ¼ 0; ð5:15Þ

where

Cm
qr ¼

1

2
qmkðoqqkr þ orqkq � okqqrÞ: ð5:16Þ

For the perfect fluid, the equation of conservation becomes

p0ðrÞ þ ½qðrÞ þ pðrÞ�U0ðrÞ ¼ 0: ð5:17Þ

The Eqs. (5.14) and (5.17), together with a certain equation

of state, which gives the relation between q and p, com-

pletely governs the structure of the spherical body in GSG.

This is a direct problem on the structure of a ‘star’.

0.2 0.4 0.6 0.8 1
b

0.01

0.02

0.03

0.04

V

Fig. 2 The shape of the scalar potential is plotted against b ¼ e2U

(only shown for small b). The rigid line exhibits the case with h ¼ 0.

The dotted line exhibits the case with h ¼ 1
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Solving the equations is straightforward but tedious in

genaral cases. We leave the study on the generic solutions

for various equation of state for another separate work.

Here, we assume, the smooth metric inside the ‘star’ and

we investigate the behaviors of the energy density and the

pressure as another inverse problem.

In this study, we simply assume that the (00) component

of the metric inside a spherical star can be expressed by

q00 ¼ C0 � C2r
2; ð5:18Þ

where C0 and C2 are constants. Incidentally, this behavior

matches the de Sitter space in GR. Mazur and Mottla

proposed ‘gravastars’, which have the de Sitter spacetime

structure inside them, about a decade ago [21–24]. There-

fore, the present analysis can be considered as the first step

to investigate such simple and interesting exotic objects,

say, ‘pseudo-gravastars’ in GSG (and similar theories

mentioned in ‘‘Introduction’’).

Although the gravastars in GR may have a shell of an

exotic matter at their surface, we take a simple assumption

in this paper, for the ‘pseudo-gravastars’ in GSG; We

define the surface of a star as pðr
Þ ¼ 0, where r
 is the

radius of the star.

We use the result of the previous subsection, so we

adopt VðUÞ ¼ e2UFðe2UÞ2, where F is defined by (5.7)–

(5.10) with the choice f ¼ 3þ 2h. The metric for the

exterior of the star can be described by

bðrÞ ¼ e2UðrÞ ¼ beðrÞ ¼ 1� 2GM

r
þ 4d

3

ð2GMÞ3

r3
;

for r[ r
:

ð5:19Þ

On the other hand, we assume that the metric is given by

the function (5.18) which smoothly connects to beðrÞ:

bðrÞ ¼ b
ðrÞ � beðr
Þ �
b0eðr
Þ
2

1� r2

r2


� �
� e2U
ðrÞ;

for r\r
: ð5:20Þ

For r\r
, eliminating q from Eqs. (5.14, 5.17) yields

e6U
ðrÞ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðU
ðrÞÞ

p jpðrÞ
" #0

¼

� 2e3U
ðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðU
ðrÞÞ

p
U0


ðrÞ
r2ð1� rU0


ðrÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðU
ðrÞÞ

p
r2U0


ðrÞ
eU
ðrÞð1� rU0


ðrÞÞ

" #0
;

ð5:21Þ

for r\r
. To obtain the solution for p(r), we have only to

integrate the equation.

Some numerical examples are shown in Figs. 3, 4, 5 and

6. In each figure, 10jr2gp and jr2gq are plotted against r=rg.

Figures 3 and 4 are in the case with the parameter h ¼ 0

while Figs. 5 and 6 are in the case with h ¼ 1. In Figs. 3

1 2 3 4 5
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0.001

0.0015

0.002

0.0025

Fig. 3 The energy density (solid line) and the pressure (dashed line)

are plotted against r=rg in the case with the parameter h ¼ 0 and

r
 ¼ 5rg

0.5 1 1.5 2

0.005

0.01

0.015

0.02

Fig. 4 The energy density (solid line) and the pressure (dashed line)

are plotted against r=rg in the case with the parameter h ¼ 0 and

r
 ¼ 2:228rg
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0.001

0.0015

0.002

0.0025

Fig. 5 The energy density (solid line) and the pressure (dashed line)

are plotted against r=rg in the case with the parameter h ¼ 1 and

r
 ¼ 5rg

0.5 1 1.5 2 2.5

0.002

0.004

0.006

0.008

Fig. 6 The energy density (solid line) and the pressure (dashed line)

are plotted against r=rg in the case with the parameter h ¼ 1 and

r
 ¼ 2:707rg
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and 5, we choose r
 ¼ 5rg. Figures. 4 and 6 indicate the

results with qð0Þ ¼ 0.

In both cases of h ¼ 0 and h ¼ 1, the behaviors of q
and p are qualitatively equal, respectively. In Figs. 4 and 6,

the values for r
 are considered as the lower bound for the

radii of the stars of the present type. Below the critical

value for the radius, the energy density at the origin

becomes negative.

In contrast to the gravastars in GR, we find that the value

of the pressure p can be positive and simply decreasing in

the present pseudo-gravastar in GSG. Of course, the

geometry of the interior of the star is not an exact de Sitter

space, for q11 6¼ �ðq00Þ�1
in GSG.

The ‘stars’ constructed above are, however, not realistic

because the energy density q also should decrease along

with r for a normal equation of state.4 Nevertheless, we

suppose that the characteristic scales of the ‘star’ in GSG

revealed in the simple approach are useful for setting the

starting values of numerical calculation.

Summary and prospects

In this paper, we considered the geometric scalar gravity of

Novello and collaborators and found conditions of the

scalar potential that had a permissible solution in the case

of weak and strong gravity. We found that the simple

potential of Novello et al. leads to the solution which

agrees with the Schwarzschild solution of GR and small

corrections to the potential are permitted and the generic

potential leads to the ‘black hole solution’ with a modified

mass-horizon radius relation (i.e., rg 6¼ 2GM), of which

asymptotic behavior describes weak gravity up to the post-

Newtonian order. We also showed possible solutions for

‘pseudo-gravastars’ in GSG with generic scalar potentials.

We will try to extend the geometric scalar theory of

gravity with additional degrees of freedom. We also wish

to study the mass-radius relation (known in GR [25]) which

may exist in a solution describing a spherical star in GSG

by numerical analyses. In addition, we want to study

‘cosmologies’ expressed by the generic scalar potentials in

geometric scalar gravity. We hope to report soon on these

issues.

The quantization of GSG is another very interesting

subject. We wish to discuss it in a separate paper.

Note added:

After completion of this manuscript, we have noticed a

new preprint arXiv:1508.02665 [gr-qc] by Jardim and

Landim [26] on GSG. It discusses the issue of the

cosmological constant in GSG and argues an ‘inverse

problem’ to realize the de Sitter spacetime in GSG.
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