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Abstract The generalized KP (GKP) equations with an

arbitrary nonlinear term model and characterize many

nonlinear physical phenomena. The symmetries of GKP

equation with an arbitrary nonlinear term are obtained. The

condition that must satisfy for existence the symmetries

group of GKP is derived and also the obtained symmetries

are classified according to different forms of the nonlinear

term. The resulting similarity reductions are studied by

performing the bifurcation and the phase portrait of GKP

and also the corresponding solitary wave solutions of GKP

equation are constructed.

Keywords Generalized KP equation � Lie point

symmetries � Bifurcation � Solitary solutions

Introduction

The investigation of exact solutions to the higher dimen-

sional space nonlinear evolution differential equation plays

an important role in the understanding many of nonlinear

physical phenomena than one-dimensional equation.

The standard two-dimensional KP equation in the nor-

malized form follows
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Here, u(x, y, t) is a scalar function of two spatial

coordinates x, y and one temporal coordinates t, whereas

a, b and c are three real-valued constants. c = ±1 mea-

sures the positive and negative transverse dispersion

effect. The KP equation is widely used in various bran-

ches of physics, such as plasma physics, fluid physics and

quantum field theory. In addition, it describes the

dynamics of solitons and nonlinear waves in plasma and

super fluids [1]. This equation is derived in various

physical contexts assuming that the solitary wave is

moving along x- and all changes in y- directions are

slower than in the direction of motion. Also, the inte-

grability of this equation is verified by means of inverse

scattering method [2].

Here, we shall deal with the generalized KP (GKP)

equation instead of the standard one. The GKP in the

normalized form is
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with an arbitrary nonlinear term k(u). It is observed that the

GKP equation includes, as special cases, considerably

interesting one-dimensional equation such as KdV equation

and mKdV equation. This means that the GKP equation is

the two-dimensional analog of KdV or mKdV or the

combined KdV–mKdV equations. In addition, there are

many versions of the KP equations according to different

forms of k(u) that are related to various physical phe-

nomena. For instance, if k(u) = un, the corresponding KP

equations with power law nonlinearity dictated by the

exponent n have been used to describe and investigate the

flow of shallow water waves [1]. This version of KP

equation is considered by Biswas et al. [3] and they

obtained one soliton solution by means of solitary wave

ansatz. Recently, Pandir et al. [4] classified some of exact

solutions of KP equation with generalized evolution by

means of the trial equation method.
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In the case of k(u) = u2/2, the corresponding equation

models the propagation of dust acoustic wave in the

dusty plasma in both spherical and cylindrical KP

equations. Very recently, El-Wakil et al. [5, 6] derived

this type of KP equation based on the reductive pertur-

bation method to study ion-acoustic solitary wave forms

and calculate the energy of electron-acoustic soliton at

critical ion density. If the exponent parameter n = 3/2,

the associated KP equation arises in the case of

unmagnetized collision less plasma physics with vortex-

like hot electron [7, 8]. Another interesting feature of

solitary wave solution is associated with k(u) = u3 where

the solitary waves associated with k(u) = u3/3 have finite

amplitude at the critical density while it diverges if

k(u) = u2/2 [9].

Moreover, in the case of inhomogeneous magnetized

warm plasma the KP equation has also an important role in

understanding the behavior of nonlinear solitary waves at

critical and non-critical densities [10–13].

From the above, we are interested to deal with GKP

equation with an arbitrary nonlinearity since the above-

mentioned cases are obviously appeared as particular cases

from GKP equation.

Since the GKP equation can be regarded as universal

integrable equation, it is still used as classical model for

developing and testing of new mathematical technique. So,

a large number of effective mathematical methods have

been proposed to solve KP equations [14–21]. Among

those, the Lie symmetries are considered as one of the most

powerful technique for solving either partial differential

equation or nonlinear coupled system of integro-differen-

tial equation [22–28].

For a given k(u), the symmetries group of KP equation

is investigated by many authors. Recently, the symme-

tries of the (3 ? 1)-dimensional KP equation with

k(u) = u2/2 are obtained and some of similarity reduc-

tions and similarity solutions are discussed by Khalique

and Adem [29].

In this article, we aim to extend the analysis of Lie point

symmetries to GKP equation with arbitrary nonlinearity to

obtain and classify the allowed symmetry group that leaves

GKP equation invariant. By means of the Lie symmetries

method, the similarity reduction of GKP equation can be

obtained and it will be investigated by performing the

bifurcations and phase portrait analysis.

This paper is organized as follows: in ‘‘Lie symmetries

of GKP equation’’, the symmetry analysis of GKP equation

is presented. ‘‘Bifurcation and phase portrait of GKP

equation’’ is devoted to study the topology of both phase

portrait and potential curves of the reduced GKP equation

for different cases of k(u) and also the explicit solutions for

each case are obtained. Final section is ‘‘Conclusions and

remarks’’.

Lie symmetries of GKP equation

Since the Lie point symmetry approach is considered as

one of the most powerful technique, we are here interested

to use such technique for obtaining the similarity solutions

of GKP equation. Generally, this technique is, however,

based on the study of the invariance property of the dif-

ferential equations under one-parameter Lie group of point

transformations [13, 14]. Since we restrict ourselves to Lie

point symmetries, the Lie algebra of the symmetry group

of GKP Eq. (2) will be generated by vector fields of the

form

v ¼ sðx; y; t; uÞ o
ot

þ nðx; y; t; uÞ o

ox
þ gðx; y; t; uÞ o

oy

þ uðx; y; t; uÞ o

ou
; ð3Þ

where s, n, g, u are infinitesimal transformations of Lie

group variables (independent and dependent variables) that

have to be determined later. Following the algorithm of Lie

[14], we aim to determine the functions s, n, g, u and hence

the form of the vector field v. Usually, the determining

equations of the functions s, n, g, u are over-determined set

of linear partial differential equations. After lengthy cal-

culations and many algebraic manipulations, the set of

equations can be solved and yield

sðtÞ ¼ 3a4t þ a1; ð4aÞ
gðy; tÞ ¼ 2a4y þ a3ðtÞ; ð4bÞ

nðx; y; tÞ ¼ a4x � 1

2c
oa3ðtÞ
ot

y þ a2ðtÞ; ð4cÞ

uðu; y; tÞ ¼ a5u þ A3ðy; tÞ; ð4dÞ

with

a½a5u þ A3ðy; tÞ� d2kðuÞ
du2

þ 2aa4

dkðuÞ
du

� d

dt
a2ðtÞ �

1

2c
oa3ðtÞ
ot

� �

¼ 0; ð5Þ

where a1, a4 are arbitrary constants whereas a2(t), a3(t),

A3(y, t) are three arbitrary functions of their arguments.

Now, one can obviously see that by applying Lie point

symmetries on GKP Eq. (2) the function k(u) is no longer

arbitrary function of u but it must satisfy the condition (5)

for existence Lie point symmetries.

The advantage of the presence of the condition (5) is

that one can check it case by case to provide a quick

answer of whether GKP equation admits Lie symmetry or

not. The condition (5) can be viewed in two different

ways:

(1) This condition can be viewed as a determining

equation for k(u) and this of course implies that the
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coefficients of different derivatives of k(u) as well as

the free term in (5) should be functions of u only

otherwise there exists a contradiction. This will put

further constraints on the functions A3(y, t), a3(t) and

a2(t).

(2) For a given k(u), this condition can also be viewed as

compatibility condition for A3(y, t), a3(t), a2(t), a4

and a5.

Anyway, the two ways lead us to the same symmetry

group. However, we list in Table 1 the complete symme-

tries and vector fields of GKP equation associated with

different classes of k(u).

Now, one can see that the obtained Lie symmetries,

listed in Table 1, of GKP equations are of infinite dimen-

sional since they contain two arbitrary functions namely;

a2(t), a3(t).

The importance of the presence of these arbitrary

functions is twofold:

On one hand, the existence of an infinity dimensional

symmetry group makes it possible to obtain large classes

of similarity solutions.

On the other hand, the existence of these arbitrary

functions in the symmetry group is very useful for

solving initial or boundary value problems.

Table 1 The symmetries and vector fields of GKP equation associated with different classes of kðuÞ

kðuÞ The corresponding vector fields

kðuÞ = arbitrary v1 ¼ o
ot

, v2 ¼ o
ox

, v3 ¼ o
oy

, v4 ¼ o
ot
þ o

ox
þ o

oy

kðuÞ ¼ c1

m þ 1
umþ1 þ c2

n þ 1
unþ1

v1 ¼ a1

o

ot
; v2 ¼ a2ðtÞy þ a2ðtÞð Þ o

ox
þ 2c

Z
a2ðtÞdt

o

oy
; v3 ¼ a3

o

oy

kðuÞ ¼ 1
pþ1

upþ1

v1 ¼ a1

o

ot
; v2 ¼ a2ðtÞy þ a2ðtÞð Þ o

ox
þ 2c

Z
a2ðtÞdt

o

oy
; v3 ¼ a3

o

oy
;

v4 ¼ 3a4t
o

ot
þ 2a4y

o

oy
þ a4x

o

ox
� 2

p
a4u

o

ou

kðuÞ ¼ 1
2

u2

v1 ¼ a1

o

ot
; v2 ¼ a2ðtÞ

o

ox
þ 1

a
da2ðtÞ

dt

o

ou
; v3 ¼ a3ðtÞ

o

oy
� 1

2c
da3ðtÞ

dt
y
o

ox
� 1

2ac
d2a3ðtÞ

dt2

o

ou
;

v4 ¼ 3a4t
o

ot
þ 2a4y

o

oy
þ a4x

o

ox
� 2a4u

o

ou

kðuÞ ¼ 1
3

u3

v1 ¼ a1

o

ot
; v2 ¼ a2ðtÞ

o

ox
; v3 ¼ a3ðtÞ

o

oy
� 1

2c
da3ðtÞ

dt
y
o

ox
;

v4 ¼ 3a4t
o

ot
þ 2a4y

o

oy
þ a4x

o

ox
� a4u

o

ou

kðuÞ ¼ 2
3

u
3
2

v1 ¼ a1

o

ot
; v2 ¼ a2ðtÞ

o

ox
; v3 ¼ a3ðtÞ

o

oy
� 1

2c
da3ðtÞ

dt
y
o

ox
;

v4 ¼ 3a4t
o

ot
þ 2a4y

o

oy
þ a4x

o

ox
� 4a4u

o

ou

kðuÞ ¼ c1

2
u2 þ c2

3
u3

v1 ¼ a1

o

ot
; v2 ¼ a2ðtÞ

o

ox
; v3 ¼ a3ðtÞ

o

oy
� 1

2c
da3ðtÞ

dt
y
o

ox
;

v4 ¼ 3a4t
o

ot
þ 2a4y

o

oy
þ a4x

o

ox
� c2 þ 2c1ð Þa4u

o

ou

kðuÞ ¼ 1
2

u2 � 2
3

u3

v1 ¼ a1

o

ot
; v2 ¼ a2ðtÞ

o

ox
; v3 ¼ a3ðtÞ

o

oy
� 1

2c
da3ðtÞ

dt
y
o

ox
;

v4 ¼ 3a4t
o

ot
þ 2a4y

o

oy
þ a4x

o

ox

kðuÞ ¼ expðuÞ
v1 ¼ a1

o

ot
; v2 ¼ a2ðtÞy þ a2ðtÞð Þ o

ox
þ 2c

Z
a2ðtÞdt

o

oy
; v3 ¼ a3

o

oy
;

v4 ¼ 3a4t
o

ot
þ 2a4y

o

oy
þ a4x

o

ox
� 2a4u

o

ou

kðuÞ ¼ ln u
v1 ¼ a1

o

ot
; v2 ¼ a2ðtÞy þ a2ðtÞð Þ o

ox
þ 2c

Z
a2ðtÞdt

o

oy
; v3 ¼ a3

o

oy
;

v4 ¼ 3a4t
o

ot
þ 2a4y

o

oy
þ a4x

o

ox
� 2a4u

o

ou

kðuÞ ¼ u ln uj jð Þ þ 1
2

u v1 ¼ o
ot
; v2 ¼ a1ðtÞ o

oy
; v3 ¼ at o

oy
þ u o

ou
; v4 ¼ o

ox
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It is noted that the corresponding symmetries of the case

k(u) = u2/2 are equivalent to those obtained previously by

Khalique and Adem [29] whereas the other cases in

Table 1 are appeared as new symmetries group. Also, three

new classes of k (u) that are related to logarithmic and

exponential KP equations are discovered.

With the knowledge of Lie point symmetries of GKP Eq.

(2) associated with different classes of k(u), the similarity

variables s, z and similarity solution u(s, z) can be obtained

by integrating the corresponding characteristic equations

dt

sðx;y; t;uÞ ¼
dx

nðx;y; t;uÞ ¼
dy

gðx;y; t;uÞ ¼
du

uðx;y; t;uÞ : ð6Þ

Inserting the obtained forms of the similarity variables

and solutions into GKP Eq. (2), the reduced GKP equation

is obtained in terms of the two similarity variable s, z.

Bifurcation and phase portrait of GKP equation

In this section, we aim to identify various types of solutions

of the GKP equation by studying the topology of phase

portraits and potential diagrams. Since we have wide

classes of GKP equations according to different forms of

k(u), we restrict our analysis to the case in which k(u) is an

arbitrary function while the other cases can be done in a

forthcoming work. Integrating the corresponding charac-

teristic equations yields the reduced GKP equation

� o2u

os2
þ o2u

osoz

� �
þ a

d2k

du2

ou

os

� �2

þ a
dk

du

o2u

os2
þ b

o4u

os4

þ c
o2u

oz2
¼ 0; ð7Þ

where the similarity variables are s = x - t, z = y - t and

u = u(s, z).

This equation can be rewritten in the following form

q2c � pw
� � d2u

df2
þ ap2 d2

df2
kðuÞ þ bp4 d4u

df4
¼ 0; ð8Þ

where f = ps ? qz = px ? qy - wt and upon integrating

twice with respect to f, Eq. (8) becomes

d2u

df2
¼ h

bp4
u � a

bp2
kðuÞ þ m0f þ m1; ð9Þ

where h = pw - q2c and m0, m1 are integration constants.

Setting m0 = m1 = 0, this equation can be rewritten in the

form of energy conservation law

1

2

du

df

� �2

þVðuÞ ¼ E; ð10Þ

where E is the integration constant and represents the total

energy and V(u) is the potential function. In terms of the

arbitrary function k(u), the potential energy is given by

VðuÞ ¼ a
�

bp2
� � Z

dukðuÞ � hu2
�

2bp4
� �

ð11Þ

Here, one may obviously conclude that solving GKP

equation is now equivalent to solve the equation of motion

of a particle in a conservative field with the potential

energy (11). In addition, the exact solutions of GKP

equation can be obtained by integrating

df ¼ � duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hu2= bp4ð Þ � 2a= bp2ð Þ

R
dukðuÞ þ 2E

p ; ð12Þ

Now dealing with GKP equation with an arbitrary

nonlinear coefficient k(u), there are some important points

to make here:

Firstly, one can see from Eqs. (11), (12) that the non-

linear term k(u) plays a crucial role for constructing dif-

ferent forms of potential functions and explicit solutions of

GKP equation.

Secondly, the explicit forms of both potential functions

and the corresponding solutions of GKP equation can be

obtained in terms of quadrature by integrating (11) and (12)

that can only be done for given explicit forms of k(u). For

example, if

kðuÞ ¼ c1

m þ 1
umþ1 þ c2

n þ 1
unþ1: ð13Þ

The corresponding potential function is given by

VðuÞ ¼ a
bp2

c1

ðm þ 1Þðm þ 2Þ umþ2 þ c2

ðn þ 1Þðn þ 2Þ unþ2

� �

� h

2bp4
u2; ð14Þ

where c1, c2, m and n are constants. In the field of the

plasma physics, this type of the potential V(u) is called

Sagdeev potential. This potential plays an important role

for investigating the stability condition of the obtained

solution. However, stable solitonic solution can be recog-

nized when the Sagdeev potential satisfies the condition

q2V(u)/qu2 \ 0 at u = 0, otherwise stable solutions do not

exist.

With the knowledge of the explicit form of the Sagdeev

potential, the general solution of GKP equation can be

obtained by integrating Eq. (12).

As a particular case, if c1 = c2 and m = n, the explicit

solitary wave solution of GKP goes to the one obtained by

Dai et al. [30]

u ¼ �
ðm þ 1Þðm þ 2Þh sec h2 m

2
f

ffiffiffiffiffi
h

bp4

q
 �
2ap2

0
@

1
A

1
m

; ð15Þ

using auxiliary and homogenous method. Clearly, this type

of solution depends mainly on the values of the exponent

m of the power law nonlinearity. Therefore, five particular

cases of physical interest are considered.
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Case 1: m = n = 2, c1 = c2 = 1/2

In this case k(u) = u3
�

3 and the corresponding GKP

equation reads

o

ox

ou

ot
þ a

o

ox

1

3
u3

� �
þ b

o3u

ox3

� �
þ c

o2u

oy2
¼ 0; ð16Þ

This class of the KP equation has been used to describe

the propagation of dust acoustic solitary waves in dusty

plasma at critical density [9]. Upon integrating (11), the

corresponding potential function is

VðuÞ ¼ a
12bp2

u4 � h

2bp4
u2: ð17Þ

In terms of the similarity variably f, the KP Eq. (16)

reads

du

df
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E þ h

bp4
u2 � a

6bp2
u4

s
: ð18Þ

To furnish bifurcation and phase portrait in this case,

Eqs. (17) and (18) should be used.

Under the conditions a[ 0, b[ 0 and h [ 0, as shown

in Fig. 1, the potential diagram has three fixed points in a

pitchfork bifurcation with two symmetric wells. This

means that the potential curve has two pits and a hump.

The corresponding phase portrait (u,du=df) is shown Fig. 2

and it obviously has two centers and saddle equilibrium

state on the phase portrait of Eq. (16). It can be seen that

there exist a series of periodic orbits around the points

(3h
�
ðap2Þ, 0) and (�3h

�
ðap2Þ, 0). These trajectories refer

to a periodic travelling wave solutions. Also as shown from

the topology of the phase portrait, the particular trajectories

going from a saddle and retuning to it referred to as sep-

aratrix closed loops (homoclinic loops). These trajectories

refer to existence of solitary wave solutions of GKP

equation with such type of potential. This type of solution

can be obtained by integrating (12) and yields

u ¼ � u0 sec h
f
W

� �
; ð19Þ

where u0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6h=ðap2Þ

p
is the amplitude and W ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
bp4=h

p
is the width of the soliton. It is noted that this solution is a

special case from (15) if m ¼ 2 and its behavior in terms of

the original variables is shown in Fig. 3. This solution was

obtained previously by Pakzad and Javiden [9]. Also, it is

Fig. 1 The potential VðuÞ for a ¼ 1; b ¼ 0:05; p ¼ 0:93; c ¼ 2 Fig. 2 Phase portrait for a ¼ 1;b ¼ 0:05; p ¼ 0:93; c ¼ 2

Fig. 3 The solution with a ¼ 1;b ¼ 0:05; p ¼ 0:93; c ¼ 2
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stable solitonic solution since the stability condition

o2VðuÞ
�
ou2\0 at u ¼ 0 is satisfied.

Case 2: m = n = 1, c1 = c2 = 1/2

In this case kðuÞ = u2
�

2 and GKP equation reads

o

ox

ou

ot
þ a

o

ox

1

2
u2

� �
þ b

o3u

ox3

� �
þ c

o2u

oy2
¼ 0: ð20Þ

This is the most familiar type of the KP equation and it

has many applications in various field of physics. With this

choice, the corresponding potential function is

VðuÞ ¼ a
6bp2

u3 � h

2bp4
u2; ð21Þ

In terms of the similarity variable f, the reduced KP

equation is

du

df
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E þ h

bp4
u2 � a

3bp2
u3

s
: ð22Þ

Under the condition a[ 0, b [ 0 and h [ 0, the profile

of the potential function and phase portrait are shown in

Figs. 4 and 5, respectively. In this case, the potential well

has one hump and a pit that correspond to a saddle point at

(0, 0) and a center point at (h
�
ðap2Þ, 0) in the phase por-

trait. An explicit solution of GKP equation can be obtained

by integrating (12) and yields the well-known stable soli-

tary wave solution

u ¼ �u0 sec h2 f
W

� �
; ð23Þ

where u0 ¼ 3h
�
ðap2Þ is the amplitude and W ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
bp4=h

p
is the width of the soliton solution.

If m ¼ 1, one can see that this solution is a special case

from the general one (15) and in terms of the original

coordinates the obtained solution is shown in Fig. 6.

Case 3: m ¼ n ¼ 1=2, c1 ¼ c2 ¼ 1=2

In this case kðuÞ = 2u3=2
�

3 and GKP equation reads

o

ox

ou

ot
þ a

o

ox

2

3
u

3
2

� �
þ b

o3u

ox3

� �
þ c

o2u

oy2
¼ 0: ð24Þ

This class of KP equation has been considered to study

both electron and ion-acoustic waves in a plasma in the

case of positive and negative dispersion [7, 8].

Fig. 4 The potential VðuÞ for a ¼ 1; b ¼ 0:05; p ¼ 0:93; c ¼ 2 Fig. 5 Phase portrait for a ¼ 1;b ¼ 0:05; p ¼ 0:93; c ¼ 2

Fig. 6 The solution for a ¼ 1;b ¼ 0:05; p ¼ 0:93; c ¼ 2
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In this case, the corresponding potential function is

VðuÞ ¼ 4a
15bp2

ðuÞ
5
2 � h

2bp4
u2; ð25Þ

and the portrait follows the equation

du

df
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E þ h

bp4
u2 � 8a

15bp2
:u

5
2

s
: ð26Þ

Under the condition a[ 0, b [ 0 and h [ 0, the profile

of the potential function and phase portrait are shown in

Figs. 7 and 8, respectively. In this case, the potential well

has one hump and a pit and this correspond to a saddle

point at (0, 0) and a center point at (½3h
�
ð2ap2Þ�2, 0) in the

phase portrait. These trajectories refer to existence of

solitary wave solution and are given by integrating (12) in

the following form

u ¼ � u0 sec h4 f
W

� �
; ð27Þ

where u0 ¼ ½15h
�
ð8ap2Þ�2 is the amplitude and W ¼

4
ffiffiffiffiffiffiffiffiffiffiffiffi
bp4=h

p
is the width of the soliton solution. If m = 1/2,

one can see that this solution is a special case from the

general one (15) and in terms of the original coordinates

the obtained solution is shown in Fig. 9. This type of

solution is stable since the stability condition is satisfied. It

is noted that this type of solitonic solution has been

obtained previously by Mamun et al. [31].

Case 4: m = 2, n = 1

In this case kðuÞ ¼ c1u3
�

3 þ c2u2
�

2 and GKP equation

reads

o

ox

ou

ot
þ a

o

ox

c1

3
u3 þ c2

2
u2


 �
þ b

o3u

ox3

� �
þ c

o2u

oy2
¼ 0:

ð28Þ

This class of KP equation is very important in the field

of nonlinear physics, since it is the generalization of the

combined one-dimensional KdV–mKdV equations.

The corresponding potential function follows

VðuÞ ¼ � h

2bp4
u2 þ a

bp2

c2

6
u3 þ c1

12
u4


 �
; ð29Þ

and the portrait follows in this case the equation

du

df
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E þ h

2bp4
u2 � a

bp2

c2

6
u3 þ c1

12
u4


 �s
: ð30Þ

As shown in Figs. 10 and 11, the potential well has one

hump and two pits that correspond to saddle and two

Fig. 7 The potential VðuÞ for a ¼ 1; b ¼ 0:05; p ¼ 0:93; c ¼ 2

Fig. 8 Phase portrait for a ¼ 1;b ¼ 0:05; p ¼ 0:93; c ¼ 2

Fig. 9 The solution for a ¼ 1;b ¼ 0:05; p ¼ 0:93; c ¼ 2
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centers equilibrium state in the phase plane of GKP

equation. The corresponding solution in this case is

u ¼ � 1

a1 þ a2 sinh2 f
W

� � ; ð31Þ

where a1 ¼ p2½c2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

2 þ 6c1h=p2
p

�
.
ð6hÞ, a2 ¼ p2

½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

2 þ 6c1h=p2
p

�
.
ð3hÞ, W ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
bp4=h

p
�. The behavior of

this solution in terms of the original coordinates is shown

graphically in Fig. 12.

Case 5: In this case, we consider the GKP equation with

kðuÞ ¼ u lnð uj jÞ þ u=2 that yields the following logarith-

mic potential function

VðuÞ ¼ � h

2bp4
u2 þ a

2bp2
u2 ln uj jð Þ: ð32Þ

This type of potential appears in the problem of studying

propagation of Alfven waves in compressible fluid in the

presence of an external magnetic field [28], and the portrait

follows the equation

du

df
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E þ h

bp4
u2 � a

bp2
u2 ln uj j

s
: ð33Þ

The potential diagram Fig. 13 has three fixed points in a

pitchfork bifurcation with two symmetric wells. This

means that the potential curve has two pits and a hump and

the corresponding phase portrait has obviously two centers

and saddle equilibrium state on the phase portrait of (32).

Fig. 10 The potential VðuÞ for a ¼ 1;b ¼ 0:05; p ¼ 0:93; c ¼ 2

Fig. 11 Phase portrait for a ¼ 1; b ¼ 0:05; p ¼ 0:93; c ¼ 2

Fig. 12 The solution for a ¼ 1;b ¼ 0:05; p ¼ 0:93; c ¼ 2

Fig. 13 The potential VðuÞ for a ¼ 1;b ¼ 0:05; p ¼ 0:93; c ¼ 2
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The topology of potential curves and phase portrait are,

respectively, shown in Figs. 13, 14 and GKP equation with

the logarithmic nonlinear coefficient kðuÞ admits the fol-

lowing solution

u ¼ exp a1 þ a2n
2

� �
; ð34Þ

where a1 ¼ h
�
ðap2Þ, a2 ¼ �a

�
ð4bp2Þ. This type of solu-

tion is shown in Fig. 15 in terms of the original variables.

Conclusions and remarks

In this paper, we considered GKP equation with an arbi-

trary nonlinear term kðuÞ. Based on the Lie symmetry

method, we derived a very important condition on kðuÞ that

must satisfy for the existence of Lie symmetries. The

advantage of this condition is that one can get a quick

answer of whether GKP equation admits Lie symmetries or

not. Also with the aid of this condition, we able to specify

three new classes of kðuÞ associated with new symmetries.

These classes are related to the logarithmic and exponential

nonlinearity. As shown in Table 1, the obtained symmetry

groups are of infinite dimensional since they contain two

arbitrary functions of time. This type of symmetry is very

useful for solving initial and boundary value problem. In

addition, this gives an impression that the GKP equation

with infinite symmetry group admits wide classes of sim-

ilarity solutions.

In the frame work of bifurcation and phase portrait,

different classes of solutions are predicted and the explicit

solitary wave solutions are obtained for different forms of

the nonlinear coefficient kðuÞ. All the obtained solutions

are similarity solutions and correspond to time and coor-

dinate translation. The solutions associated with other types

of symmetries will be done in forthcoming work.

When the inhomogeneous media are considered, the

GKP equation with variable coefficients becomes more

realistically than GKP Eq. (2). Studying the behavior of

solutions of inhomogeneous case merits a separate inves-

tigation using tools of soliton theory, which is our future

task. The application of our results might be particularly

interesting in the investigations in homogeneous and

inhomogeneous space and laboratory plasma [32–36].
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