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Abstract
In tokamaks, small variations in the magnetic field create ripple. The discontinuous nature of the magnetic field coils in an 
axisymmetric torus conduces to additional particle trapping, and it is responsible for an additional neoclassical diffusion. 
Ripples also reduce the particle removal efficiency and disturb plasma confinement and cause constraints in the design of 
magnet of fusion reactor. Therefore, it is quite important to include the ripple for the design of plasma edge components. 
Herein, several considerations are taken into account to calculate and evaluate the diffusion coefficient and ion heat conduc-
tivity in ripple transport and also to compare it with neoclassical mode.

Keywords Neoclassical diffusion · Ripple magnetic field · Ripple transport · Diffusion coefficient · Diffusivity · Ion heat 
conductivity

Introduction

The axisymmetry of the magnetic field has been assumed 
as one of the substantial advantages of tokamaks. Apart 
from the simplicity of analysis, the radial motion of parti-
cles trapped in low collision frequencies is less than that of 
asymmetric fields [1].

It is expected that in an axisymmetric magnetic field con-
figuration of a tokamak D-T reactor, fusion-produced alpha 
particles are well confined and thus provide for efficient 
internal plasma heating. The presence of magnetic perturba-
tions, however, may greatly affect the retention of these par-
ticles and lead to their loss from the confinement region [2].

Small variations in the magnetic field are called magnetic 
ripple. In practice, the discrete nature of the magnetic field 
of the toroidal coils around the torous creates a ripple in the 
field intensity with a period equal to the distance between 
the centers of the coils. This perturbation is toroidal field 
ripple (TFR).

Ripple has negative effects on fusion plasma performance 
including the fusion energy reduction due to particle loss, 
the plasma beta reduction and the rotation break. Generally, 

various magnetic perturbations like toroidal field ripples 
can degrade fast ions confinement. In the outer region of 
tokamak plasmas due to loose winding of toroidal coils, TF 
ripples have strongest effect and can cause fast ions to loose 
very quickly which in turn can also damage the first wall of 
the tokamak [2–5].

The ripple strength not only enhances the diffusion coef-
ficient but also changes the energy dependence [6].

An ideal, axisymmetric tokamak has no ripple. In real-life 
machines, the finite widths of the toroidal field coils create 
a periodic ripple [7].

Deviation from the symmetry is generally considered 
to be fiddling. This effect will be more important probably 
in the next generation of machines, for two reasons. It is 
expected to reach higher temperatures which is accompanied 
by upsurging of asymmetry effect as the frequency of colli-
sion reduces. In some collisional regime for the present and 
next generation of tokamaks, the ripple diffusion changes 
inversely to frequency of collision [1].

In “Ripple transport” section, we discuss about the rip-
ple transport and the ripple magnetic field in the toroidal 
coordinate and superbanana diffusion. In “A solution of the 
Fokker–Planck equation for trapped particles in the mag-
netic field ripples” and “Diffusion and heat transport” sec-
tions, the Fokker–Planck equation is presented for particles 
trapped in the ripple magnetic field and the equations for 
the particle flux and heat flux are obtained to calculate the 
diffusion coefficient and the ion heat conductivity and finally 
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transport coefficients are compered in neoclassical and rip-
ple mode for IR-T1 tokamak.

Ripple transport

The ripple transport is due to the drift motion of particles 
distributed in the ripple of a magnetic field. The moderate 
number of toroidal field coils of a tokamak expunges the per-
fect axial symmetry of the system. The coils create a short 
wavelength in the magnetic field strength, namely “ripple,” 
as a field line is pursued around the torus.

For N coils, the magnetic field can be presented by

where � is the poloidal angle circa the magnetic axis, � indi-
cates the angular distance around the axis of symmetry, r is 
the radial distance from the magnetic axis, R is the radius 
of the magnetic axis and � = r∕R is the inverse aspect ratio.

An estimation for the value of � , for the case of strongly 
elongated toroidal field coils, is defined by

where Router and Rinner are, respectively, the major radii of the 
outer and inner legs of the toroidal coils space [3].

For a particle to be trapped in the ripple wells it has to 
satisfy the condition that the parallel velocity sufficiently 
small that magnetic mirror reflection occurs in the ripple 
well. This is equivalent to the statement that the banana 
turning point positions of the particles lie inside the ripple 
well region. Particles are trapped into and re-trapped out of 
ripple well by collisional processes, in particular by pitch-
angle scattering, which change the ratio between the parallel 
and perpendicular velocities. The typical residence time of 
a particle in ripple well is of the order Δt ∼ �∕� , where � is 
the collisional deflection frequency. The fraction of particles 
which is ripple well trapped is of order �1∕2.

Due to the toroidal field gradient drift, the trapped par-
ticles in the ripple well drift vertically with a velocity of 
vd ∼ �v∕R where � is the Larmor radius and v is the total 
particle velocity. Incorporating the ripple well trapped frac-
tion, the drift velocity and the residence time, a diffusion 
coefficient for collisional ripple well transport can be esti-
mated as:

where D is radial diffusion coefficient for a circular plasma, 
averaged over the pitch angle. This implies a greater loss rate 
for ions than for electrons, and an ambipolar electric field 

(1)B = B0(1 − � cos �)(1 − �(r, �) cosN�)

� =

(
R
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)N

+

(
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R

)N
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(2)D ∼ �1∕2
(
�v�

R�

)
�

�
∼

�3∕2�2v2

R2�

will evolve to reduce the ion particle diffusion. Nevertheless, 
Eq. (2) remains an appropriate estimate. It should, however, 
be noted that its validity is restricted to collision frequen-
cies 𝜈 > vd𝛿∕a , where a is plasma minor radius; otherwise, 
particles would drift out of the plasma before suffering a 
collision, producing a loss cone in velocity space rather than 
a diffusion. This restriction is particularly stringent as D 
which is dominated by contributions from the more ener-
getic particles, so that the inequality must hold for these 
particles. (Energies are approximately five times the plasma 
temperature.) The proper poloidal averaging procedure leads 
to a significant reduction of D from that given in Eq. (2) [3].

The ripple-induced diffusion is different from the super-
banana diffusion in stellarators. Stringer has given an ample 
argument of this difference which becomes evident at small 
values of N [3]. He showed that for values of � = �t∕N� ( t 
is the rotational transformation) in excess of unity the ripple 
does not outcome in the constitution of local magnetic mir-
rors and resultant trapping over the whole minor azimuth, 
and that, generally for � of order unity, considerable dimi-
nution of the mirror depth arises at all angles. This can be 
seen from Eq. (1) by noting minimum in Bl (where l is arc 
length along a field line) arise only if 𝛼 sin 𝜃 < 1 . Even when 
this retains, each ripple is an asymmetric mirror with mirror 
rotation R±(�) where

Therefore, a well depth Δ(�) ≡ (R− − 1) is given by

Stringer’s estimation of the decrease in diffusion and ion 
heat flux is attained by including this decrease in the well 
depth from 2� to Δ(�) . Though this effect is a highly impor-
tant factor, it undermines the asymmetric distortion of the 
ripple wells. In the next part, here we offer the solution of 
the Fokker–Planck equation for the ripple-trapped distribu-
tion, and then we deduced the resultant transport coefficients.

The analysis offered is right in the main range of collision 
frequencies �j given by

where v
Thj

 is the thermal speed of species j and �cj is the 
gyrofrequency. Physically, it means that the effective colli-
sion frequency �eff = �∕� is less than the bounce time of a 
ripple-trapped particle �b = �1∕2vThN∕R , but higher than the 
drift frequency circa of a complete superbanana orbit in the 
mirror azimuth of the torus [8–11].
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A solution of the Fokker–Planck equation 
for trapped particles in the magnetic field 
ripples

Collision frequencies in range (4) can be considered by writ-
ing a kinetic equation which presumes the jump frequency and 
effective collision frequency �eff = �∕� are comparable and then 
writing a secondary expansion in �eff∕�b . We define the distribu-
tion function fj which is the average amount over a gyro-period 
of the Larmor radius to a Maxwellian Fj that satisfies Eq. (5):

where

And the kinetic energy per unit mass is � = v2∕2 , and 
� is the sign of the velocity q along the field. The gradient 
operators in Eq. (5) are taken into account at constant energy

where Φ(r) , as a function of radius, is an electrostatic poten-
tial. The drift velocity v⃗d j is given by

where n⃗ is a unit vector along the field and the magnetic 
moment is expressed by � . We know � = q2∕2 + �B.

To acquire a dissolvable equation for fj , we exchange the 
C(fj) by an ordinary pattern. For electron–ion collision, we 
can apply the Lorentz approximation

However, ion–electron collisions may be waivered in 
comparison with ion–ion collisions. The two like-particle 
collision operators Cee and Cii may also be exchanged by 
operators similar to expression (8), videlicet

with

(5)𝜎qn⃗ ⋅ ∇fj + v⃗d j ⋅ ∇Fj = C(fj)
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2 fj

An explanation of this form is that it may be taken from the 
Rosenbluth–McDonald–Judd form for distributions fj local-
ized in velocity space, as in the current case. The term contain-
ing p certifies momentum conservation but may be waivered 
here, and for a localized distribution, its portion is small. This 
term is needed in the axial symmetric case where momentum 
conservation plays a significant role. Eventually, we need to 
define the collision frequencies as:

where xj(�) = mjk∕Tj,

With

obviously in Aei , xi ≫ xe , therefore

Coming back to the solution of kinetic equation (5), we 
need to consider the slow alteration in � over a ripple period by 
using the field line equation � = �0 + t� , where �0 is a refer-
ence angle for each field line. Then, by introducing the variable 
�0 clearly into the basic kinetic equation, the first term can be 
expressed as:

and the second term is

We look for a solution for those particles trapped in a mag-
netic field ripple, and for these, we expend Eq. (5) in �eff∕�b . 
The term �q∕R �fj∕�� could be expunged by operator ∑
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q
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with the expansion (15) we see in the lowest order

And in the first order, after applying the annihilator, one 
gets the following equation for f (−1)

j
:

where

On the left-hand side of Eq. (17), considering X = N� as 
the variable of integration with a range of less than 2� , we 
will have

And since �(�J)
��

= − ∫ �2

�1

d�

q
(�B − q2).

And q
2

�B
∼ O(�).

Equation (17) is as follows:

The suitable solution of this equation in the range of 
𝜅

Bmax
< 𝜇 < 𝜅

Bmin
 is

where Bmax is given by [10] 
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Diffusion and heat transport

The particle diffusion flux is defined as

and the ion heat flux is defined as

where �drj = −
�

�coj
R
sin �0 and

And

And

where A = −
2
√
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 [10, 12].

Basically, collisional transport in tokamak depends 
on toroidal effects. In toroidal geometry, the particle and 
heat flux are greater than their values in the cylinder. 
Regardless of the magnetic field ripple effect in neoclas-
sical transport, we can write the following equation for 
particle and energy flux:

 [13].
By using Eq. (2) in Sect. 2, for diffusion coefficient D, 
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ripple banana is limited by collisions and Eq. (2) is still 
true. When 𝜔E(𝜀T∕e)

4 < 𝛿𝜔E < 𝜈 , the ripple diffusion is

The most complete expressions for the ambipolar dif-
fusion and heat transport by assumption 𝛼 << 1 can be 
written as follows:

and

where Γa is mean particle flux per unit area of either species 
across a magnetic surface and Qi is the mean ion heat flux 
or thermal diffusivity.

The simple form for radial profiles of tokamaks can be 
considered as follows: n(r) = n0(1 − x2), Ti = Ti0(1 − x2), 
�(r) = �ax

2, x = r∕a [1].
The ratio of par ticle and heat transpor t for 

the r ipple contr ibution can be wr itten as fol-
l o w s :  �iR∕DR ∼ 2(mi∕me)

1∕2(Ti∕Te)
7∕2(1 + Ti∕Te)

−1 
while for toroidal contributions can be written as: 
�ib∕Db ∼ 0.5 (mi∕me)

1∕2(Te∕Ti)
7∕2(1 + Ti∕Te)

−1 .  In  the 
condition of present tokamaks where Ti∕Te ∼ 0.5 , the �iR 
is relatively less important than that of in the condition 
which is Ti = Te.

This difference in the results is due to the difference 
between values of Ti∕Te [14].

Experimental setup and results

IR-T1 is an air-core transformer-type tokamak with a cir-
cular cross section, low beta and large aspect ratio, which 
has two stainless steels grounded fully, poloidal limiters 
and ohmic heating discharge system. The average pressure 
before discharge is in the range of 2.5–2.9 × 10−5 Torr. It 
contains magnetic, electric, rake Mach probes and Mirnov 
coils for plasma diagnostics. Also it contains toroidal 
coils, ohmic coils and central solenoid and vertical coils. 
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In IR-T1, 16 toroidal field coils produce a magnetic field 
around the torus to confine the plasma.

The experiments were performed in the hydrogen [15]. 
Some of the main characteristics of IR-T1 are shown in 
Table 1 [16].

The simple shape of the radial profiles of temperature 
and density is plotted according to Sect. 4, formulas. We 
observed the reduction as we move away from the center 
and move toward the plasma edge (Figs. 1, 2, 3, 4).

The ripple ratio �B (magnitude of the magnetic field rip-
ple) �B = (Bmax − Bmin)∕(Bmax + Bmin) for IR-T1 with 
16 coils is calculated as �B ≃ 0.6 . For TorSopra, �B = 0.5 , 
for JET, �B = 0.08 , for ASDEX, �B = 0.6 and for JT060u 
�B = 1 [17].

Losses due to particle and energy transport can create 
many limitations in the design of the reactor magnet. Of 
course the number of toroidal coils can affect the dissi-
pation of energy. The amplitude of the ripples is clearly 
lower when the number of toroidal coils is higher. For 
example, in JET tokamak, by reducing the number of coils 
from 32 to 16, the ripples level increased from 1 to 10% 
[18–24].

Table 1  Some of IR-T1 tokamak characteristics

Parameters Value

Major radius (r) 0.45 m
Minor radius (a) 0.125 m
Material of first wall Stainless steel
Limiter type and diameter (m) Ring limiter and 0.250
Ripple at plasma edge and number of coils 16
Toroidal magnetic field (Bt) 0.6–0.9 T
Plasma current (Ip) Up to 40 kA
Discharge duration < 35 ms
Energy confinement time 1–3 ms
Electron density 0.7–1.5 × 1013 cm−3

VLoop 2.6–8 V

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x=r/a
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5

10

15

20
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V
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Fig. 1  Radial profiles of electron temperature versus x = r/a for IR-T1 
tokamak parameters
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The variation in transport coefficients 
on IR‑T1 tokamak

By using Eqs. (28) and (24), (30) in Sect. 4, for ripple and 
neoclassical transport, the coefficients have been evaluated 
numerically for IR-T1 tokamak parameters. The variations in 
the diffusion coefficient and ion heat conductivity with radius 
for IR-T1 parameters are plotted in Figs. 5 and 6, respectively.

As we see in Figs. 5 and 6 in the IR-T1 tokamak conditions, 
particle diffusion coefficient and heat conductivity do not differ 

greatly. On both graphs, the neoclassical coefficient is decreas-
ing by radius but the ripple distribution is increasing.

Also comparison of the plots shows that the thermal con-
ductivity coefficient increases by increasing the radius, but this 
increase is faster than the diffusion coefficient with a factor 
about 4.1.

Conclusion

In this work, we investigated transport coefficients (diffu-
sivity and ion heat conductivity) considering the effects of 
ripples in the magnetic field. In addition to the neoclassical 
diffusion, we observed the ripple diffusion and compared the 
transport coefficients for these two modes. The ripple ratio 
is also calculated numerically, �B ≃ 0.6 , for IR-T1 tokamak 
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Fig. 2  Radial profiles of density versus x = r/a for IR-T1 tokamak 
parameters

Fig. 3  Plasma current of IR-T1 tokamak

Fig. 4  Toroidal magnetic field (Bt) of IR-T1 tokamak
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Fig. 5  Comparison of diffusion coefficient due to neoclassical and 
ripple transport versus radius, x = r/a on IR-T1 tokamak
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Fig. 6  Comparison of ion heat conductivity due to neoclassical and 
ripple transport versus radius, x = r/a on IR-T1 tokamak
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magnetic field. The observations indicate that diffusivity 
and ion heat conductivity decrease, as we move away from 
the plasma center in neoclassical mode. But in ripple mode, 
transport coefficients increase with the radius, and the rate 
of growth of the conductivity coefficient is greater than the 
diffusion coefficient.
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Creative Commons license, and indicate if changes were made.
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