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Abstract Solution of the radial Schrodinger equation for

the Woods–Saxon potential together with spin–orbit

interaction, coulomb and centrifugal terms by using usual

Nikiforov–Uvarov (NU) method is not possible. Here, we

have presented a new NU procedure with which we are

able to solve this Schrodinger equation and any other one-

dimensional ones with any shape of the potential profile.

For this purpose, we have combined the NU method with

numerical fitting schema. The energy eigenvalues and

corresponding eigenfunctions for various values of n, l, and

j quantum numbers have been obtained. Good agreement

with experimental values is also achieved. We have cal-

culated the 1/2? state energy with more accuracy (our

absolute error = 0.023 MeV and Hagen et al. absolute

error = 0.0918 MeV), while Hagen et al. have calculated

the 5/2? state energy with higher accuracy (our absolute

error = 0.71 MeV and Hagen et al. absolute error =

0.0337 MeV). Our wave functions are in agreement with

Kim et al.’s work, too.

Keywords Nikiforov–Uvarov (NU) method �
Eigenvalues and Eigenfunctions � Woods–Saxon potential �
Spin–orbit interaction � Coulomb potential � Centrifugal

term � Numerical fitting

Introduction

In the study of the breakup of 17F into proton ? 16O,

some potential model for 17F has been used previously

such as Woods–Saxon potential with spin–orbit and

coulomb potentials [1] and M3Y interaction model [2].

Solution of the Schrodinger equation including the above

potentials has been done by the numerical methods in the

above-mentioned works. This is because analytical solu-

tion of these equations is not possible. However, some

theoretical groups have tried to solve these Schrodinger

equations analytically. For example, Pahlavani et al. have

solved the Schrodinger equation including Woods–Saxon

potential with spin–orbit and centrifugal terms by Niki-

forov–Uvarov method [3]. They did not include the

coulomb term to their calculations. Adding the coulomb

potential (here for r\RC; RC = spherical nucleus radius)

and solution of the Schrodinger equation by Nikiforov–

Uvarov method is the main goal of the present work. In

our previous works we have used the NU method to solve

the Schrodinger equation with different potentials such as

angle-dependent potential [4], Energy-dependent potential

[5]; Dirac equation with NU method such as Hartmann

potential [6]; Duffin–Kemmer–Petiau (DKP) equation

with NU method such as Woods–Saxon potential [7],

Hulthen vector potential [8] and Klein–Gordon equation

with NU method such as energy-dependent potential [9].

Here, we have extended the Ref. [3] by adding a coulomb

term to its potential. Adding this potential enhances the

difficulty of the problem very much. Thus, we had to

change the transformations and other formulas of the Ref.

[3] to be able to solve the Schrodinger equation. Finally,

energy eigenvalues and corresponding eigenfunctions

obtained.
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Parametric NU method

This powerful mathematical tool could be used to solve the

second-order differential equations. Considering the fol-

lowing differential equation [10–12]

w00
n sð Þ þ ~s sð Þ

r sð Þw
0
n sð Þ þ ~r sð Þ

r sð Þ2
wn sð Þ ¼ 0; ð1Þ

where r ðzÞ and ~rðzÞ are polynomials of second order at

most, and ~sðzÞ is a first-order polynomial. To make the

application of the NU method simpler and the checking of

the validity of solution unnecessary, we present a shortcut

for the method. We begin the method by writing the gen-

eral form of the Schrodinger-like Eq. (1) as

w00
n sð Þ þ c1 � c2s

sð1 � c3sÞ

� �
w0
n sð Þ

þ �p2s
2 þ p1s� p0

s2ð1 � c3sÞ2

 !
wn sð Þ ¼ 0; ð2Þ

where the wave functions wnðsÞ satisfies

wn sð Þ ¼ / sð Þyn sð Þ: ð3Þ

By comparing Eq. (3) with its counterpart Eq. (2), one

can obtain

~sðsÞ ¼ c1 � c2s; rðsÞ ¼ sð1 � c3sÞ;
~rðsÞ ¼ �p2s

2 þ p1s� p0:
ð4Þ

According to the NU method [10], one can obtain the

bound state energy equation as [11, 12]

c2n� ð2nþ 1Þc5 þ ð2nþ 1Þð ffiffiffiffiffi
c9

p þ c3

ffiffiffiffiffi
c8

p Þ
þ nðn� 1Þc3 þ c7 þ 2c3c8 þ 2

ffiffiffiffiffiffiffiffiffi
c8c9

p ¼ 0; ð5Þ

where

c4 ¼ 1

2
ð1 � c1Þ;

c5 ¼ 1

2
ðc2 � 2c3Þ;

c6 ¼ c2
5 þ p2;

c7 ¼ 2c4c5 � p1

c8 ¼ c2
4 þ p0;

c9 ¼ c3ðc7 þ c3c8Þ þ c6:

ð6Þ

In addition, we also find that:

qðsÞ ¼ sc10ð1 � c3sÞc11 ð7Þ

uðsÞ ¼ sc12ð1 � c3sÞc13 ð8Þ
c12 [ 0; c13 [ 0

ynðsÞ ¼ Pðc10;c11Þ
n ð1 � 2c3sÞ; c10 [ � 1; c11 [ � 1 ð9Þ

are necessary in calculating the wave functions

wnlðsÞ ¼ Nnls
c12ð1 � c3sÞc13Pðc10;c11Þ

n ð1 � 2c3sÞ; ð10Þ

where P
ðl;mÞ
n ðxÞ; l[ � 1; m[ � 1; x 2 �1; 1½ � are Jacobi

polynomials. All undefined constant parameters are as

follows [13]:

c10 ¼ c1 þ 2c4 þ 2
ffiffiffiffiffi
c8

p

c11 ¼ 1 � c1 � 2c4 þ
2

c2

ffiffiffiffiffi
c9

p

c12 ¼ c4 þ
ffiffiffiffiffi
c8

p

c13 ¼ �c4 þ
1

c3

ð ffiffiffiffiffi
c9

p þ c5Þ;

ð11Þ

where

c3 6¼ 0; c13 [ 0; c12 [ 0; s 2 ½1; 1=c13� and c13 6¼ 0:

ð12Þ

Solutions of Schrodinger equation

We treat 17F as the combination of a proton and an inert
16O core with spin 0 [1]. Schrodinger equation for the N-

particles which interact with each other can be written as

[17, 18]:

�h2

2l
d2

dr2
þ D� 1

r

d

dr
� l lþ D� 2ð Þ

r2

� �
R rð Þ þ V rð ÞR rð Þ

¼ ER rð Þ; ð13Þ

where D = 3N - 3. Here, D, l, and N denote, respectively,

the space dimension, total angular momentum and the

number of particles, l is one of particle masses, and x is the

hyper-radius. If we write this equation for 17F as the

combination of a proton and an inert 16O core with spin 0

(we have two-particle systems. Thus, N = 2 and then we

find D = 3), we find the radial part of the Schrodinger

equation as,

d2R rð Þ
dr2

þ 2

r

dR rð Þ
dr

þ 2l

�h2
E � V rð Þ � �h2l lþ 1ð Þ

2lr2

� �
R rð Þ ¼ 0:

ð14Þ

The potential profile contain the following terms.

1. Woods–Saxon:

VWS ¼ �V0

1 þ e
ðr�R0Þ

a

ð15Þ

We have used V0 = 42.71 MeV for 17F atom [3]. There,

V0 is defined as 40.5 ? 0.13A MeV, where A is the mass

number of nuclei (here 17 for 17F). R0 is radius of the

spherical nucleus and a = 0.65 fm is surface diffuseness.

Woods–Saxon potential has vast applications in

description of both spherical and deformed nuclei in nuclear

and particle physics. Analytic solution of Schrödinger

54 J Theor Appl Phys (2016) 10:53–59

123



equation with Woods–Saxon potential is very useful which

provide for us invaluable theoretical results. DKP equation

is also solved analytically by means of NU method a vector

deformed Woods–Saxon potential [18]. However, scientist

have solved the Woods–Saxon potential for S states (l = 0),

exactly and also by some approximation they have also

found the solutions for any l states. [19–22]

2. Spin–orbit term as,

VLS rð Þ ¼ V
ð0Þ
LS

r0

�h

� �21

r

d

dr

1

1 þ e
ðr�R0Þ

a

" #
L~:S~
� �

ð16Þ

where we have used V
ð0Þ
LS ¼ 0:44V0.

3. Coulomb term,

VCðrÞ ¼

e2

RC

3 � r

RC

� �2
" #

r�RC

8e2

r
r�RC

8>>><
>>>:

ð17Þ

Here we have solved the Schrodinger equation for r\RC.

By using of the change of variable as w rð Þ ¼ rRðrÞ we have,

dw
dr

¼ RðrÞ þ r
dRðrÞ

dr
: ð18Þ

Then the Schrodinger equation becomes,

d2wðrÞ
dr2

þ 2lE

�h2
wðrÞ � 2lVðrÞ

�h2
wðrÞ � l lþ 1ð Þ

r2
wðrÞ ¼ 0:

ð19Þ

Now, complete Schrodinger equation reads,

d2w rð Þ
dr2

þ 2lE

�h2
w rð Þ

� 2l

�h2

�V0

1 þ e
r�R0ð Þ
a

"
þ V

0ð Þ
LS r

2
0

1

r

d

dr

1

1 þ e
r�R0ð Þ
a

 !

� j jþ 1ð Þ � l lþ 1ð Þ � 3

4

� �
þ 3e2

pe0RC

� e2r2

pe0R
3
C

�
w rð Þ

� l lþ 1ð Þ
r2

w rð Þ ¼ 0: ð20Þ

We need another change of variable as s ¼ e�dr, which

leads,

dwðrÞ
dr

¼ dwðrÞ
ds

� ds

dr
¼ �ds

dwðrÞ
ds

ð21Þ

d2wðrÞ
dr2

¼ d2s2 d2RðsÞ
ds2

þ d2s
dRðsÞ

ds
: ð22Þ

We define d ¼ 1
a
, q ¼ edR0 , V 0

0 ¼ V0q and V 00
LS ¼ V0

LSq.

We have used the following approximation too,

1

r2
� d2 e�dr

1 � e�dr

� �2

: ð23Þ

To find the best value of the d we have changed the d
and plotted both side of the above equation several times

and found the best d to be 0.4 fm-1. Figure 1 shows two

sides of the above equation to obtain d. By using the later

change of variable the Schrodinger equation reads,

d2s2 d2RðsÞ
ds2

þ d2s
dRðsÞ

ds
þ 2lE

�h2
þ 2lV 0

0

�h2

s

1 þ qs

� ��

þ lr2
0V

00
LSd

2

�h2
j jþ 1ð Þ � l lþ 1ð Þ � 3

4

� �
s2

ð1 � sÞð1 þ qsÞ2

� 6le2

pe0�h
2RC

þ 2le2

pe0�h
2R3

Cd
2

ð1 � sÞ2

s2
� l lþ 1ð Þd2 s2

ð1 � sÞ2

!

� RðsÞ ¼ 0: ð24Þ

After some simplifications we have,

d2RðsÞ
ds2

þ 1

s

dRðsÞ
ds

þ
2lE
�h2d2 ð1� sÞ2 þ 2lV 0

0

�h2d2

sð1�sÞ2

1þqs

s2ð1� sÞ2

0
@

þ
lr2

0
V 00
LS

�h2 j jþ 1ð Þ � l lþ 1ð Þ � 3
4

	 
 s2ð1�sÞ
ð1þqsÞ2 � 6le2

pe0�h
2RCd

2 ð1� sÞ2

s2ð1� sÞ2

þ
2le2

pe0�h
2R3

C
d4

ð1�sÞ4

s2 � l lþ 1ð Þs2

s2ð1� sÞ2

1
CARðsÞ ¼ 0: ð25Þ

Here, we present a new procedure with which we can

convert the Schrodinger equation with any shape of the

potential profile into the NU type equation. To use the NU

method we convert the numerator of the potential term to a

second-order polynomial. For this purpose we have used

the following approximations which we have found

through numerical fitting,

sð1 � sÞ2

1 þ qs
¼ 0:006595579s2 � 0:0132710857s

þ 0:0067413175: ð26Þ

Fig. 1 Left hand side (LHS) and right hand side (RHS) of the

Eq. (23) to obtain d
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Figure 2a shows the two sides of the equation above. As

it is clear, this approximation is extremely good. We have

also used from

s2ð1 � sÞ
ð1 þ qsÞ2

¼ �3:3579988 � 10�9s2 � 0:432019240084

� 10�4sþ 0:4341808999 � 10�4: ð27Þ

Figure 2b shows the two sides of the equation above. As

it is clear, this approximation is extremely good. We have

also used from

ð1 � sÞ4

s2
¼ 0:981s2 � 3:537sþ 3:4: ð28Þ

Figure 2c shows the two sides of the equation above. As

it is clear, this approximation is extremely good. To con-

vert the last Schrodinger equation to the N-U type Schro-

dinger equation,

w00
n sð Þ þ ~s sð Þ

r sð Þw
0
n sð Þ þ ~r sð Þ

r sð Þ2
wn sð Þ ¼ 0 ð29Þ

w00
nðsÞ þ

1 � s

sð1 � sÞ

� �
w0
nðsÞ þ

�cs2 þ bs� e2

s2ð1 � sÞ2

 !
wnðsÞ ¼ 0:

ð30Þ

We define three parameters e, b, c as follows:

�c ¼ 2lE

�h2d2
þ 2lV 0

0

�h2d2
ð0:006595579Þ

þ
lV 00

LSr
2
0 j jþ 1ð Þ � l lþ 1ð Þ � 3

4

	 

�h2

� ð�3:3579988 � 10�9Þ

� 6le2

pe0�h
2RCd

2
þ 2le2

pe0�h
2R3

Cd
4
ð0:981Þ � lðlþ 1Þ

ð31Þ

b ¼ 4lE

�h2d2
þ 2lV 0

0

�h2d2
ð0:0132710857Þ

þ
lV 00

LSr
2
0 j jþ 1ð Þ � l lþ 1ð Þ � 3

4

	 

�h2

� ð0:432019240084 � 10�4Þ

þ 12le2

pe0�h
2RCd

2
� 2le2

pe0�h
2R3

Cd
4
ð3:537Þ ð32Þ

Fig. 2 a Left hand side (LHS, filled circle line) and right hand side (RHS, filled square line) of the Eq. (26) to show the accuracy of the

approximation (27). b Same as a but for Eq. (27). b Same a but for Eq. (28)
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�e2 ¼ 2lE

�h2d2
þ 2lV 0

0

�h2d2
ð0:0067413175Þ

þ
lV 00

LSr
2
0 j jþ 1ð Þ � l lþ 1ð Þ � 3

4

	 

�h2

� ð0:4341808999 � 10�4Þ

� 6le2

pe0�h
2RCd

2
þ 6:8le2

pe0�h
2R3

Cd
4

ð33Þ

Now we write b, c as function of e,

c ¼ e2 þ lV 0
0

�h2d2
ð0:000291477Þ

þ
lV 00

LSr
2
0 j jþ 1ð Þ � l lþ 1ð Þ � 3

4

	 

�h2

ð0:434214479888 � 10�4Þ

þ 4:838le2

pe0�h
2R3

Cd
4
þ lðlþ 1Þ ! c ¼ e2 þ A ð34Þ

b ¼ 2e2 þ 0:0004230986lV 0
0

�h2d2

þ
lV 00

LSr
2
0 j jþ 1ð Þ � l lþ 1ð Þ � 3

4

	 

�h2

� ð0:436342559716 � 10�4Þ

þ 6:526le2

pe0�h
2R3

Cd
4
! b ¼ 2e2 þ B ð35Þ

Based on what we have described above in the N-U sec-

tion, we can find the following second-order polynomial:

n� ð2nþ 1Þ � 1

2

� �
þ ð2nþ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c� bþ e2 þ 1

4

r
þ e

 !

þ nðnþ 1Þ � bþ 2e2 þ 2e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c� bþ e2 þ 1

4

r
¼ 0: ð36Þ

After some simplifications we have,

4 A�Bþ1

4

� �
�ð2nþ1Þ2

� �
e2þ2ð2nþ1Þ 2A�B�n2�n

� �
e

þ ð2nþ1Þ2
A�Bþ1

4

� �
� n2þnþ1

2
�B

� �2
" #

¼0 ð37Þ

h2e
2 þ h1eþ h0 ¼ 0: ð38Þ

By solving this equation and obtaining the e we will

wined the energies E as,

Enlj ¼
��h2d2

2l
e2 þ 2lV 0

0

�h2d2
ð0:0067413175Þ

�

þ
lV 00

LSr
2
0 j jþ 1ð Þ � l lþ 1ð Þ � 3

4

	 

�h2

ð0:4341808999 � 10�4Þ

� 6le2

pe0�h
2RCd

2
þ 6:8le2

pe0�h
2R3

Cd
4

!

ð39Þ

Ground state energy of the 17F can be obtained by using

of j ¼ 5
2
n = 0, l = 2 and the first excited states can be

calculated by using of the j ¼ 1
2
n = 1, l = 0. Table 1 shows

the results obtained in this work and Refs. [14, 16]. As it is

clear from the Table 1, good accuracy in our work has been

achieved. However, we have calculated the 1
2

þ
state energy

with more accuracy (our absolute error = 0.023 MeV,

Hagen et al. absolute error = 0.0918 MeV) while Hagen

et al. have calculated the 5
2

þ
state energy with higher

accuracy (our absolute error = 0.71 MeV, Hagen et al.

absolute error = 0.0337 MeV). Now, the wave functions

can be obtained through,

wðsÞ ¼ yðsÞ/ðsÞ ð40Þ

qðsÞ ¼ s1þ2eð1 � sÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c�bþe2þ1

4

p
ð41Þ

/ðsÞ ¼ seð1 � sÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c�bþe2þ1

4

p
�1

2

	 

ð42Þ

ynðsÞ ¼ P
1þ2e;2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c�bþe2þ1

4

p	 

n ð1 � 2sÞ ð43Þ

wnlðsÞ ¼ Nnls
eð1 � sÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c�bþe2þ1

4

p
þ1

2 � P
ð1þ2e;2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c�bþe2þ1

4

p
Þ

n ð1 � 2sÞ;
ð44Þ

where P
ðl;mÞ
n ðxÞ; l[ � 1; m[ � 1; x 2 �1; 1½ � are Jacobi

polynomials. 5=2
þ

state and 1=2
þ

state wave functions are

presented in the Fig. 3a, b, respectively. As we can see in

these figures, good agreement exists. We have used the

parameters of the [3], since they lead to the energies closer

to the experimental values which we have presented in the

Table 1.

Conclusion

In this study, the non-relativistic radial Schrodinger equa-

tion solved for Wood–Saxon potential together with cou-

lomb potential (for r\RC; RC = spherical nucleus radius),

spin–orbit interaction and centrifugal term through a new

hybrid numerical fitting Nikiforov–Uvarov method. For this

Table 1 Comparison of the energies obtained in this work with

ab initio computation [14] and experimental values [16]

17F

ESO 1
2

þ 5
2

þ

5.000 -0.105 -0.600 Exp. [16]

3.7 -0.082 0.11 GHF [14]

0.023 0.71 GHF [14] absolute error

– -0.1968 -0.937 Our work

0.0918 0.337 Our absolute error

All energies stated in the MeV
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purpose, by using approximate expansion of 1/r2 different

than that used by Pahlavani et al., Schrodinger equation has

been transformed to the analytically solvable differential

equation of NU method. Good agreement with experimental

values is obtained. We have calculated the 1/2? state energy

with more accuracy (our relative error = 0.023 MeV and

Hagen et al. relative error = 0.0918 MeV), while Hagen

et al. have calculated the 5/2? state energy with higher

accuracy (our relative error = 0.71 MeV and Hagen et al.

relative error = 0.0337 MeV). Our obtained wave func-

tions are in agreement with Kim et al.’s too.
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