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Abstract Laser absorption in the interaction between

ultra-intense femtosecond laser and solid density plasma is

studied theoretically here in the intensity range

Ik2 ’ 1014�1016 W cm�2 lm2. The collisionless effect is

found to be significant when the incident laser intensity is

less than 1016 W cm�2 lm2. In the current work, the

propagation of a high-frequency electromagnetic wave, for

underdense collisionless plasma in the presence of an

external magnetic field is investigated. When a constant

magnetic field parallel to the laser pulse propagation

direction is applied, the electrons rotate along the magnetic

field lines and generate the electromagnetic part in the

wake with a nonzero group velocity. Here, by considering

the ponderomotive force in attendance of the external

magnetic field and assuming the isothermal collisionless

plasma, the nonlinear permittivity of the plasma medium is

obtained and the equation of electromagnetic wave prop-

agation in plasma is solved. Here, by considering the effect

of the ponderomotive force in isothermal collisionless

magnetized plasma, it is shown that by increasing the laser

pulse intensity, the electrons density profile leads to

steepening and the electron bunches of plasma become

narrower. Moreover, it is found that the wavelength of

electric and magnetic field oscillations increases by

increasing the external magnetic field and the density dis-

tribution of electrons also grows in comparison to the

unmagnetized collisionless plasma.

Keywords Laser plasma interaction � Ponderomotive

force � Underdense magnetized plasma � Nonrelativistic
regime � Electrons density distribution

Introduction

Theoretical and experimental studies of electromagnetic

wave propagation in magnetized plasmas are of key

importance for a vast range of problems in space and

laboratory physics [1–3]. The acceleration of electrons in

the interaction of a high-intensity laser beam with plasma

may have important applications in various domains such

as laser particle acceleration, ion acceleration for fusion

action, and the generation of intense and short-duration c-
ray sources for radiography [4–6]. Furthermore, the inter-

action of an ultra short high-intensity laser pulse with

plasma without external dc magnetic field has been studied

extensively [7–11]. When an external magnetic field is

applied to the plasma, it is a medium capable to convert

different initial energies to tunable coherent radiations. In

1976 it was shown that a linearly polarized laser beam

interacting with hot magnetized plasma produces a radia-

tive force along the electric field of laser beam. This

magnetic radiation force at 5 MG is as large as the pon-

deromotive force for a 3-lm scale height [12]. In 2002, the

generation of the huge azimuthal self-magnetic field of

over 340 MG near the critical density surface was mea-

sured [13]. Two years later, this amount was scaled up to

more than 700 MG by the same group in over dense plasma

[14] while in underdense plasma fields in the order of 100

MG is presented [15]. The self-magnetic field in plasma is

a function of laser intensity and Qiao et al. [16] showed, by

their analytical model for Nd-glass laser at the intensity of

1020 W cm-2, the obtained magnetic field of about 90 MG.
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In studying the plasma parameters in an external magnetic

field, the intensity should be in the same order where few

megagauss magnetic field facilities for magnetized laser-

plasma experiments are established [17, 18]. A method is

also described for choosing experimental parameters in

studies of high energy density physics relevant to fusion

energy, as well as other applications by using megagauss

magnetic fields [19]. The structure of these systems is

based on the compact megagauss magnetic field generation

in single-turn coils which created new frontiers for scien-

tific experiments [20].

Extremely high azimuthal magnetic fields play an

essential role in the particle transport, propagation of laser

pulses, laser beam self-focusing, penetration of laser radi-

ation into the overdense plasma, and the plasma electron

and ion acceleration, where the first direct measurements of

high-energy proton generation (up to 18 MeV) and prop-

agation into a solid target during such intense laser plasma

interactions were reported. Measurements of the deflection

of these energetic protons were carried out which imply

that magnetic fields in excess of 30 MG exist inside the

target [21]. Although some valuable experimental works

have been reported, the introduced analytical works did not

properly explain the fundamental parameters of the mag-

netized collisionless plasma, including electric field oscil-

lation, electron density distribution or the derived

equations, being related to very special conditions [22, 23].

In the recent studying of plasma, such as ponderomotive

acceleration of plasma in the applied magnetic field and

improving of self-focusing in presence of the applied

external magnetic fields, the range of magnetic field

intensities are in the range of tens of megagauss [24, 25].

Based on the report of Gupta et al. [25], they did not have

the effect of external magnetic field up to 20 MG in an

underdense subrelativistic plasma and the effect is

enhanced by increasing the magnetic field intensity up to

45 MG, where we have noticed an almost similar depen-

dence of mentioned parameters to the magnetic field

intensity in the present analytical work. Although some

valuable experimental works are reported, the introduced

analytical works did not properly explain the fundamental

parameters of the magnetized plasma including electric and

magnetic field oscillations or the derived equations being

related to very special conditions [26–32].

Furthermore, the numerical analysis of high-power laser

propagation in a magnetized plasma was considered by

Druce et al. [33]. Here, a CO2 laser with 10.6 lm wave-

length interacts with magnetically confined plasma in the

density range of 1017�1018 cm�3. Here, by using of the

momentum and energy equations for the plasma species

and assuming the dependence of Te to the coordinates, the

laser propagation in magnetized confined collisionless

plasma is analyzed. In addition, in the previous work [34],

we studied the nonlinear propagation of an intense laser

pulse through an underdense magnetized plasma. Here, we

considered the semi-infinite plasma in the region of z / 0

in attendance of a constant external magnetic field B0 in

y direction. The laser pulse is irradiated perpendicular into

the plasma in z direction and the polarization of the inci-

dent wave is assumed to be linear. In this work it is obvious

that the high azimuthally external magnetic field is con-

sidered [i.e., k = (0, 0, k), B0 = (0, B0, 0), E = (Ex, 0, 0),

B = (0, By, 0)].

In the current theoretical study, by considering the cir-

cular symmetry case where the electric and magnetic fields

of the laser are perpendicular to B0 (external magnetic

field) and with assumption an azimuthally polarized laser

pulse ðEh z; tð Þ ¼ ĥEh zð Þ expð�ixtÞÞ, where ĥ is the unit

vector in the azimuthal direction, we have studied the

nonlinear structure of electromagnetic wave propagation of

an ultra-short laser beam in underdense collisionless

magnetized plasma. An external magnetic field is applied

in the direction of laser beam propagation in homogeneous

plasma. To achieve the nonlinear equation for the electric

field in the plasma, we use the Maxwell equations and the

equation of electrons motion while taking into account the

average ponderomotive force per unit volume acting on the

plasma electrons. Since the ion mass is much greater than

the electron mass, we neglect the effect of the pondero-

motive force on the ions. In order to imply the magnetic

field in our formulation, we use the external plasma current

density J ¼ �4pneeV in Ampere’s law, in which e, ne, and

V are the electron charge, the electron density and the drift

velocity of electrons. Furthermore, using the Maxwell and

the transfer momentum equations, we found the dispersion

relation of the transverse wave, in isothermal collisionless

magnetized plasma. In our work, we show that in the

presence of external magnetic field in the direction of laser

beam propagation, the density of the electrons increases.

This work is organized as follows: after introduction the

theoretical model and formulation are presented in Sect. II.

Here, the basic equations and fundamental assumptions are

given. In Sect. III, we have discussed the numerical method

used in thiswork, andfinallySect. IV is devoted to conclusion.

The theoretical model and formulation

In order to formulate the nonlinear propagation of an

intense laser pulse through an underdense magnetized

collisionless isothermal plasma in nonrelativistic regime let

us consider a semi-infinite plasma (z[ 0) in a constant

external magnetic filed B0 in the z direction. In this model,

we assume circular symmetry and a field E that is
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azimuthally polarized ðEh z; tð Þ ¼ ĥEh zð Þ expð�ixtÞÞ and it

propagates in the ?z direction, where ĥ is the unit vector in

the azimuthal direction. In this case we should mention that

polarization is one of the most important characteristics of

laser radiation. While determining the polarization state of

the beam, one can speak about type of polarization at the

point of the beam cross section, homogeneity of ellipso-

metrical parameters over the beam cross section, and sta-

bility of polarization characteristics in time. From the

nowadays viewpoint, the conventional types of polarization

have substantial disadvantages. In the case of linear

polarization, the parameters of the beam interaction with

the matter depend upon the direction of polarization. In the

case of circular polarization, these parameters are time

averaged, i.e., not optimum from view point either of

minimum losses or maximum absorption. The modes with

inhomogeneous polarization, radial or azimuthal, are

known in the laser resonator theory. In the case of radial

(azimuthal) polarization, the direction of the electrical

vector in the plane of the beam cross section is parallel

(perpendicular) to the radial direction. Here, we consider a

semi-infinite plasma in z[ 0 region in a constant external

magnetic filed B0 in the z direction. z[ 0 region is taken to

be filled with a homogeneous density profile of plasma

with plasma–vacuum interface at z = 0. It should be noted

that, in the problem of interaction of laser beams with

plasma, if the vector E is parallel to the plane of incidence

(radial polarization), the resonance absorption is maximum

and if the vector E is perpendicular to the plane of inci-

dence (azimuthal polarization), no resonance absorption

occurs. In this case the electrons in plasma oscillate in the

wave electrical field along lines of equal density without

generating electrostatic fields. Such type of polarization

that we used in this manuscript is useful for investigating

ponderomotive forces affecting electron density profile

[35–37]. As we see from Fig. 1, the electromagnetic wave

enters normally into the plasma slab.

To develop the wave equation for the oscillating electric

and magnetic fields, one can start with Faraday’s induction

and Ampere’s laws. By considering these Maxwell’s

equation, we have:

r � E ¼ �ixB; ð1Þ
r � B ¼ l0 J� ie0xEð Þ: ð2Þ

Now, if we assume that the laser electromagnetic trans-

verse wave fields with frequencyx propagate through plasma

along the z direction, the laser pulse electric field evolves as

d2

dz2
Eh þ k20Eh þ ixl0Jh ¼ 0: ð3Þ

Here, we consider the parameter l0e0x
2 ¼ k20 ¼ x2=c2 as

the vacuum propagation constant. Now, to obtain the laser

pulse electric field in plasma, we should use the appropriate

electron current density Jh in Eq. (3). As we know, the

plasma electron current density equation is Jh ¼ �neeVeh

and for this purpose we should consider the equation of

electrons motion in collisionless isothermal plasma as

mene
dVe

dt
¼ �eneðEþ 1

c
Ve � BÞ � rPe þ FPe; ð4Þ

where me; Ve; Pe ¼ neTe and FPe are electron mass, elec-

tron velocity, pressure of electrons, and the average pon-

deromotive force defined by the laser pulse envelope. In

this work, since the ion mass is much greater than the

electron mass and x � xpi, where xpi ¼
ffiffiffiffiffiffiffiffiffiffi

4pnie2
mi

q

, we

neglect the ion motions. Then by writing Eq. (4) in the r̂

and ĥ directions, the vr and vh components of electron

velocity of magnetized collisionless isothermal plasma can

be written as

vr ¼
ie

mex

Er � i xce

x

� �

Eh

1� xce

x

� �2
; ð5Þ

vh ¼
�ie

mex

Eh � i xce

x

� �

Er

1� xce

x

� �2
: ð6Þ

Here Er and Eh are radial and azimuthal electric field

components, respectively. Now by considering an azi-

muthally polarized laser beam (Er ¼ 0), we reach to the

following equations for vr and vh components:

vr ¼
e

mex
xce

x

� � Eh

1� xce

x

� �2
; ð7Þ

vh ¼
�ie

mex
Eh

1� xce

x

� �2
: ð8Þ

In the above equations xce ¼ eB0=mec is the electrons

cyclotron frequency due to the existence of the external

magnetic field and x is the laser pulse frequency. Here, the

plasma electrons current density is obtained as

Fig. 1 Schematic view of the laser pulse propagation through the

magnetized underdense plasma is shown. Direction of the applied

uniform magnetic field B0 is in z direction
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Jh ¼ neeVeh ¼
ie0x2

peEh

x 1� x2
ce

x2

� � ; ð9Þ

where xpe0 ¼
ffiffiffiffiffiffiffiffiffiffiffi

4pne0e2
me

q

is the plasma electron frequency and

ne is the plasma density. Now, we consider the homoge-

neous collisionless magnetized isothermal plasma in the

presence of the ponderomotive force due to the laser pulse.

In this case, in the steady state, the ponderomotive force in

attendance of the external magnetic field can be balanced

with the electron pressure gradient force. Consequently,

according to the momentum transfer Eq. (4) in the laser

pulse propagation direction and assuming that the electron

temperature Te is independent of coordinates, we have

�nee
2

2me x2 � x2
ce

� �

dE2
h

dz
¼ Te

dne

dz
; ð10Þ

where Te is given in energy unit. Integrating Eq. (10) from

ne0 to ne, the electrons density becomes a function of laser

pulse intensity as

ne zð Þ ¼ ne0 exp � e2E2
h zð Þ

meTe x2 � x2
ce

� �

 !

: ð11Þ

It should be noted that, in the intermediate intensities

1014�1016 W cm�2 lm2 with laser pulse duration of order

a few ns, it is convenient to assume that Te is constant and

the dominant spatial dependence comes from the electron

density (ne). This equation shows that the electron density

is modified by the pondermotive force. Furthermore, by

substituting Eq. (11) into Eq. (9) and using Eq. (3), the

nonlinear equation for electric field propagation in colli-

sionless plasma is obtained as

d2

dz2
Eh þ

x2

c2

� �

1�
x2

pe0

x2 1� x2
ce

x2

� �

0

@

1

A

8

<

:

� exp � e2E2
h

meTe x2 � x2
ce

� �

 !)

Eh ¼ 0: ð12Þ

In addition, the dielectric constant of a magnetized

collisionless isothermal plasma can be found as follows:

e ¼ 1�
x2

pe0 exp � e2E2
h

meTe x2�x2
ceð Þ

� �

x2 � x2
ce

� � : ð13Þ

As we see, it should be noted that the electromagnetic

wave equation coupled with the equations of momentum

transfer, particle conservation and energy in their stationary

form and they are solved for obtaining the dielectric per-

mittivity. Now, with having the dielectric permittivity vari-

ations, the electric field propagation through the plasma

along the Z direction is obtained as Eq. (3). In addition, with

having the electric field variation according to the Eq. (3),

we can reach the quiver velocities of electrons Eqs. (5) and

(6) and their variations in plasma.Here, the velocities depend

on the electrons density, temperature parameters. In other

words, as Eh was obtained from Eq. (3), in which the current

density Jh depends on plasma electrons’ density and tem-

perature, we can conclude that the theta component of

electric field is a function of temperature. Furthermore, as we

know, for obtaining the ponderomotive force we should use

the nonlinear theory (Ref. [22]). Here, it should bementioned

that the following equations, i.e., momentum transfer and the

laser pulse electric field propagation in plasma have the

directional dependence on the nonlinear ponderomotive

force, and according to it, we conclude that all of them are

nonlinear. Now, we analyze the nonlinear wave equation,

dielectric permittivity, and the plasma electron density dis-

tribution in such plasmas. Substituting Eq. (11) into

Eqs. (12) and (13), results in the inhomogeneous dielectric

permittivity and the nonlinear equation for the electric field

propagation in collisionless isothermal magnetized plasma:

e ¼ 1�
x2

pe0

x2 � x2
ce

� �

 !

� exp � e2E2
h zð Þ

meTe x2 � x2
ce

� �

 !

;

ð14Þ

d2

dz2
Eh þ

x2

c2

� �

1�
x2

pe0

x2 � x2
ce

� �

 !(

� exp � e2E2
hðzÞ

meTe x2 � x2
ce

� �

 !)

Eh ¼ 0:

ð15Þ

Results and discussion

In sect. II, we investigated the theoretical model and for-

mulated the nonlinear ponderomotive force effects on

isothermal collisionless magnetized underdense plasma.

From Eq. (15), it is clear that this equation is intensively

nonlinear and does not have any analytical solution. Thus,

we use the fourth order Runge–Kutta method to solve this

equation numerically and find the mentioned changes

inside plasma. In order to obtain the laser pulse electric

field, and the electron density profiles, we introduce some

dimensionless variables as follows:

a ¼ eEh

mecsx
; Xpe ¼

xpe0

x
;

n
zx
c
; xce0

xce

x
;

where cs ¼ Te
me

� �1=2

is the sound velocity. Using these

dimensionless parameters, Eqs. (11), (14), and (15) are

written as follows:
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ne

ne0
¼ exp

�a2

1� x2
ce0

� �

; ð16Þ

e ¼ 1�
X2

pe

1� x2
ce0

exp
�a2

1� x2
ce0

� �

; ð17Þ

d2a

dn2
þ 1�

X2
pe

1� x2
ce0

 !

� exp
�a2

1� x2
ce0

� �

( )

a ¼ 0:

ð18Þ

Here, in the case of collisionless magnetized isothermal

plasmas the following parameters of the laser beam and

plasma have been chosen:
xpe0

x ¼ 0:6 and Te0 ¼ 1 KeV. As

we know, in plasma when the condition of (ne\ ncritical) is

satisfied the plasma is underdense and in the other case

when this condition is not satisfied the plasma is overdense.

Here in this work, because of the parameter ne
ncritical

is pro-

portional with x2
pe

.

x2 ne
ncritical

¼ x2
pe

x2

� �

, the range of ne
ncritical

is

0.36 and ne is very small in comparison with ncritical and the

plasma is underdense. In Fig. 2a, b, the effect of increasing

laser intensity on the propagation of the electric field and

the distribution of the electron density of magnetized col-

lisionless plasma of this medium are shown.

In these figures the normalized external magnetic field is

taken asxce=x ¼ 0:4. Since laser intensity is proportional to

the square of amplitude, the amplitude of the electric field in

plasma is increased with increasing laser intensity. Further-

more, due to further decrease in electron density in the higher

laser intensities, more decrease in the wavelength of fields

takes place. The steepening of the electron density distri-

bution is enhancedwith an increase in laser pulse intensity. It

is seen that when laser intensity is increased, the oscillations

of the electron density become highly peaked and at the same

time, their wavelengths tend to decrease. The physical reason

of this effect is that since k (the oscillation wavelength) is

proportional to e�1=2, by increasing the dielectric constant

the wavelength of electron’s oscillation is decreased. It is

noticeable that by increasing laser pulse intensity, the

oscillations of the effective permittivity become highly

peaked and thewavelength of these oscillations is decreased.

Furthermore, we can see that by increasing laser intensity the

oscillations of the effective permittivity are deviated from

sinusoidal shape more intensively. Figure 3a, b shows the

effect of the magnitude increment of the external magnetic

field on the profiles of the electric field and the electron

density distribution of this medium in underdense colli-

sionless isothermal magnetized plasma in the situation of

constant laser intensity. In the presence of the external

magnetic field parallel to the laser pulse propagation direc-

tion, the electrons density distribution is increased in com-

parison to unmagnetized collisionless isothermal plasma. In

this case the electron density distribution is increasedmore in

comparison with the electron density profile presented in the

Ref. [34].Here, the laser pulse should transfermore energy to

the plasma electrons compared to unmagnetized plasma. It

leads to an increase in the wavelength of the electric field. It

is obvious that by increasing the external magnetic field, as a

result of the increase of the electrons density distribution, the

dielectric permittivity constant is decreased.

Summary and conclusion

In this paper, we have formulated the nonlinear propaga-

tion of an intense laser pulse through underdense magne-

tized collisionless isothermal plasma. From the results, one

can see, in magnetized plasma, field wavelength is
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Fig. 2 The effect of increasing the laser pulse intensity in the case of

the collisionless magnetized and isothermal plasma on the variations

of the a normalized electric field, b normalized electrons density

Dne=ne0. The dimensionless laser pulse intensities are a0 = 1 (dotted

line), a0 = 2 (dotted-dashed line), and a0 = 3 (solid line). Electron

temperature is Te = 1 keV, the normalized cyclotron frequency is
xce

x ¼ 0:4, and the normalized plasma frequency is taken as
xpe0

x ¼ 0:6
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increased relative to the wavelength in unmagnetized

plasma in the similar conditions. Also in the presence of

the external magnetic field, the plasma electron density is

increased and due to this effect, the effective permittivity

of the mentioned plasma is decreased. Our numerical

results are in good agreement with the mentioned work (R.

L. Druce). Magnetized plasma plays as a capable medium

to convert different inertial energies to tunable coherent

radiation. This is because the electron density distribution

is proportional to the plasma frequency and the magnitude

of the external magnetic field at constant laser intensity. By

adjusting the magnitude of the external magnetic field, the

desired value of the electron density can be produced.
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