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Abstract
The nature of nonlinear ion acoustic waves in multicomponent magnetized dusty plasma have been investigated
theoretically. Species of modeled plasma include negative dust particle, ions, electrons and positrons. Both
electrons and positrons obey Fermi-Dirac distribution function. Employing reduction perturbation method, the
fluid equations was solved to achieve ZK equation. Solitary and cnoidal solution of ZK equation were considered
due to number of roots of Sagdeev equation. Results show that both solitonic and cnoidal solutions of ZK
equation are under the influence of considered quantumic effect of the modeled plasma. Amplitude of both
generated modes in plasma medium varies noticeably with variation of quantum Bohm potential term.
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1. Introduction

There is extremely high number of works on different kinds of
linear and nonlinear waves in plasmas includes dusty plasma
[1–9]. Since plasma has the largest contribution in the states
of matter in the world, it has many different models. Vari-
ation of plasma species, their energy and distribution func-
tion, being isotropic or anisotropic, may change the scenario.
Furthermore, plasma is a multimode medium and there are
several modes which can generate and propagate in plasma
medium. Here we have come to high density plasma, oc-
cur in extreme astrophysical environments, such as white
dwarfs, magnetars, or neutron stars and in the core of giant
planets [10–15], as well as micro-electronic devices [16] and
ultra-cold plasmas [17]. It is believed that the plasmas in
the interior of white drafts and in the crust of neutron stars
are extremely dense and highly degenerate, (electron num-
ber densities ne0 > 1020cm−3, temperature is in the range
105K< T < 108K and the magnetic field strength reaching
very large values ;i.e.,B ≫ 109G) [18, 19]. For such plas-
mas, the electron Fermi temperature Tf e is much higher than
T and the quantum mechanical effects associated with the
quantum statistical pressure and due to the quantum tunnel-
ing effects, a new force in terms of the gradient of Bohm
potential appears in the momentum equation [20]. The plasma
frequency is also sufficiently high in such cases due to very
large value of the equilibrium density, and the degeneracy
parameter nλ 3

B ≥ 1; i.e., The de Broglie wavelength λB of
the plasma particles is of the order of the average interpar-
ticle distance n−1/3, where n is the particle number density.
Quantum plasmas are studied mainly by two approaches, viz.
quantum kinetic approach and quantum hydrodynamic (QHD)

approach. The kinetic approach is needed to discuss the Lan-
dau damping [21] of waves in quantum plasmas. The most
widely used approach for studying quantum plasmas is QHD
approach. Madelung [22] was the first to give the mathemat-
ical derivation of QHD model [23]. The dispersion relation
of a quantum dusty plasma, based on QHD theory and the
propagation of dust-ion acoustic (DIA) shock waves in an
unmagnetized collisionless four-component quantum plasma
were investigated by some authors [24, 25]. Most of these
studies in quantum plasmas have been made by applying the
reductive perturbation technique. Recently, M. Hanif and
et.al [26] employed a numerical technique to study ion acous-
tic (IA) shock waves in dense quantum plasmas. Sagdeev’s
method is applied in order to observe the existence of arbitrary
amplitude solitary wave. The inclusion of Bohm potential
term in the momentum equation makes the task of finding the
closed-form analytical expression of pseudopotential difficult.
However, S. Mahmood and et.al. [27] studied IA wave propa-
gation in an unmagnetized quantum plasma by using Sagdeev’s
pseudopotential approach under quasi-neutrality condition.
Later, S. Mahmood [28] employed the same method to study
the DIA waves in dense Fermi plasmas. It is worth men-
tioning that the study of nonlinear periodic waves in plas-
mas as well as in other dispersive media has become im-
portant due to their application in diverse areas of physics
such as the nonlinear transport phenomenon. Cnoidal waves
based on Jacobian elliptical functions, such as sn, cn, and
dn waves, are exact solutions in the form of periodic pulses.
Cnoidal waves transform into well-known solitons in the limit
of strong spatial localization. Nonlinear periodic wave signals
appear beside ion-acoustic soliton and double layer struc-
tures in auroral and magnetospheric plasmas [29]. Cnoidal
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waves have been observed in water, experimentally [30,31].
Moreover, cnoidal waves have been applied as a fundamental
basis function to develop a new kind of nonlinear Fourier
analysis to explain Adriatic Sea waves [32]. On the other
side, Kauschke and Schluter [33] explained single-mode drift
wave spectra at the edge of the tokamak plasma on the ba-
sis of cnoidal waves [34]. Finally, the purpose of this arti-
cle is the study of nonlinear propagation of dust ion acous-
tic compressive solitary waves and cnoidal waves in multi-
component plasma. Plasma medium include dust particles,
classical cold ions, and quantum magnetized electrons and
positrons with Fermi-Dirac distribution function in the pres-
ence of external magnetic field. The effects of the electron
cyclotron to electron plasma frequency ratio(Ωc), dust con-
centration (d), quantum Bohm potential term (H) and the
direction cosine of the wave propagation vector with the Carte-
sian coordinates (l) on the mentioned waves, potential func-
tion and electric field are investigated. For this purpose, we
choose some of the typical plasma parameters found in astro-
physical environments [35–37] which ne0 = 5.9×1028cm−3,
np0 = 5.32×1028cm−3, ni0 = 5.8×1027cm−3 and B = 109G.
The Fermi temperatures of electrons and positrons at such
densities are TFe = 1.96×108K and TF p = 1.69×108K.

2. Model description

2.1 The governing equations for DIAW
We have considered two-dimensional homogeneous collision
less four-component quantum plasma, which is containing
of inertia less Fermi-Dirac distributed quantum electrons and
positrons, classical cold ions and stationary negative dust
grains. The ambient magnetic field B0 = B0ẑ is assumed to
be stationary, pointing along the z-axis. The electrons and
positrons are assumed to follow the one-dimensional zero-
temperature Fermi gas pressure law Pj = (mν2

F jn
5/3
j )/(5n2/3

j0 ),
where νF j = [2kBTF j/m j]

1/2 is Fermi speed and TF j is Fermi
temperature (here j = e, p) [38]. Quasi-neutrality is assumed
to be held only at equilibrium (un normalized form), i.e.,
ni0+np0 = ne0+Zd0nd0, where n j0 is the equilibrium number
density of specie j (here j = p,e, i,d refers to the positrons
, electrons , ions and negative dusts respectively), and Zd0
is the equilibrium charging state of dust grain. The normal-
ized form of the following fluid equations is used to describe
the dynamics of the magnetized four-component dust-plasma
model:

∂ni

∂ t
+

∂

∂x
(niuix)+

∂

∂ z
(niuiz) = 0 (1)

∂ui

∂ t
+(ui.∇)ui =

me

mi
(−∇φ +Ωc(ui × ẑ)) (2)

∇∥φ − 1
5ne

∇∥n
5
3
e +

H2

2
∇∥(

∇2√ne√
ne

) = 0 (3)

−∇∥φ − σT

5np
∇∥n

5
3
p +

H2

2
∇∥(

∇2√np
√np

) = 0 (4)

∇
2
φ = ne −βnp −δni +d (5)

∂n j

∂ t
+

∂

∂x
(n jν jx)+

∂

∂ z
(n jν jz) = 0,( j = e, p) (6)

The second and third terms in equations (3) and (4) show
quantum effects which second term is due to Fermi-Dirac
distribution and third term is due to quantum diffraction. Inte-
gration the electron and positron momentum equations along
the z axis with the boundary conditions ne = 1,np = 1 and
φ = 0 at infinity yields

φ − 1
5

n
2
3
e +

H2

2
(

∇2√ne√
ne

) = 0 (7)

−φ − σT

5
n

2
3
p +

H2

2
(

∇2√ne√
ne

) = 0 (8)

n j has been defined as the perturbed part of number density
of species j ( j = i,e, p) which is normalized by its equilib-
rium value n j0. ui is the ion velocity , normalized by νFe. In
addition φ is the electrostatic potential which is normalized
by meνFe/e. In above equations σT = TF p/TFe is the ratio
of positron to electron Fermi temperature and β = np0/ne0,
δ = ni0/ne0, d = Zd0nd0/ne0 and H = h̄ωpem1/2

e /2kBTFe. We
assume that the wave propagation is in two dimensions, i.e.
∇ = (∂x,0,∂z), and it normalized by νFe/ωpe where ωpe =

(4πe2ne0/me)
1/2. The time variable t is normalized by the

inverse of ωpe.The quantity Ωc appeared in equation (2) is
tantamount to ωc/ωpe where ωc(= eB0/mec) is electron cy-
clotron frequency.

2.2 Derivation of Zkharov-Kuznetsov (ZK) equation
To elucidate the dynamics of weakly nonlinear dust ion acous-
tic waves, we adopt the reductive perturbation technique
(RPT) to achieve the Zkharov-Kuznetsov (ZK) equation in

Figure 1. Phase velocity versus d and β .
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Figure 2. (a) The variation of V (φ) versus φ at different values of d for H = 1.2,Ωc = 0.5,l = 0.9,σT = 0.86. (b) The variation
of versus V (φ) at φ different values of H for d = 0.6,Ωc = 0.5,l = 0.9,σT = 0.86. (c) The variation of V (φ) versus φ at
different values of l for d = 0.6,Ωc = 0.5,l = 0.9,σT = 0.86. (d) The variation of V (φ) versus φ at different values of Ωc for
d = 0.6,Ωc = 0.5,l = 0.9,σT = 0.86.

a four-component magnetized dusty plasma model. The
stretched coordinates are defined as

T = ε
3
2 t,Z = ε

1
2 (lz−λ t),X = ε

1
2 (mx),(0 < ε ≪ 1) (9)

l and m are direction cosines of the wave vector k along the di-
rections z and x, respectively, which are defined as l2+m2 = 1.
εis a small expansion parameter measuring the weakness of
the dispersion as well as λ is the phase velocity of the solitary
wavefront. The value of λ will later be determined by com-
patibility requirements. The perturbed quantities (dependent
variables ϕ,n j,ui) can be expanded in power series of ε as:

(n j,ϕ,uiz)= (1,0,0)+ε(n(1)j ,ϕ(1),u(1)iz )+ε
2(n(2)j ,ϕ(2),u(2)iz )+...,

(uix,uiy)= (0,0)+ε
3
2 (u(1)ix ,u(1)iy )+ε

2(u(2)ix ,u(2)iy )+ε
5
2 (u(3)ix ,u(3)iy )+...,

(10)

We can now substitute equations (9) and (10) in equations
(1) and extract a collection of equations in various powers

of ε . By keeping the lowest-order ε terms, we achieve the
following equations:

n(1)e −βn(1)p −δn(1)i = 0 (11)

φ
(1)− 1

3
n(1)e = 0 (12)

−φ
(1)− 1

3
σT n(1)p = 0 (13)

The next higher order equations in ε are given by

−λ
∂

∂Z
n(1)i + l

∂

∂Z
u(1)iz = 0 (14)

−me

mi
(m

∂

∂X
φ
(1))+

me

mi
Ωcu(1)iy = 0 (15)

λ
∂

∂Z
u(1)iz =

me

mi
(l

∂

∂Z
φ
(1)) (16)
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Figure 3. (a) 3D profile φ(ξ ) versus ξ and d,where H = 1.2,Ωc = 0.5,l = 0.9,σT = 0.86. (b) 3D profile φ(ξ ) versus ξ and
Ωc,where H = 1.2,d = 0.76,l = 0.9,σT = 0.86. (c) 3D profile φ(ξ ) versus ξ and l,where H = 1.2,d = 0.76,Ωc = 0.5
,l = 0.9,σT = 0.86. (d) 3D profile φ(ξ ) versus ξ and H,where l = 0.9,d = 0.76,Ωc = 0.5,σT = 0.86.
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+
H2

4
l

∂

∂Z
(m2 ∂ 2

∂X2 + l2 ∂ 2

∂Z2 )n
(1)
p = 0 (25)

From the above relations, we get

λ
2 =

(1+d −β )(me/mi)l2

3(1+β/σT )
(26)

Figure 1 shows the phase velocity graph versus d and β .As it
is seen, with the increase of d, phase speed decreases.
From equations (11) -(26), after some simplification, the ZK
equation for DIA waves in the mentioned four-component
plasma in the presence of external magnetic field, obtained as
follows:

∂φ

∂T
+Aφ

∂φ

∂Z
+B

∂ 3φ

∂Z3 +C
∂

∂Z
∂ 2φ

∂X2 = 0 (27)

where the nonlinearity coefficient A, dispersive coefficient B
and higher order coefficient C are defined as:

A =

9
4 (1+

1
σT

)[λ

δ
(2+ β

σT
)− mel2

3miλ
]+ (me

mi
)2( 3l4

4λ 3 )

3mel2

miλ 2 − 3
δ
(1+ β

σT
)

B =
λm2( 1

δ
+ mi

meΩ2
c
)+ 9H2m2

4 [(1− 1
σT

)( βλ

δσT
− mel2

3miλ
)]

3mel2

miλ 2 − 3
δ
(1+ β

σT
)

C =

l2λ

δ
[1+ 9H2β

4σT
(1− 1

σT
)]− 3H2l4me

4λmi

3mel2

miλ 2 − 3
δ
(1+ β

σT
)

(28)

3. Results and discussion
In order to investigate the localized electrostatic excitations,
a pulse type solitary wave solution of the ZK equations con-
sidered which is instantly made through utilizing the famous
tangent hyperbolic (tanh) method [39, 40]. Leaving the local-
ized solution behind and taking the mentioned method into
account, it is demanded to consider the variable transforma-
tion ξ = X +Z −UT , which U is the velocity of nonlinear
structure moving with the frame:

−U
∂φ

∂ξ
+Aφ

∂φ

∂ξ
+(B+C)

∂ 3φ

∂ξ 3 = 0 (29)

Integrating equation (29) with regard to ξ and ignoring the
integration constant, the form of an ordinary differential equa-
tion can be derived as follows

d2φ

dξ 2 = r1φ + r2φ
2 (30)

where

r1 =
U

B+C
,r2 =− A

2(B+C)
(31)

At this point, the above equation can be rewritten as the fol-
lowing dynamical system of travelling wave equations varied
by plasma parameters

dφ

dξ
= y,

dy
dξ

= (r1 + r2φ)φ (32)

The last equation defines a planar Hamiltonian system with
the following Hamiltonian function

H(φ ,y) =
y2

2
− (

r1

2
+

r2

3
φ)φ 2 = g (33)

In the above relation, the term −( r1
2 + r2

3 φ)φ 2 is the electric
potential (V (φ)).The potential function V (φ) is plotted as a
function of φ for different values of d, H, l and Ωc in figures
2(a)-2(d). It is clear that the potential has one pit and a hump.
The potential becomes more wide and flat as H and d increases
but Ωc and l decreases. When r1r2 ̸= 0, then there exist two
equilibrium points at (0,0) and (φ1,0), with

φ1 =− r1

r2
=

2U
A

(34)

If we consider that M(φi,0) is the coefficient matrix of the
linearized system of equation (32) at an equilibrium point,
then one can obtain the following determinant

J = detM(φi,0) =−r1 −2r2φi (35)

By the theory of planar dynamical systems, we know that an
equilibrium point (φ1,0) of the planar dynamical system is
a saddle point when J < 0 and the equilibrium point (φ1,0)
of the planar dynamical system is a center when J > 0 [39–
42]. At this point, applying the planar dynamical system in
equation (32) and the Hamiltonian function in equation (33)
with g = 0, we obtain two types of solitary wave solution and
periodic travelling wave solution of equation (30) depending
on the different physical situation:
When the condition (nonlinear coefficient) A > 0 is satisfied,
corresponding to the homoclinic orbit at the equilibrium point
(0,0), the system ( equation (29)) has a dust ion acoustic
compressive solitary wave solution:

φ(ξ ) =−3r1

2r2
sech2(

1
23/2

√
r1ξ ) (36)

By plotting 3D profile φ(ξ ) versus ξ (equation 36), and
through changing d, l, H and Ωc the behavior of dust ion
acoustic compressive solitary wave was investigated in figures
3(a)-3(d). It is shown in figure 3(a) that with the increase
of d (from about 0.1 to 0.5), wave amplitude increases and
the width becomes narrower. Then, in the range of d (0.5 to
1), the amplitude decreases and the width becomes broader.
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Figure 4. (a)The variation of Ex versus ξ at different values of d for l = 0.9,H = 1.2,Ωc = 0.5,σT = 0.86.(b)The variation of
Ex versus ξ at different values of H for l = 0.9,d = 0.6,Ωc = 0.5,σT = 0.86.(c)The variation of Ex versus ξ at different values
of l for H = 1.2,d = 0.6,Ωc = 0.5,σT = 0.86.(d)The variation of Ex versus ξ at different values of Ωc for
H = 1.2,d = 0.6, l = 0.9,σT = 0.86.

Figure 3(b) shows with the increase of Ωc, wave amplitude is
constant but the wave width decreases. It is shown in figure
3(c) that with the increase of l, wave width and amplitude
decreases. With the increase of H as illustrated in figure 3(d),
the amplitude is constant but wave becomes more flat (its
width increases).
The perturbed electric field is attained as E =−∇φ then, it is
expressed as

E =

(
Ex
Ez

)
=

2φm

W
seh2(

ξ

W
) tanh(

ξ

W
)

(
m
l

)
(37)

where φm =−3r1/2r2 = 3U/Al and W = 2
√

(B+C)/U are
the amplitude and the width of ion acoustic solitary wave,
respectively. It is clear that the width W is determined by
the dispersive coefficients B and C while the amplitude φm
is dependent on the nonlinearity coefficient A. Figures 4(a)
– 4(d) illustrates the behavior of the electric field Ex. In the
figures, the variation of the electric field E is shown as a
function of ξ for various values of d, H, l and Ωc. It is seen in
figures 4(a) and 4(b) that by increasing d and H, the amplitude
of electric field is decreased and its width is increased. By

increasing l in 4(c), the amplitude of electric field is decreased.
In figure 4(d), the amplitude of the electric field increases with
increasing the value of Ωc, while the width of the electric field
decreases.
Otherwise, equation (29) has the periodic travelling wave
solution in terms of Jacobian elliptic functions [43, 44].The
travelling wave system, equation (32), has a family of periodic
orbits about the equilibrium point (φ1,0) as mentioned before,
furthermore at φ1 = 2U/A we obtain

− A
U

φ
3
n +3φ

2
n −

4U2

A2 = 0 (38)

where n= 1, 2 and 3. The three real zeros of equation (38) are
φ1, φ2 and φ3. It should be mentioned here that the conditions
for the existence of a periodic travelling wave solution of
equation (27) require that φ1 > φ2 > φ3. Accordingly, the
periodic wave solution of equation (27) is given by

φ(ξ ) = φ3 +(φ2 −φ3)Sn2[Iξ ,k] (39)

where Sn is the Jacobian elliptic function. For the nonlinear
coefficient A < 0, the amplitude of the periodic travelling
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Figure 5. (a)Variation of periodic travelling wave φ(ξ ) versus ξ at different values of d for
H = 0.9,Ωc = 0.01, l = 0.8,U = 1.5. (b)Variation of periodic travelling wave φ(ξ ) versus ξ at different values of Ωc for
H = 1.2,d = 0.6, l = 0.9,U = 1.5. (c)Variation of periodic travelling wave φ(ξ ) versus ξ at different values of l for
H = 1.2,Ωc = 0.01,d = 0.6,U = 1.5.

wave is given by φ2 −φ3 > 0. The elliptic parameter k is

k =

√
φ2 −φ3

φ1 −φ3
(40)

Refers physically to the nonlinearity with the linear limit cor-
responds to k → 0 and the extreme nonlinear limit corresponds
to k → 1. The parameter I is given by

I =

√
U(φ1 −φ3)

12(B+C)
(41)

In this part, the impacts of d, l and Ωc will be investigated
on the basic features of periodic travelling waves. In figures
5(a)-5(c), the results are displayed numerically. In figure 5(a),
the effect of d is investigated on the profile of the periodic
travelling waves against the space coordinate ξ . It is definite
that by increasing d, the amplitude of periodic travelling wave
is increased and its width is decreased. In figures 5(b) and
5(d), the variation of the profile of the periodic travelling

waves with l and Ωc is examined. The impact of Ωc on the
periodic travelling waves is exhibited in figure 5(b). It is seen
that the width of the periodic travelling waves increases as Ωc
increases, on the other hand, Ωc has no effect on the amplitude
of the periodic travelling waves. In figure 5(c), the variation of
the profile of the periodic travelling waves with l is examined.
It is obvious that both of the amplitude and the width increase
as l increases. Physically, one can predict that the amplitude
and the width of nonlinear periodic travelling wave become
extremely large as it approaches the direction perpendicular to
the magnetic field, Therefore the nonlinear periodic travelling
wave disappears.

4. Conclusion
In this work the nonlinear propagation of dust ion acoustic
compressive solitary and dust ion acoustic travelling waves in
two-dimensional magneto plasma in the presence of the ex-
ternal magnetic field was studied. Plasma system containing
quantum electron and positron with Fermi-Dirac distribution,

2251-7227/2022/16(2)/162213 [http://dx.doi.org/10.30495/jtap.162213]
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classical cold ion and negative dust grains. As the plasma
particles obey Fermi–Dirac distribution, the pressure term in
the momentum equation is described by the Fermi pressure
law, which includes the quantum statistical effects. Using the
standard reductive perturbation method, the ZK equation was
attained. The bifurcation theory of planar dynamical systems
used to describe the nonlinear propagation of solitary and
periodic travelling wave. We have investigated the effects of
the electron cyclotron to electron plasma frequency ratio(Ωc),
dust concentration (d), quantum Bohm potential term (H) and
the direction cosine of the wave propagation vector with the
Cartesian coordinates (l) on the nonlinear propagation of dust
ion acoustic compressive solitary and ion acoustic travelling
waves, on the potential function and electric field .The numer-
ical results show these parameters have strong effect on the
propagation of mentioned waves. As the graphs show, the
electric potential becomes wider by increasing d and H and
decreasing l and Ωc. The behavior of dust ion acoustic com-
pressive solitary wave shows that increasing H and Ωc has
no effect on the wave amplitude, but increasing l decreases
the wave amplitude. As Ωc and l increase, the wave width
decreases, but when H increases, the width increases. The
variation of Ex versus ξ shows that increasing l, d and H
decreases the electric field amplitude and increases its width,
while increasing Ωc increases the amplitude and decreases
the electric field width. The profile of the periodic travelling
waves against the space coordinate ξ indicates that increasing
d and l increases the amplitude, but the Ωc change has no
effect on the wave amplitude. Increasing l and Ωc increases
the width and increasing d decreases the width.
These results could be helpful to understand the formation
and propagation of dust ion acoustic solitary and travelling
waves in dense magnetized dusty quantum e− p− i plasmas
which may be found in extreme astrophysical environments,
such as white dwarfs, magnetars, or neutron stars and in the
core of giant planets.
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