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Abstract Field theory is applied to analyze the behavior of

the electromagnetic wave in the presence of a solid electron

beam and magnetized plasma-loaded tape helix traveling-

wave tube. The obtained dispersion relation implicitly

includes azimuthal variations and all spatial harmonics of the

tape helix. Results indicate that the frequency and the phase

velocity of (Xbp - Xp) and (Obp - Xp) modes increase with

cyclotron frequency and for (Obp - Op) and (Xbp - Op)

modes decrease. In the strong magnetic field limit, the maxi-

mum growth rate and frequency of all modes are constant at

different values of cyclotron frequency and beam energy. If

the plasma density increases, the frequency and phase velocity

of four modes will increase. The maximum growth rates of the

four modes in the lower plasma density are equal and for

higher values of plasma density the (Obp - Xp) mode has

greatest value. The phase velocity and the frequency of

(Xbp - Xp) with (Xbp - Op) modes and (Obp - Op) with

(Obp - Xp) modes are coinciding with each other and for first

case increase with beam density, but for latter decrease. The

maximum growth rate of (Obp - Op) mode and the maximum

frequency of (Xbp - Xp) mode have highest values as a

function of the electron beam density.
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Introduction

In recent years, there has been increasing interest in

high-power and high-frequency microwave devices for

generating radiation at millimeter and sub-millimeter

wavelengths. The relativistic traveling-wave tube (TWT) is

an important high-power microwave apparatus, developed

over the last several decades [1–5]. One of the common

features of a TWT is a slow-wave structure (SWS) such as

a dielectric material, disk-loaded waveguide, or a helix [6–

10]. The physical mechanism of operation is that the SWS

reduces the phase velocity of the electromagnetic wave to

synchronize it with the electron beam velocity so that a

strong interaction between the two can take place.

Pierce and his co-workers [11–13] employed the cou-

pled-wave analysis in their pioneering work, and the ana-

lysis of TWT improved using linear theories based on the

Maxwell’s equations in a sheath helix [14, 15]. The cou-

pled-wave Pierce theory recovers the near-resonant limit.

Both coupled-wave and field theories of TWT have dis-

cussed in [16] and [17]. Freund and co-workers developed

the field theories of beam-loaded helix TWTs for tape helix

model [18]. Freund and co-workers [19] described the

numerical comparison between the complete dispersion

equation and the Pierce model in helix TWT and shown

that the coupled-wave theory breaks down for sufficiently

high currents. The complete field theory is more exact than

the coupled-wave theory.

The Experimental results show that the presence of

plasma considerably enhances the interaction gain and the

output power in comparison with vacuum. The plasma-

assisted tubes can improve the transportation of larger

beam current and also guide the beam without requiring a

very strong guide field [20, 21]. For high-power devices

driven by intense electron beams, neutralizing plasma can

shield the beam space-charge effects. Experimental inves-

tigation for the electromagnetic properties of corrugated

and smooth waveguide filled with inhomogeneous plasma

done with Shkvarunets [22]. Nusinovich et al. [23] shows

that in the case of operating at frequencies between the
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plasma frequency and the upper-hybrid frequency, the

space-charge forces can significantly enhance the

efficiency.

The purpose of the present paper is investigating the

effects of plasma density, axial guide magnetic field, and

beam energy and density on the growth rate and phase

velocity of the system. The schematic illustrations of

boundaries shown in Fig. 1 include three regions: (1) inside

the beam that includes the electron beam and plasma (2)

between the beam and helix that includes plasma (3)

between the helix and the wall, which is a vacuum. We are

investigating these effects on the four modes: (1) The

coupling of the beam–plasma extraordinary mode and the

plasma extraordinary mode in regions I and II, respectively

(Xbp - Xp), (2) the coupling of the beam–plasma ordinary

mode and plasma ordinary mode in regions I and II,

respectively (Obp - Op), (3) The coupling of the beam–

plasma extraordinary mode and plasma ordinary mode in

region I, II, respectively (Xbp - Op), (4) The coupling of

the beam–plasma ordinary mode and plasma extraordinary

mode in region I and II, respectively (Obp - Xp). It is

important to note that this nomenclature is only for con-

venience. More accurately, the O- and X-modes charac-

terize modes propagating perpendicular to the ambient

magnetic field in an infinite homogeneous plasma, while

we are perceive with the modes propagating parallel to the

ambient magnetic field in a bounded beam and/or plasma

enclosed by both a tape helix and a conducting wall. We

expand to a complete self-consistent and relativistic field

theory of the plasma-loaded helix TWT by solution of the

relativistic fluid equation and Maxwell’s equations. The

dispersion relation implicitly contains space-charge effects

without recourse to a heuristic model of the space-charge

field.

The organization of the paper is as follows. Section 2 is

devoted to the derivation of the perturbed transverse fields

in regions 1 and 2. The dispersion relation is determined in

Sect. 3 through application of the appropriate boundary

conditions upon the solution of Maxwell’s equations. In

Sect. 4, we deal with numerical results and conclusion.

Perturbed transfer fields

We used the equilibrium model of a solid electron beam

that propagates through a plasma-filled tape helix in the

presence of a uniform axial magnetic field B0 ¼ B0êz. The

azimuthally symmetric charge density described by

n0 rð Þ ¼ nbHðRb � rÞ

where nb is the ambient beam density, Rb is the beam

radius, and H is the Heaviside function. Figure 1 shows the

schematic cross-section of the system. It supposes that the

beam propagates uniformly along the symmetry axis of the

system, and the equilibrium velocity is v0 ¼ v0êz.

Here, the employed helix is thin enough such that a

conducting cylindrical sheet of radius Rh, width 1, and

pitch angle u can model it. The unit vector describing the

pitch of the helix is [18]

êu ¼ êh cos u þ êzsinu:

We found the perturbed current density and the beam

velocity in regions (I) and (II) by small perturbations about

the equilibrium state in which ne = n0e ? dne and ve ¼
v0e þ dve for electron beam, and np = n0p ? dnp and vp ¼
dvp for cold plasma. Here, we neglected the nonlinear

effects. The linearized continuity and momentum transfer

equations for electron beam and cold plasma are as follows

For electron beam

o

ot
þ v0e

o

oz

� �
dne þ n0er:dve ¼ 0; ð1Þ

o

ot
þ v0e

o

oz

� �
dve ¼Xceêz � dve

� e

c0eme

I �b2
0eêzêz

� �
:dEþb0eêz � dB

� �
:

ð2Þ

For cold plasma

odnp

ot
þ n0pr:dvp ¼ 0; ð3Þ

odvp

ot
¼ � e

me

dE þ c0eXceêz � dvp: ð4Þ

here, e and me are charge and rest mass of the electron,

respectively. b0e = v0e/c is the normalized axial velocity of

the electron beam, c0e = 1/(1 - b0e
2 )1/2 and X̂ce ¼ eB0=

c0emec ¼ Xce=c0e stand for relativistic factor and the

Fig. 1 Cross-sectional view of the structure. The conducting wall is

at radius Rg and plasma fills the region between 0 and Rh. The

relativistic electron beam along with the cold plasma fills the region

between R = 0 and Rb
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electron cyclotron frequency. Fluctuating electric and

magnetic fields are designated by dE and dB and I is the

unit dyadic.

To determine the periodicity of the steady state,

Floquet’s theorem requires that all perturbed quantities have

the following complex Fourier series representation [18]:

df x; tð Þ ¼
X1

l;m¼�1
df̂ rð Þ exp½ikmz þ ilh � ix t�: ð5Þ

Here, km = k ? mkh denotes the wave number and x is

the angular frequency. Inserting an Eq. (5) into Eqs. (1)–(4)

yields the following equations for electron beam and cold

plasma.

For electron beam

dn̂e l;m ¼ n0e

Dxm

½km êz:dv̂e l;m

� �
� ir?:dv̂e l;m� ð6Þ

dv̂e l;m ¼ dv̂er l;mêr þ dv̂ehl;mêh þ dv̂ez l;mêz

¼ � ie

c0eme

iXce

Dx2
m � X2

ce

� � ½� dÊhl;m þ b0edBr l;m

� �
êr

(

þ dÊr l;m � b0edB̂l;m

� �
êh� þ

Dxm

Dx2
m � X2

ce

� �
� dÊr l;m � b0edB̂hl;m

� �
êr þ dÊhl;m þ b0edB̂rl;m

� �
êh

� �

� 1

Dxmc2
0e

dÊz l;mêz

�

¼ � ie

c0eme

1

Dxmc2
0e

êz:dÊl;m

� �
êz þ

iXce

Dx2
m � X2

ce

� �
(

� êz � dÊ?l;m � b0edB̂?l;m

� �
þ Dxm

Dx2
m � X2

ce

� �

� dÊ?l;m þ b0eêz � dB̂?l;m

� �)
ð7Þ

Here, Dxm = x - kmv0e.

For cold plasma

dn̂p l;m ¼ n0p

x
km êz:dv̂p l;m

� �
� ir?:dv̂p l;m

� �
; ð8Þ

dv̂p l;m ¼ dv̂pr l;mêr þ dv̂phl;mêh þ dv̂pz l;mêz

¼� ie

me

iXcec0e

x2 �ðXcec0eÞ2
	 
 �dÊhl;mêr þ dÊr l;mêh

� �
8<
:

þ x

x2 �ðXcec0eÞ2
	 
 dÊr l;mêr þ dÊhl;mêh

� �
þ 1

x
dÊz l;mêz

9=
;

¼� ie

me

1

x
êz:dÊl;m

� �
êz þ

iXcec0e

x2 �ðXcec0eÞ2
	 
 êz � dÊ?l;m

� �
8<
:

þ x

x2 �ðXcec0eÞ2
	 
dÊ?l;m

9=
; ð9Þ

The perturbed current density in the region (I) is given by

dĴI l;m ¼ �eðn0edv̂e l;m þ n0pdv̂p l;m þ dn̂e l;mv0eÞ; ð10Þ

And in region (II), the perturbed current density is

dĴII l;m ¼ �en0pdv̂p l;m: ð11Þ

Substituting Eqs. (6)–(9) into the Eq. (10) yields the

perturbed current density in the region (I) as

dĴIl;m ¼ ix2
b

4pDxm

x
Dxmc2

0e

êz:dÊl;m

� �
êz þ

iXceDxm

Dx2
m �X2

ce

� �
(

� êz � dÊ?l;m � b0edB̂?l;m

� �
þ Dx2

m

Dx2
m �X2

ce

� �
� dÊ?l;m þ b0eêz � dB̂?l;m

� �
� iv0eDxm

Dx2
m �X2

ce

� �
� êzr?:dÊ?l;m � b0er?dB̂?l;m

� �
� v0eXce

Dx2
m �X2

ce

� �

� êz êz:r? � dÊ?l;m

� �
þ b0eêzr?:dB̂?l;m

� �)

þ
ix2

pc0e

4px
ðêz:dÊz l;mÞêz þ

iXcec0ex

x2 � ðXcec0eÞ2
	 


8<
:

� êz � dÊ?l;m

� �
þ x2

x2 � ðXcec0eÞ2
	 
dÊ?l;m

9=
; ð12Þ

where x̂b ¼ ð4nee2=c0emeÞ1=2 ¼ xb=c
1=2
0e and x̂p ¼

ð4npe2=c0emeÞ1=2 ¼ xp=c
1=2
0e are the beam and the plasma-

region plasma frequencies, respectively.

The perturbed current density in the region (II) obtained

by substituting Eqs. (8) and (9) into the Eq. (11), the result is:

dĴII l;m ¼
ix2

pc0e

4px
êz:dÊl;m

� �
êz þ

iXcec0ex

x2 � ðXcec0eÞ2
	 
 êz � dÊ?l;m

� �
8<
:

þ x2

x2 � ðXcec0eÞ2
	 
 dÊ?l;m

9=
;: ð13Þ

Similarly, the perturbed charge density for electron

beam and plasma is as:

dq̂el;m ¼ ix2
b

4pDx2
m

km

c2
0e

êz:dÊl;m

� �
� iDx2

m

Dx2
m �X2

ce

� �
(

� r?:dÊl;m �b0eêz:r?�dB̂?l;m

� �
� DxmXce

Dx2
m �X2

ce

� �

� êz:r?�dÊ?l;m þb0er?:dB̂?l;m

� �)
ð14Þ

dqp l;m ¼
ix2

pc0e

4px2
km êz:dÊl;m

� �
� ix2

x2 � ðXcec0eÞ2
	 
r?:dÊ?l;m

8<
:

� x Xcec0e

x2 � ðXcec0eÞ2
	 
 êz:r? � dÊ?l;m

9=
;: ð15Þ
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The fluctuating transverse fields are derived by

employing Maxwell’s equations together with Floquet’s

theorem. The results in region (I) and (II) are as

Region I

dE?;l;m ¼ i

v2
m

kmr?dÊz;l;m � x
c

êz �r?dB̂z;l;m � 4px
c2

dĴ?;Il;m

� �
;

ð16Þ

dB̂?;l;m ¼ i

v2
m

kmr?dB̂z;l;mþx
c

êz�r?dÊz;l;m�4pkm

c
êz�dJ?;Il;m

� �
;

ð17Þ

where v2
m ¼ x2=c2 � k2

m:
Region II

dÊ?;l;m ¼ i

v2
m

kmr?dÊz;l;m � x
c

êz �r?dB̂z;l;m � 4px
c2

dĴ?II l;m

� �

ð18Þ

dB̂?;l;m ¼ i

v2
m

kmr?dB̂z;l;m þx
c

êz �r?dEz;l;m �4pkm

c
êz �dJ;II l;m

� �
:

ð19Þ

The transverse source current is obtained from Eqs. (12)

and (13) and (16)–(19) in terms of the axial components of

electric and magnetic fields in regions I and II as follow:

Region I

dĴ?;Il;m ¼ � c

4p
1

Kþbp x; kmð ÞK�bpðx; kmÞ
� Ab x; kmð Þ þ Ap x; kmð Þ þ Abp x; kmð Þ

� �
r?dÊz;l;m

�
þ Bb x; kmð Þ þ Bp x; kmð Þ þ Bbp x; kmð Þ�êz

�
�r?dB̂z;l;m þ ½Db ; kmð Þ þ Dp ; kmð Þ þ Dbp ; kmð Þ�êz

�r?dÊz;l;m þ Eb x; kmð Þ þ Ep x; kmð Þ
� �

r?dB̂z;l;m

�
;

ð20Þ

where

Abðx;kmÞ ¼ ab x;kmð Þ ckm �xb0e

Dxm

K0b x;kmð Þ
� �

;

Apðx;kmÞ ¼ ap x;kmð Þ ckm

x
K0p x;kmð Þ

� �
;

Abp x;kmð Þ ¼�ap x;kmð Þab x;kmð Þ

� ðckm �xb0eÞ
1

Dxm

�X2
cec0e

xDx2
m

 �
þ ckm

1

x
� X2

cec0e

x2Dxm

 �� �
;

Bb x;kmð Þ ¼�ab x;kmð ÞK0b x;kmð Þ;
Bp x;kmð Þ ¼�ap x;kmð ÞK0p x;kmð Þ;

Bbp x;kmð Þ ¼�ap x;kmð Þab x;kmð Þ2 X2
cec0e

xDxm

� 1

 �

Dbðx;kmÞ ¼ ab x;kmð Þ iXce

Dx2
m

ðckm �xb0eÞ
� �

;

Dpðx;kmÞ ¼ ap x;kmð Þ iXcec0e

x2
ðckmÞ

� �
;

Dbp x;kmð Þ ¼�iab x;kmð Þap x;kmð Þ

� ðckm �xb0eÞ
Xce

Dx2
m

�Xcec0e

xDxm

 �
þ ckm

Xcec0e

x2
� Xce

xDxm

 �� �
;

Ebðx;kmÞ ¼ ab x;kmð Þ iXce

Dxm

� �
;

Epðx;kmÞ ¼ ap x;kmð Þ iXcec0e

x

� �
;

Kþbp x;kmð Þ ¼ 1� x2
bDxm

c2v2
m Dxm �Xceð Þ�

x2
pc0ex

c2v2
m x�Xcec0eð Þ

" #
;

K�bp x;kmð Þ ¼ 1� x2
bDxm

c2v2
m Dxm þXceð Þ�

x2
pc0ex

c2v2
m xþXcec0eð Þ

" #
;

ab x;kmð Þ ¼ x2
bDx2

m

c2v2
m Dx2

m �X2
ce

� � ;

ap x;kmð Þ ¼
c0ex

2
px

2

c2v2
m x2 �ðXcec0eÞ2
	 


K0b x;kmð Þ ¼ 1� x2
b

c2v2
m

;K0p x;kmð Þ ¼ 1�
x2

pc0e

c2v2
m

:;

Region II:

dĴ?;II;l;m ¼ � c

4p
ap x; kmð ÞK0p x; kmð Þ

Kþp x; kmð ÞK�pðx; kmÞ

� ckm

x
r?dÊz;l;m � êz �r?dB̂z;l;m

�

þ i
ckm

x
êz �r?dÊz;l;m þr?dB̂z;l;m

� ��
;

ð21Þ

the transverse components of the fluctuating electric and

magnetic fields are obtained by substitution of Eqs. (20)

and (21) into (16)–(19).

Region I:

dÊr;l;m ¼ i

v2
m

km

odÊz;l;m

or
þ il

cr
dB̂z;l;m þ x

c

1

Kþbp x; kmð ÞK�bpðx; kmÞ

�

� Ab x; kmð Þ þ Ap x; kmð Þ þ Abp x; kmð Þ
� � odÊz;l;m

or

�

� Bb x; kmð Þ þ Bp x; kmð Þ þ Bbp x; kmð Þ
� � il

r
dB̂z;l;m

� Db x; kmð Þ þ Dp x; kmð Þ þ Dbp x; kmð Þ
� � il

r
dÊz;l;m

þ Eb x; kmð Þ þ Ep x; kmð Þ
� � odB̂z;l;m

or

��
ð22Þ

dÊh;l;m ¼ i

v2
m

km

il

r
dÊz;l;m �x

c

odB̂z;l;m

or
þx

c

1

Kþbp x;kmð ÞK�bpðx;kmÞ

�

� Ab x;kmð ÞþAp x;kmð ÞþAbp x;kmð Þ
� � il

r
dÊz;l;m

�

þ Bb x;kmð ÞþBp x;kmð ÞþBbp x;kmð Þ
� �odB̂z;l;m

or

þ Db x;kmð ÞþDp x;kmð ÞþDbp x;kmð Þ
� �odÊz;l;m

or

þ Eb x;kmð ÞþEp x;kmð Þ
� � il

r
dB̂z;l;m

��
ð23Þ
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dB̂r;l;m ¼ i

v2
m

km

odB̂z;l;m

or
� ilx

cr
dÊz;l;m þ km

Kþbp x; kmð ÞK�bpðx; kmÞ

�

� � Ab x; kmð Þ þ Ap x; kmð Þ þ Abp x; kmð Þ
� � il

r
dÊz;l;m

�

� Bb x; kmð Þ þ Bp x; kmð Þ þ Bbp x; kmð Þ
� � odB̂z;l;m

or

� Db x; kmð Þ þ Dp x; kmð Þ þ Dbp x; kmð Þ
� � odÊz;l;m

or

� Eb x; kmð Þ þ Ep x; kmð Þ
� � il

r
dB̂z;l;m

��
ð24Þ

dB̂h;l;m ¼ i

v2
m

km

il

r
dB̂z;l;m þ x

c

odÊz;l;m

or
þ km

Kþbp x; kmð ÞK�bpðx; kmÞ

�

� Ab x; kmð Þ þ Ap x; kmð Þ þ Abp x; kmð Þ
� � odÊz;l;m

or

�

� Bb x; kmð Þ þ Bp x; kmð Þ þ Bbp x; kmð Þ
� � il

r
dB̂z;l;m

� Db x; kmð Þ þ Dp x; kmð Þ þ Dbp x; kmð Þ
� � il

r
dÊz;l;m

þ Eb x; kmð Þ þ Ep x; kmð Þ
� � odÊz;l;m

or

��
ð25Þ

Region II:

dÊr;l;m ¼ i

v2
m

km

odÊz;l;m

or
þ ilx

cr
dB̂z;l;m

�

þ x
c

Rp x; kmð Þ o

or
þ l

r

 �
ckm

x
dÊz;l;m þ idB̂z;l;m

� ��

ð26Þ

dÊh;l;m ¼ i

v2
m

ikm

l

r
dÊz;l;m � x

c

odB̂z;l;m

or

�

þ i
x
c

Rp x; kmð Þ o

or
þ l

r

 �
ckm

x
dÊz;l;m þ idB̂z;l;m

� ��

ð27Þ

dB̂r;l;m ¼ i

v2
m

km

odB̂z;l;m

or
� ilx

cr
dÊz;l;m

�

� ikmRp x; kmð Þ o

or
þ l

r

 �
ckm

x
dÊz;l;m þ idB̂z;l;m

� ��

ð28Þ

dB̂h;l;m ¼ i

v2
m

ikm

l

r
dB̂z;l;m þ x

c

odÊz;l;m

or

�

þ kmRp x; kmð Þ o

oR
þ l

r

 �
ckm

x
dÊz;l;m þ idB̂z;l;m

� ��

ð29Þ

where

Rp x; kmð Þ ¼ ap x; kmð ÞK0p x; kmð Þ
Kþp x; kmð ÞK�p x; kmð Þ ð30Þ

Kþp x; kmð Þ ¼ 1 �
x2

pc0ex

c2v2
m x � Xcec0eð Þ ð31Þ

K�p x; kmð Þ ¼ 1 �
x2

pc0ex

c2v2
m x þ Xcec0eð Þ ð32Þ

To obtain the conductivity tensor, we first substitute the

magnetic field in the following Maxwell’s equation

x
c

dBl;m ¼ kmêz � dE?;l;m þ iêz �r?dEz;l;m; ð33Þ

Into the Eq. (12) to obtain the source current, in cylin-

drical coordinate, as a function of electric field in regions I

and II:

Region I:

dĴr;I;l;m ¼ ix2
bDx2

m

4px Dx2
m � X2

ce

� �þ ix2
pc0ex

4p x2 � ðc0eXceÞ2
	 


2
4

3
5

� dÊr;l;m þ
x2

bDxmXce

4px Dx2
m � X2

ce

� �þ x2
pc

2
0eXce

4 x2 � ðc0eXceÞ2
	 


2
4

3
5

� dEh;l;m þ �iv0e

o

or
� Xcev0e

Dxmr

o

oh

� �
dÊz;l;m ð34Þ

dĴh;I;l;m ¼ ix2
bDx2

m

4px Dx2
m �X2

ce

� �þ ix2
pc0ex

4p x2 � ðc0eXceÞ2
	 


2
4

3
5

� dÊh;l;m �
x2

bDxmXce

4px Dx2
m �X2

ce

� �þ x2
pc

2
0eXce

4p x2 � ðc0eXceÞ2
	 


2
4

3
5

� dÊr;l;m þ �iv0e

o

oh
þXcev0e

Dxm

o

or

� �
dÊz;l;m ð35Þ

dĴz;I;l;m ¼ ix2
b

4pxDx2
m

x2

c2
0e

� Dx2
mv2

0e

Dx2
m � X2

ce

� �r2
?

( )
þ

ix2
pc0e

4px

" #

� dÊz;l;m � ix2
b

4px
v0e

Dx2
m � X2

ce

� � i
Dxm

r
þ iDxm

o

or
� Xce

r

o

oh

� ��

� dÊr;l;m þ i
Dxm

r

o

oh
þ Xce

o

or
þ Xce

r

� �
dÊh;l;m

�
ð36Þ

Region II

dĴr;II;l;m ¼
ix2

pc0ex

4p x2 � ðc0eXceÞ2
	 
 dÊr;l;m

þ
x2

pc
2
0eXce

4p x2 � ðc0eXceÞ2
	 
 dEh;l;m; ð37Þ

dĴh;II;l;m ¼
ix2

pc0ex

4p x2 � ðc0eXceÞ2
	 
 dÊh;l;m

�
x2

pc
2
0eXce

4p x2 � ðc0eXceÞ2
	 
 dÊr;l;m; ð38Þ

dĴz;II;l;m ¼
ix2

pc0e

4px
dÊz;l;m: ð39Þ
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Then, substituting Eqs. (36) and (39) into the following

electric displacement,

dD̂l;m ¼ el;m:dÊl;m ¼ I þ 4pi

x
rl;m

 �
:dÊl;m; ð40Þ

where rl;m is the conductivity tensor. The components

of the dielectric tensor in regions (I) and (II) are:

Region I

err;I ¼ ehh;I ¼ 1 � x2
b

x2

Dx2
m

ðDx2
m � X2

ceÞ
�

x2
pc0e

ðx2 � ðxcec0eÞ
2Þ
;

ð41Þ

erh;I ¼ �ehr;I

¼ ix2
b

x2

DxmXce

ðDx2
m � X2

ceÞ
þ

ix2
pc0e

x
Xcec0e

ðx2 � ðXcec0eÞ2Þ
ð42Þ

erz;I ¼
ix2

b

x2

v0e

Dx2
m � X2

ce

� � Dxm

o

or
þ Xcel

r

� �
; ð43Þ

ezr;I ¼
ix2

b

x2

v0e

Dx2
m � X2

ce

� � Dxm

o

or
þ 1

r

 �
� Xcel

r

� �
; ð44Þ

ehz;I ¼ �x2
b

x2

v0e

Dx2
m � X2

ce

� � Xce

o

or
þ Dxml

r

� �
; ð45Þ

ezh;I ¼
x2

b

x2

v0e

Dx2
m � X2

ce

� � Xce

o

or
þ l

r

 �
� Dxml

r

� �
; ð46Þ

ezz;I ¼ 1 � x2
b

c2
0eDx2

m

þ x2
b

x2

v2
0e

Dx2
m � X2

ce

� �r2
? �

x2
pc0e

x2
; ð47Þ

Region II

err;II ¼ ehh;II ¼ 1 �
x2

pc0e

ðx2 � ðXcec0eÞ2Þ
; ð48Þ

erh;II ¼ �ehr;II ¼
ix2

pc0e

x
Xcec0e

ðx2 � ðXcec0eÞ2Þ
; ð49Þ

erz;II ¼ 0; ezr;II ¼ 0; ehz;II ¼ 0; ezh;II ¼ 0; ð50Þ

ezz;II ¼ 1 �
x2

pc0e

x2
: ð51Þ

The dispersion relation

The governing Maxwell’s equations for the fluctuating

axial electric and magnetic fields in regions I and II are of

the form:

Region I

½r2
? þ v2

m�dÊz;l;m ¼ 4pi kðdq̂e;I;l;m þ dq̂p;I;l;mÞ �
x
c2

dĴz;I;l;m

h i
;

ð52Þ

½r2
? þ v2

m�dB̂z;l;m ¼ � 4p
c
ðêz:r? � dĴ?;I;l;mÞ; ð53Þ

Region II

½r2
? þ v2

m�dÊz;l;m ¼ 4pi kdq̂p;II;l;m � x
c2

dĴz;II;l;m

h i
; ð54Þ

½r2
? þ v2

m�dB̂z;l;m ¼ � 4p
c
ðêz:r? � dĴ?;II;l;mÞ; ð55Þ

where dq̂e;I;l;m and dq̂p;I;l;m denote the electron beam and

plasma charge densities in region I, and dq̂p;II;l;m is the

charge density of the plasma in region II.

The source charge and current density in region I, Eqs.

(12), (14)–(15), and in region II, Eqs. (13) and (15), must

be expressed in terms of axial components of electric and

magnetic fields. The source charge and current densities are

obtained by the Eqs. (16)–(21):

Region I

dq̂e;I;l;m ¼ ix2
b

4pDx2
m

km

c2
0e

dÊz;l;m þ Dx2
m

Dx2
m � X2

ce

� �
cv2

m

"

� �Ae;I;1r2
?dÊz;l;m þ �Ae;I;2r2

?dB̂z;l;m

� ��
ð56Þ

dq̂e;I;l;m ¼ ix2
b

4pDx2
m

km

c2
0e

dÊz;l;m þ Dx2
m

Dx2
m � X2

ce

� �
cv2

m

"

� �Ae;I;1r2
?dÊz;l;m þ �Ae;I;2r2

?dB̂z;l;m

� �#
ð57Þ

dqp;I;l;m ¼
ix2

pc0e

4px2
kmdÊz;l;m þ x2

x2 � ðc0eXceÞ2
	 


cv2
m

2
4

� �Ap;I;1r2
?dÊz;l;m þ �Ap;I;2r2

?dÊz;l;m

� �#
; ð58Þ

where

�Ae;I;1 ¼ kmc � xb0eð Þ 1 þ ab x; kmð Þ
Kþbp x; kmð ÞK�bp x; kmð Þ

�

� ðK0b x; kmð Þ þ X2
ce

Dx2
m

Þ
�
þ Dxm

Kþbp x; kmð ÞK�bp x; kmð Þ

� Ap x; kmð Þ þ Abp x; kmð Þ
� �� �

� iXce

Kþbp x; kmð ÞK�bp x; kmð Þ
� ðDpðx; kmÞ þ Dbpðx; kmÞ
� �

ð59Þ

�Ae;I;2 ¼ iXce 1þ ab x; kmð Þ
Kþbp x; kmð ÞK�bp x; kmð Þ 1þK0b x; kmð Þð Þ

� �

þ Dxm

Kþbp x; kmð ÞK�bp x; kmð Þ Ep x; kmð Þ
� �

� iXce

Kþbp x; kmð ÞK�bp x; kmð Þ Bp x; kmð Þ þBbp x; kmð Þ
� �

ð60Þ
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�Ap;I;1 ¼ kmc þ ab x; kmð Þ kmc � xc0eð Þ
Kþbp x; kmð ÞK�bp x; kmð Þ

� x
Dxm

K0b x; kmð Þ þ X2
cec0e

Dx2
m

Þ
� �

þ x
Kþbp x; kmð ÞK�bp x; kmð Þ ½ Ap x; kmð Þ þ Abp x; kmð Þ

� �

� iXcec0e

Kþbp x; kmð ÞK�bp x; kmð Þ ðDpðx; kmÞ þ Dbpðx; kmÞ
� �

ð61Þ

�Ap;I;2 ¼ iXcec0e 1 þ ab x; kmð Þ
Kþbp x; kmð ÞK�bp x; kmð Þ

�

� x
Dxmc0e

þ K0b x; kmð Þ
� ��

þ x
Kþbp x; kmð ÞK�bp x; kmð Þ Ep x; kmð Þ

� �

� iXcec0e

Kþbp x; kmð ÞK�bp x; kmð Þ Bp x; kmð Þ þ Bbp x; kmð Þ
� �

ð62Þ

Region II

dĴz;II;l;m ¼
ix2

pc0e

4px
dÊz;l;m; ð63Þ

dq̂p;II;l;m ¼
ix2

pc0e

4px2
kmdÊz;l;m þ x2

x2 � ðc0eXceÞ2
	 


cv2
m

2
4

� �Bp;II;1r2
?dÊz;l;m þ i�Bp;II;2r2

?dBz;l;m

� �#

ð64Þ

where

�Bp;II;1 ¼ ckm 1 þ ap x; kmð Þ
Kþp x; kmð ÞK�p x; kmð Þ K0p x; kmð Þ þ ðXcec0eÞ2

x2

" #" #
;

ð65Þ

Bp;II;2 ¼ Xcec0e 1 þ ap x; kmð Þ
Kþp x; kmð ÞK�p x; kmð Þ 1 þ K0p x; kmð Þ

� �� �
:

ð66Þ

Substitution of Eqs. (56)–(66) into Eqs. (52)–(55) yields

the following fourth-order differential equations for the

electric and magnetic fields in the two regions:

Region I

ðr2
? þ v2

þ;I;bp;mÞðr2
? þ v2

�;bp;mÞdÊz;l;m ¼ 0; ð67Þ

ðr2
? þ v2

þ;I;bp;mÞðr2
? þ v2

�;bp;mÞdB̂z;l;m ¼ 0; ð68Þ

Region II

ðr2
? þ v2

þ;II;p;mÞðr2
? þ v2

�;p;mÞdÊz;l;m ¼ 0; ð69Þ

ðr2
? þ v2

þ;II;p;mÞðr2
? þ v2

�;p;mÞdB̂z;l;m ¼ 0; ð70Þ

where

v�;I;bp;m ¼ 1

2 1 � x2
b

c2
0e

Dx2
m�X2

ceð Þ þ KþbpK�bpY3

� �

� 1 � x2
b

c2
0e Dx2

m � X2
ce

� �þ Ksc 1 � 2abð Þ
" #

v2
m þ KþbpK�bpY1

( )(

� 1 � x2
b

c2
0e Dx2

m � X2
ce

� �þ Ksc 1 � 2abð Þ
" #2

v4
m

8<
:

þ KþbpK�bpY1
� �2þ2KþbpK�bpY1v2

m

� 1 � x2
b

k2
0e Dx2

m � X2
ce

� �þ Ksc 1 � 2abð Þ
" #

� 4KscKþbpK�bpv
4
m 1 � x2

b

c2
0e Dx2

m � X2
ce

� �
 !

� 4Y4ðKþbpK�bpÞ2

)1=2
9=
;

ð71Þ

v�;II;p;m ¼ v2
m

2 1� x2
pc0e

x2�ðc0eXceÞ2ð Þ

� �

� 1�
x2

pc0e

x2 � ðc0eXceÞ2
	 
þKscp 1� 2ap

� �2
4

3
5

� 1�
x2

pc0e

x2 � ðc0eXceÞ2
	 
þKscp 1� 2ap

� �2
4

3
5

28<
:

� 4KscpKþpK�p 1�
x2

pc0e

x2 � ðc0eXceÞ2
	 


0
@

1
A
9=
;

1=2

ð72Þ

Ksc ¼ 1 � x2
b

Dx2
mc2

0e

;Kscp ¼ 1 �
x2

pc0e

x2
;

Y1 ¼ � v2
mKscðBp þ BbpÞ

Kþbp x; kmð ÞK�bp x; kmð Þ

� 1 þ abK0b

KþbpK�bp

 �
v2

mx2
pc0e

x2

 !

þ
v2

mx2
pc0e

x2

 !
Bp þ Bbp

� �
KþbpK�bp

 �
þ ckm � xb0eð Þv2

mab

Dx2
m

� Dxm

KþbpK�bp

ðAp þ AbpÞ �
iXce

KþbpK�bp

ðDp þ DbpÞ
� �

þ v2
mapðkmcÞ

x2
�Ap;I;1 ð73Þ
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Y3 ¼� 1þ
ab ckm �xb0eð Þ2

1þ ab

KþbpK�bp
K0b þ X2

ce

Dx2
m

	 
h i
Dx2

m

8<
:

9=
;

� Bp þBbp

KþbpK�bp

 �
þ 1þ abK0b

KþbpK�bp

 �
ckm �xb0eð Þab

Dx2
m

�

� Dxm

KþbpK�bp

Ap þAbp

� �
� iXce

KþbpK�bp

Dp þDbp

� �� �

þap kmcð Þ
x2

�Ap;I;1

�
þ Bp þBbp

KþbpK�bp

 �
ckm �xb0eð Þab

Dx2
m

�

� Dxm

KþbpK�bp

Ap þAbp

� �
� iXce

KþbpK�bp

Dp þDbp

� �� �

� ap kmcð Þ
x2

�Ap;I;1

�
þ iabXce ckm �xb0eð Þ

Dx2
m

� 1þ ab

KþbpK�bp

1þK0bð Þ
� �

Dp þDbp

KþbpK�bp

� �

� ab ckm �xb0eð Þ
Dx2

m

� �
Dxm

KþbpK�bp

Ep �
iXce

KþbpK�bp

Bp þBbp

� �� ��

þ ap kmcð Þ
x2

�Ap;I;2g
iabXce

KþbpK�bp

ckm �xb0eð Þ
Dx2

m

� �
þ Dp þDbp

KþbpK�bp

� �

� ab ckm �xb0eð Þ
Dx2

m

� �
Dxm

KþbpK�bp

Ep �
iXce

KþbpK�bp

Bp þBbp

� �� ��

þ ap kmcð Þ
x2

�Ap;I;2

�
ð74Þ

Y4 ¼ Y3 v4
mKsc � v4

m

x2
pc0e

x2

" #
� v4

m

x2
pc0e

x2
1þ abK0b

KþbpK�bp

 ��

� 1þ
ab ckm �xb0eð Þ2

1þ ab

KþbpK�bp
K0b þ X2

ce

Dx2
m

	 
h i
Dx2

m

8<
:

9=
;

� a2
bX

2
ce ckm �xb0eð Þ2

Dx4
mKþbpK�bp

1þ ab

KþbpK�bp

1þK0bð Þ
� �#

ð75Þ

We can obtain the dispersion relation by solutions of

Eqs. (67)–(70) with appropriate boundary conditions. For

one of the two appropriate modes in each region, these

equations reduce to:

Region I

ðr2
? þ v2

�;I;bp;mÞdÊz;l;m ¼ 0 ð76Þ

ðr2
? þ v2

�;I;bp;mÞdB̂z;l;m ¼ 0 ð77Þ

Region II

ðr2
? þ v2

�;II;p;mÞdÊz;l;m ¼ 0 ð78Þ

ðr2
? þ v2

�;II;p;mÞdB̂z;l;m ¼ 0 ð79Þ

The solutions of Eqs. (76)–(79) in the three regions are

as follows:

dÊz;l;m ¼
Al;mJl v�;I;bp;mr

� �
; 0� r �Rb

Bl;mJl v�;II;p;mr
� �

þ Cl;mYl v�;II;p;mr
� �

; Rb\r �Rh

Dl;mJl vmrð Þ þ El;mYl vmrð Þ; Rh\r �Rg

8<
:

ð80Þ

dB̂z;l;m ¼
Fl;mJl v�;I;bp;mr

� �
; 0� r �Rb

Gl;mJl v�;II;p;mr
� �

þ Hl;mYl v�;II;p;mr
� �

; Rb\r �Rh

Kl;mJl vmrð Þ þ Ll;mYl vmrð Þ; Rh\r �Rg:

8<
:

ð81Þ

Having applied the boundary condition of the wave-

guide wall, the solution in Rh \ r B Rg is:

dÊz;l;m ¼ Dl;mWl vmRg; vmr
� �

; Rh\r �Rg; ð82Þ

dB̂z;l;m ¼ Kl;mW 0
l ðvmRg; vmrÞ; Rh\r �Rg; ð83Þ

where

Wl vmRg; vmr
� �

¼ Yl vmRg

� �
Jl vmrð Þ � Jl vmRg

� �
Yl vmrð Þ;

ð84Þ

W 0
l vmRg; vmr
� �

¼ Y 0
l vmRg

� �
Jl vmrð Þ � J0

l vmRg

� �
Yl vmrð Þ:

ð85Þ

The boundary conditions at the edge of the beam and the

interface of the regions I and II require

1. dÊz;l;m Rb � eð Þ ¼ dÊz;l;mðRb þ eÞ
2. dÊh;l;m Rb � eð Þ ¼ dÊh;l;mðRb þ eÞ
3. dÊr;l;m Rb � eð Þ þ erh;IdÊh;l;m Rb � eð Þ þ erz;IdÊz;l;m

Rb � eð Þ ¼ err;IIdÊr;l;m Rb þ eð Þ þ erh;IIdÊh;l;m Rb þ eð Þþ
erz;IIdÊz;l;m Rb þ eð Þ

4. dB̂z;l;m Rb � eð Þ ¼ dB̂z;l;mðRb þ eÞ

By applying the boundary conditions, we obtain the

following four equations:

Al;mJl v�;I;bp;mRb

� �
¼ Bl;mJl v�;II;p;mRb

� �
þ Cl;mYl v�;II;p;mRb

� �
; ð86Þ

iPl;mAl;m þ Ql;mFl;m ¼
v�;II;p;m

v�;I;bp;m

½Gl;mH1l;m þ Hl;mH2l;m

þ iBl;mH3l;m þ iCl;mH4l;m�;
ð87Þ

Sl;mAl;m þ iTl;mFl;m ¼
v�;II;p;m

v�;I;bp;m

½iGl;mH5l;m þ iHl;mH6l;m

þ Bl;mH7l;m þ Cl;mH8l;m�;
ð88Þ

Fl;mJl v�;I;bp;mRb

� �
¼ Gl;mJl v�;II;p;mRb

� �
þ Hl;mYl v�;II;p;mRb

� �
: ð89Þ
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Where Pl,m, Ql,m, Sl,m and Tl,m are:

Pl;m ¼ 1

KþbpK�bp

abK0b

ckm �xb0eð Þ
Dxm

þ apK0p

ckm

x

� �

� Jl�1 v�;I;bp;mRb

� �
� abap

�
J0l v�;I;bp;mRb

� ��
ckm �xb0eð Þ

� 1

Dx2
m

þXceb0e

xDx2
m

þ Xce

Dx2
m

�Xceb0e

xDxm

� �

þ ckm

1

x2
þ Xce

Dxmx2
þXceb0e

x2
� Xce

xDxm

� ��

þ l

Rbv�;I;bp;m

Jl v�;I;bp;mRb

� �

� ckm �xb0eð Þ 1

Dxm

� X2
cec0e

xDx2
m

� �
þ ckm

1

x
� X2

cec0e

Dxmx2

� �� ��

ð90Þ

Ql;m ¼ �J
0

l v�;I;bp;mRb

� �
þ 1

KþbpK�bp

�

� � abK0b þ apK0p

� �
Jl�1 v�;I;bp;mRb

� �(

þ Kbp J
0

l v�;I;bp;mRb

� �
� 2X2

cec0e

xDxm

þ 2

� ��

þ l

Rbv�;I;bp;m

Jl v�;I;bp;mRb

� �

� 1

Dxm

þ Xceb0e

xDxm

þ 1

x
þ Xce

Dxm

� ����
ð91Þ

H1l;m ¼ �J
0

l v�;II;p;mRb

� �
� Rpðx; kmÞJl�1 v�;II;p;mRb

� �
;

ð92Þ

H2l;m ¼ Y
0

l v�;II;p;mRb

� �
� Rpðx; kmÞYl�1 v�;II;p;mRb

� �
;

ð93Þ

H3l;m ¼ kmcRpðx; kmÞ
x

Jl�1 v�;II;p;mRb

� �
; ð94Þ

H4l;m ¼ kmcRpðx; kmÞ
x

Yl�1 v�;II;p;mRb

� �
; ð95Þ

H5l;m ¼ x
2ckm

eþp þ 2Rp x; kmð Þeþp � 1
� �

Jl�1 v�;II;p;mRb

� ��
þ ðe�p � 1ÞJlþ1 v�;II;p;mRb

� ��
; ð96Þ

H6l;m ¼ x
2ckm

eþp þ 2Rp ; kmð Þeþp � 1
� �

Yl�1 v�;II;p;mRb

� ��
þ ðe�p � 1ÞYlþ1 v�;II;p;mRb

� ��
; ð97Þ

H7l;m ¼ J
0

l v�;II;p;mRb

� �
þ 1

2
eþp þ 2Rp x; kmð Þeþp � 1
� ��

Jl�1 v�;II;p;mRb

� �
� ðe�p � 1ÞJlþ1 v�;II;p;mRb

� ��
; ð98Þ

H8l;m ¼ Y
0

l v�;II;p;mRb

� �
þ 1

2
eþp þ 2Rp x; kmð Þeþp � 1
� ��

Yl�1 v�;II;p;mRb

� �
� ðe�p � 1ÞYlþ1 v�;II;p;mRb

� ��
; ð99Þ

Sl;m ¼ J
0

l v�;I;bp;mRb

� �
þ x

2ckm

ckm � xb0eð Þ
Dxm

� eþb þ
2abK0b

KþbpK�bp

eþb � 1

� �
Jl�1 v�;I;bp;mRb

� �

� 1

2
ðe�b � 1ÞJlþ1 v�;I;bp;mRb

� �

þ 1

2
eþp þ

2apK0p

KþbpK�bp

eþp � 1

� �
Jl�1 v�;I;bp;mRb

� ��

� ðe�p � 1ÞJlþ1 v�;I;bp;mRb

� ��
þ FF1;

ð100Þ

Tl;m ¼ x
2ckm

eþb þ
2abK0b

KþbpK�bp

eþb � 1

 �
Jl�1 v�;I;bp;mRb

� ��

þ ðe�b � 1ÞJlþ1 v�;I;bp;mRb

� ��

þ x
2ckm

eþp þ
2apK0p

KþbpK�bp

eþp � 1

 �
Jl�1 v�;I;bp;mRb

� ��

þ ðe�p � 1ÞJlþ1 v�;I;bp;mRb

� ��
þFF2;

ð101Þ

FF1 ¼ x
ckm

1

KþbpK�bp

� �x2
b

x2

DxmapK0p

Dxm � Xceð Þ
ckm

x

x2
pc0e

x
abK0b

x � c0eXceð Þ
ckm � xb0eð Þ

Dxm

( )

� Jl�1 v�;I;bp;mRb

� �
þ x

ckm

ðerr;IR1 þ irh;IR2Þ;

ð102Þ

FF2 ¼ x
ckm

1

KþbpK�bp

�x2
b

x2

DxmapK0p

Dxm �Xceð Þ
x2

pc0eabK0b

x x� c0eXceð Þ

( )

� Jl�1 v�;I;bp;mRb

� �
þ x

ckm

ðerr;IR3þ ierh;IR4Þ;

ð103Þ

R1¼ 1

KþbpK�bp

J
0

l v�;I;bp;mRb

� �
Abp x;kmð Þþ ilDbp x;kmð Þ

v�;I;bp;mRb

(

� Jl �;I;bp;mRb

� �
þ labap

v�;I;bp;mRb

Jl v�;I;bp;mRb

� �

� ckm �xb0eð Þ 1

Dx2
m

þ c0eXce

xDx2
m

� �
þ ckm

1

x2
þ Xce

x2Dxm

� �� ��
;

ð104Þ

R2 ¼ 1

KþbpK�bp

�i J
0

l v�;I;bp;mRb

� �
Dbp x; kmð Þ þ lAbp x; kmð Þ

v�;I;bp;mRb

(

� Jl v�;I;bp;mRb

� �
� abapJ

0

l v�;I;bp;mRb

� �

� ckm �xb0eð Þ 1

Dx2
m

þ c0eXce

xDx2
m

� �
þ ckm

1

x2
þ Xce

x2Dxm

� �� ��
;

ð105aÞ
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R3 ¼ 1

KþbpK�bp

� lBbp x;kmð Þ
v�;I;bp;mRb

Jl v�;I;bp;mRb

� �(

� abapJ
0

l v�;I;bp;mRb

� � 1

Dxm

þ c0eXce

xDxm

þ 1

x
þ Xce

xDxm

� ��
;

ð105bÞ

R4 ¼ 1

KþbpK�bp

�
� Bbp x; kmð ÞJ 0

l v�;I;bp;mRb

� �

� abap

l

v�;I;bp;mRb

Jl v�;I;bp;mRb

� �

� 1

Dxm

þ c0eXce

xDxm

þ 1

x
þ Xce

xDxm

� ��
; ð106Þ

e�b ¼ 1 � x2
b

x2

Dxm

Dxm � Xceð Þ ; ð107Þ

e�p ¼ 1 �
x2

pc0e

x x � Xcec0eð Þ ; ð108Þ

Equations (86)–(89) include six unknown coefficients

and allow us to find the solutions in terms of the two

unknown coefficients. After some straightforward algebra,

the axial electric and magnetic fields are written as

follows:

dÊz;l;m ¼

Al;mJl v�;I;bp;mr
� �

; 0� r �Rb

Al;m a
1ð Þ

l;mJl v�;II;p;mr
� �

þ a
2ð Þ

l;mYl v�;II;p;mr
� �h i

þiFl;m c
1ð Þ

l;mJl v�;II;p;mr
� �

þ c
2ð Þ

l;mYl v�;II;p;mr
� �h i

; Rb\r �Rh

Dl;mWl vmRg; vmr
� �

; Rh\r �Rg

8>>>><
>>>>:

ð109Þ

dB̂z;l;m ¼

Fl;mJl v�;I;bp;mr
� �

; 0� r �Rb

Fl;m b
1ð Þ

l;mJl v�;II;p;mr
� �

þ b
2ð Þ

l;mYl v�;II;p;mr
� �h i

þiAl;m d
1ð Þ

l;mJl v�;II;p;mr
� �

þ d
2ð Þ

l;mYl v�;II;p;mr
� �h i

; Rb\r �Rh

Kl;mW
0

l ðvmRg; vmrÞ; Rh\r �Rg

8>>>><
>>>>:

ð110Þ

where al,m
(1), al,m

(2), bl,m
(1), bl,m

(2)cl,m
(1), cl,m

(2), dl,m
(1) and dl,m

(2) are as

follows:

a
1ð Þ

l;m ¼ 1

G
2ð Þ

l;m

�Jl v�;I;bp;mRb

� �
114 þ Yl v�;II;p;mRb

� �
112

� �
;

ð111Þ

a
2ð Þ

l;m ¼ 1

G
2ð Þ

l;m

Jl v�;I;bp;mRb

� �
113 � Jl v�;II;p;mRb

� �
112

� �
;

ð112Þ

c
1ð Þ

l;m ¼ � 1

G
2ð Þ

l;m

Yl v�;II;p;mRb

� �
111

� �
;

c
2ð Þ

l;m ¼ 1

G
2ð Þ

l;m

Jl v�;II;p;mRb

� �
111

� �
;

ð113Þ

b
1ð Þ

l;m ¼ 1

G
1ð Þ

l;m

�Jl v�;I;bp;mRb

� �
#14 þ Yl v�;II;p;mRb

� �
#12

� �
;

ð114Þ

b
2ð Þ

l;m ¼ 1

G
1ð Þ

l;m

�Jl v�;I;bp;mRb

� �
#13 � Jl v�;II;p;mRb

� �
#12

� �
;

ð115Þ

d
1ð Þ

l;m ¼ 1

G
1ð Þ

l;m

Yl v�;II;p;mRb

� �
#11

� �
;

d
2ð Þ

l;m ¼ � 1

G
1ð Þ

l;m

Jl v�;II;p;mRb

� �
#11

� �
;

ð116Þ

G
1ð Þ

l;m ¼ Yl v�;II;p;mRb

� �
#13 � Jl v�;II;p;mRb

� �
#14

� �
; ð117Þ

G
2ð Þ

l;m ¼ Yl v�;II;p;mRb

� �
13
�Jl v�;II;p;mRb

� �
#14

h i
; ð118Þ

#11 ¼
v�;II;p;m

v�;I;bp;m

H7l;m

v�;II;p;m

v�;I;bp;m

Jl v�;I;bp;mRb

� �"

� Sl;mJl v�;II;p;mRb

� ��
H4l;mH7l;m � H3l;mH8l;m

� �

�
v�;II;p;m

v�;I;bp;m

H7l;mYl v�;II;p;mRb

� �
� H8l;mJl v�;II;p;mRb

� �� �

� ½Pl;mH7l;m � Sl;mH3l;m� ð119Þ

#12 ¼
v�;II;p;m

v�;I;bp;m

Tl;mJl v�;II;p;mRb

� �� �

� H4l;mH7l;m � H3l;mH8l;m

� �
� ½Ql;mH7l;m þ Tl;mH3l;m�

v�;II;p;m

v�;I;bp;m

� H7l;mYl v�;II;p;mRb

� �
� H8l;mJl v�;II;p;mRb

� �� �
ð120Þ

#13 ¼
v�;II;p;m

v�;I;bp;m

 !2

H4l;mH7l;m � H3l;mH8l;m

� �

� H5l;mJl v�;II;p;mRb

� �� �
�

v�;II;p;m

v�;I;bp;m

 !2

� H7l;mYl v�;II;p;mRb

� �
� H8l;mJl v�;II;p;mRb

� �� �
� ½H7l;mH1l;m þ H5l;mH3l;m� ð121Þ

#14 ¼
v�;II;p;m

v�;I;bp;m

 !2

H6l;mJl v�;II;p;mRb

� �� �

� H4l;mH7l;m � H3l;mH8l;m

� �
�

v�;II;p;m

v�;I;bp;m

 !2

� H7l;mYl v�;II;p;mRb

� �
� H8l;mJl v�;II;p;mRb

� �� �
� ½H2l;mH7l;m þ H6l;mH3l;m� ð122Þ
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111 ¼
v�;II;p;m

v�;I;bp;m

H5l;m

v�;II;p;m

v�;I;bp;m

Jl v�;I;bp;mRb

� �
� Tl;mJl v�;II;p;mRb

� �" #

� H2l;mH5l;m � H1l;mH6l;m

� �
�

v�;II;p;m

v�;I;bp;m

� H5l;mYl v�;II;p;mRb

� �
� H6l;mJl v�;II;p;mRb

� �� �
� ½Ql;mH5l;m � Tl;mH1l;m�

ð123Þ

112 ¼
v�;II;p;m

v�;I;bp;m

Sl;mJl v�;II;p;mRb

� �� �

� H2l;mH5l;m � H1l;mH6l;m

� �
� ½Pl;mH5l;m þ Sl;mH1l;m�

v�;II;p;m

v�;I;bp;m

� H5l;mYl v�;II;p;mRb

� �
� H6l;mJl v�;II;p;mRb

� �� �
ð124Þ

113 ¼
v�;II;p;m

v�;I;bp;m

 !2

H2l;mH5l;m � H1l;mH6l;m

� �

� H7l;mJl v�;II;p;mRb

� �� �
�

v�;II;p;m

v�;I;bp;m

 !2

� H5l;mYl v�;II;p;mRb

� �
� H6l;mJl v�;II;p;mRb

� �� �
� ½H3l;mH5l;m þ H7l;mH1l;m� ð125Þ

114 ¼
v�;II;p;m

v�;I;bp;m

 !2

H8l;mJl v�;II;p;mRb

� �� �

� H2l;mH5l;m � H1l;mH6l;m

� �
�

v�;II;p;m

v�;I;bp;m

 !2

� H5l;mYl v�;II;p;mRb

� �
� H6l;mJl v�;II;p;mRb

� �� �
� ½H4l;mH5l;m þ H1l;mH8l;m� ð126Þ

By imposing the following conditions at the helix

1 dÊz;l;m Rh � eð Þ ¼ dÊz;l;m Rh þ eð Þ ð127Þ

2 dÊh;l;m Rh � eð Þ ¼ dÊh;l;mðRh þ eÞ ð128Þ

Dl,m and Kl,m are given by

Dl;m ¼ 1

Wl vmRg; vmRh

� �
� Al;m a

1ð Þ
l;mJl v�;II;p;mRh

� �
þ a

2ð Þ
l;mYl v�;II;p;mRh

� �h in

þ iFl;m c
1ð Þ

l;mJl v�;II;p;mRh

� �
þ c

2ð Þ
l;mYl v�;II;p;mRh

� �h io

ð129Þ

Kl;m ¼
v�;II;p;m

vmW
00
l ðvmRg; vmRhÞ

½Fl;m/ 1ð Þ
l;m þ iAl;m/ 2ð Þ

l;m�; ð130Þ

where

/ 1ð Þ
l;m ¼ b

1ð Þ
l;mJ

0

l v�;II;p;mRh

� �
þ b

2ð Þ
l;mY

0

l v�;II;p;mRh

� �h i

þ ckmRp x; kmð Þ
x

c
1ð Þ

l;mJ
0

l v�;II;p;mRh

� �
þ c

2ð Þ
l;mY

0

l v�;II;p;mRh

� �h i

þ l

v�;II;p;mRh

ckm

x
Rp x; kmð Þ

� c
1ð Þ

l;mJl v�;II;p;mRh

� �
þ c

2ð Þ
l;mYl v�;II;p;mRh

� �h i

þ Rp x; kmð Þ b
1ð Þ

l;mJ
0

l v�;II;p;mRh

� �
þ b

2ð Þ
l;mY

0

l v�;II;p;mRh

� �h i

þ l

v�;II;p;mRh

Rp x; kmð Þ

� b
1ð Þ

l;mJl v�;II;p;mRh

� �
þ b

2ð Þ
l;mYl v�;II;p;mRh

� �h i
ð131Þ

/ 2ð Þ
l;m ¼ d

1ð Þ
l;mJ

0

l v�;II;p;mRh

� �
þ d

2ð Þ
l;mY

0

l v�;II;p;mRh

� �h i
� ckmRp x; kmð Þ

x

� a
1ð Þ

l;mJ
0

l v�;II;p;mRh

� �
þ a

2ð Þ
l;mY

0

l v�;II;p;mRh

� �h i

� l

v�;II;p;mRh

ckm

x
Rp x; kmð Þ

� a
1ð Þ

l;mJl v�;II;p;mRh

� �
þ a

2ð Þ
l;mYl v�;II;p;mRh

� �h i

þ Rp x; kmð Þ d
1ð Þ

l;mJ
0

l v�;II;p;mRh

� �
þ d

2ð Þ
l;mY

0

l v�;II;p;mRh

� �h i

þ l

v�;II;p;mRh

Rp x; kmð Þ d
1ð Þ

l;mJl v�;II;p;mRh

� �
þ d

2ð Þ
l;mYl v�;II;p;mRh

� �h i

ð132Þ

To obtain the final dispersion relation, we must employ

the discontinuity conditions in the axial and azimuthal

magnetic fields due to the helix current sheet as follows:

1 dB̂z;l;m Rh � eð Þ � dB̂z;l;m Rh þ eð Þ ¼ 4p
c

dĴkDRh cos u;

ð133Þ

2 dBh;l;m Rh þ eð Þ � dBh;l;m Rh � eð Þ ¼ 4p
c

dJkDRh sin u;

ð134Þ

where, dJk is the surface current density parallel to the

helix [18].

The only non-vanishing terms in the decomposition of

the helix current are those for l = -m [18].

By employing Eqs. (129)–(134) and onerous manipu-

lations, we get:

A�m;m ¼ 4dĴllDRh

c

�iW
00
�m vmRg; vmRh

� �
cos uT3 � iv2

m sin uT1

T1T4 þ T3T2

" #
;

ð135Þ

F�m;m ¼ 4pdJllDRh

c

W
00
�m vmRg; vmRh

� �
cos uT4 � v2

m sin uT2

T1T4 þ T3T2

" #
;

ð136Þ
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where T1, T2, T3, T4 are:

T1 ¼ b 1ð Þ
�m;mJ�m v�;II;p;mRh

� �
þ b 2ð Þ

�m;mY�m v�;II;p;mRh

� �h i

W
00

�m vmRg; vmRh

� �
�

v�;II;p;m

vm

W
0

�m vmRg; vmRh

� �
/ 1ð Þ
�m;m

ð137Þ

T2 ¼ d 1ð Þ
�m;mJ�m v�;II;p;mRh

� �
þ b 2ð Þ

�m;mY�m v�;II;p;mRh

� �h i

W
00

�m vmRg; vmRh

� �
�

v�;II;p;m

vm

W
0

�m vmRg; vmRh

� �
/ 2ð Þ
�m;m

ð138Þ

T3 ¼ �mkm

Rh

v�;II;p;m

vm

W
0

�m vmRg; vmRh

� �
W

00
�m vmRg; vmRh

� �/ 1ð Þ
�m;m

þ vm

cW�m vmRg; vmRh

� �
� Y�m vmRg

� �
J
0

�m vmRhð Þ � J�m vmRg

� �
Y

0

�m vmRhð Þ
h i

� c 1ð Þ
�m;mJ�m v�;II;p;mRh

� �
þ c 2ð Þ

�m;mY�m v�;II;p;mRh

� �h i

þ mkm

Rh

b 1ð Þ
�m;mJ�m v�;II;p;mRh

� �
þ b 2ð Þ

�m;mY�m v�;II;p;mRh

� �h i

�
v�;II;p;m

c
þ kmRp x; kmð Þ ckm

x
v�;II;p;m

� �

� c 1ð Þ
�m;mJ

0

�m v�;II;p;mRh

� �
þ c 2ð Þ

�m;mY
0

�m v�;II;p;mRh

� �h i

þ kmRp x; kmð Þ ckm

x
m

Rh

� c 1ð Þ
�m;mJ�m v�;II;p;mRh

� �
þ c 2ð Þ

�m;mY�m v�;II;p;mRh

� �h i
� kmRp x; kmð Þv�;II;p;m

� b 1ð Þ
�m;mJ

0

�m v�;II;p;mRh

� �
þ b 2ð Þ

�m;mY
0

�m v�;II;p;mRh

� �h i

þ kmRp x; kmð Þ m

Rh

� b 1ð Þ
�m;mJ�m v�;II;p;mRh

� �
þ b 2ð Þ

�m;mY�m v�;II;p;mRh

� �h i
ð139Þ

T4 ¼ mkm

Rh

v�;II;p;m

vm

W
0

�m vmRg; vmRh

� �
W

00
�m vmRg; vmRh

� �/ 2ð Þ
�m;m þ vmx

cW�m vmRg; vmRh

� �
� Y�m vmRg

� �
J
0

�m vmRhð Þ � J�m vmRg

� �
Y

0

�m vmRhð Þ
h i

� a 1ð Þ
�m;mJ�m v�;II;p;mRh

� �
þ a 2ð Þ

�m;mY�m v�;II;p;mRh

� �h i

� mkm

Rh

d 1ð Þ
�m;mJ�m �;II;p;mRh

� �
þ d 2ð Þ

�m;mY�m �;II;p;mRh

� �h i

�
v�;II;p;mx

c
þ kmRp x; kmð Þ ckm

x
v�;II;p;m

� �

� a 1ð Þ
�m;mJ

0

�m v�;II;p;mRh

� �
þ a 2ð Þ

�m;mY
0

�m v�;II;p;mRh

� �h i

þ kmRp x; kmð Þ ckm

x
m

Rh

� a 1ð Þ
�m;mJ�m v�;II;p;mRh

� �
þ a 2ð Þ

�m;mY�m v�;II;p;mRh

� �h i
þ kmRp x; kmð Þv�;II;p;m

� d 1ð Þ
�m;mJ

0

�m v�;II;p;mRh

� �
þ d 2ð Þ

�m;mY
0

�m v�;II;p;mRh

� �h i

� kmRp x; kmð Þ m

Rh

½d 1ð Þ
�m;mJ�m v�;II;p;mRh

� �
þ d 2ð Þ

�m;mY�m v�;II;p;mRh

� �
�

ð140Þ

The final condition is that the electric field parallel to the

helix must be zero,

X1
m¼�1

exp½ikmz� imh� dEz;�m;m sinuþ dEz;�m;m cosu
� �

¼ 0;

ð141Þ

The dispersion relation obtained by employing Eqs.

(135) and (136) as follows:

Xm¼1

m¼�1
exp½ikmz � imh� Wð1Þ

m þ Wð2Þ
m

n o
¼ 0; ð142Þ

where

Wð1Þ
m ¼

4pdĴkDRh

c

�iW 00
�m vmRg; vmRh

� �
cosuT3 � iv2

msinuT1

T1T4 þ T3T2

� �

� a 1ð Þ
�m;mJ�m v�;II;p;mRh

� �
þ a 2ð Þ

�m;mY�m v�;II;p;mRh

� �h ih

� sinu þ mkm

v2
mRh

cosu 1 þ Rp x; kmð Þ
� � �

þ d 1ð Þ
�m;mJ

0

�m v�;II;p;mRh

� �
þ d 2ð Þ

�m;mY
0

�m v�;II;p;mRh

� �h i

�
xv�;II;p;m

cv2
m

cosu 1 þ Rp x; kmð Þ
� � �

�
kmv�;II;p;m

v2
m

Rp x; kmð Þcosu

� a 1ð Þ
�m;mJ

0

�m v�;II;p;mRh

� �
þ a 2ð Þ

�m;mY
0

�m v�;II;p;mRh

� �h i

� mx
cRhv2

m

Rp x; kmð Þcosu

� d 1ð Þ
�m;mJ�m v�;II;p;mRh

� �
þ d 2ð Þ

�m;mY�m v�;II;p;mRh

� �h ii
;

ð143Þ

And

wð2Þ
m ¼

i4pdĴkDRh

c

W 00
�m vmRg;vmRh

� �
cosuT4 � v2

msinuT2

T1T4 þT3T2

� �

� c 1ð Þ
�m;mJ�m v�;II;p;mRh

� �
þ c 2ð Þ

�m;mY�m v�;II;p;mRh

� �h ih

� sinuþ mkm

v2
mRh

cosu 1þRp x;kmð Þ
� � �

� b 1ð Þ
�m;mJ

0

�m v�;II;p;mRh

� �
þ b 2ð Þ

�m;mY
0

�m v�;II;p;mRh

� �h i

�
xv�;II;p;m

c2
m

cosu 1þRp x;kmð Þ
� � �

�
kmv�;II;p;m

v2
m

Rp x;kmð Þcosu

� c 1ð Þ
�m;mJ

0

�m v�;II;p;mRh

� �
þ c 2ð Þ

�m;mY
0

�m v�;II;p;mRh

� �h i

þ mx
cRhv2

m

Rp x;kmð Þcosu

� b 1ð Þ
�m;mJ�m v�;II;p;mRh

� �
þ b 2ð Þ

�m;mY�m v�;II;p;mRh

� �h ii
:

ð144Þ
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Fig. 2 Plot of the normalized

frequency (x̂) as a function of

the normalized wave number (k̂)

for several value of the

cyclotron frequency for

a (Xbp - Xp), b (Obp - Op),

c (Xbp - Op), d (Obp - Xp).

The parameters are

xp = 0.04, xb = 0, c = 1.0,

and Xce = 0.0, 0.04, 0.08 and

0.12
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Numerical results and conclusions

Cold helix analysis

We analyze the dispersion characteristic of the slow-wave

structure from the numerical computation of the dispersion

equation (142). The nominal parameters of this system

correspond to a helix with a period kh ¼ 1:966 cm, a width

1h ¼ 0:764 cm and a radius of Rh ¼ 1:4 cm enclosed within

a wall of radius Rw ¼ 3:63 cm.

Figure 2a–d shows the plot of the frequency versus

wave number of four modes for several values of cyclo-

tron frequency. It is clear that in these figures for wave

number approximately greater than 0.45, the frequency for

(Xbp - Xp) and (Obp - Xp) modes increases with cyclotron

frequency, while decreases for (Obp - Op) and (Xbp - Op)

modes.

Figure 3a–d illustrates the phase velocity as a function

of frequency for different values of cyclotron frequency.

Figure 3a and d indicates that for (Xbp - Xp) and (Obp - Xp)

modes, for f \ 1.5 GHz the phase velocity decreases with

cyclotron frequency and for f [ 1.5 GHz increases.

Figure 3b and c shows that for (Obp - Op) and (Xbp - Op)

modes, for f \ 1.4 GHz phase velocity increases with

cyclotron frequency and for f [ 1.4 GHz decreases.

Figure 4a–d illustrates the frequency as a function of

wave number for different values of the plasma density. As

seen in these figures, the frequencies of all modes increase

with plasma frequency for 0.5 \ k \ 0.8.

Figure 5a–d illustrates the phase velocity as a function

of frequency for different values of the plasma density.

From the mentioned figures, it is clear that the phase

velocity of four modes increases with the plasma density

for 1.3 GHz \ f \ 2.4 GHz.

Hot helix analysis

Considering the hot helix analysis of the system for a beam

voltage Vb ¼ 16 kv, beam current Ib ¼ 1:25A and beam

radius Rb ¼ 1cm.

Figure 6 shows the frequency versus cyclotron fre-

quency for k̂ ¼ k=kh ¼ 0:5. As seen in this figure, the

frequency of all modes decreases with cyclotron frequency

for 0.0 \Xce \ 0.03. It is clear from Fig. 6 that the fre-

quency of (Xbp - Xp) and (Obp - Xp) modes increases with

cyclotron frequency and the (Obp - Op) and (Xbp - Op)

modes decreases, for 0.04 \ Xce \ 0.12. The order

of frequency for four modes is xX–X [xX–O [ xO–X [
xO–O.

Figure 7a–d illustrates the phase velocity as a function

of frequency for different values of cyclotron frequency.

From Fig. 7a and d, the phase velocity of (Xbp - Xp) and

(Obp - Xp) modes increases with the cyclotron frequency

for 0.8 GHz \ f \ 2.8 GHz and Fig. 7b and c shows

that the phase velocity of (Obp - Op) and (Xbp - Op)

modes decreases with the cyclotron frequency, for

1.9 GHz \ f \ 2.3 GHz.

The plot of the normalized frequency at k̂ ¼ 0:605 as a

function of plasma frequency is shown in Fig. 8. The fre-

quencies of all modes increase with plasma frequency and

the order of these frequencies is xX-X [xX-O [ xO-X [
xO–O.

Figure 9a–d illustrates the phase velocity as a function

of frequency for different values of plasma frequency. The

Fig. 2 continued
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Fig. 3 Variation of the

normalized phase velocity (v̂ph)

with frequency (f) for several

values of the cyclotron

frequency (Xce) for a (Xbp -

Xp), b (Obp – Op), c (Xbp - Op),

d (Obp - Xp). Parameters are

xp = 0.04, xb = 0, c = 1.0,

and Xce = 0.0, 0.08 and 0.09
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phase velocity of all modes increases with plasma

frequency.

The phase velocity as a function of plasma frequency at

f = 2.305 GHz is shown in Fig. 10. As shown in Fig. 10,

the order of the phase velocity is vphOX [ vphO [ vphX [
vphXO. This figure has good agreement with the simple

dispersion relation of electromagnetic wave propagation

inside the plasma that is, x2 = k2c2 ? xp
2. According to

this relation, the phase velocity of electromagnetic wave

inside the plasma is proportional to plasma frequency and

the plasma frequency increases the phase velocity.

The plot of the normalized frequency as a function of

beam–plasma frequency at k̂ ¼ 0:605 is shown in Fig. 11.

As seen in this figure, the frequency of (Obp - Op) mode

with (Obp - Xp) mode and (Xbp - Xp) mode with (Xbp -

Op) mode approximately coincides with each other and

decreases and increases with beam density, respectively.

The order of the normalized frequency is xX-X [ xX-O [
xO-X [ xO–O.

The plot of the normalized phase velocity corresponding

to f = 2.34 GHz as a function of beam density is illustrated

in Fig. 12. The phase velocity of (Xbp - Xp) with (Xbp -

Op) modes and (Obp - Op) with (Obp - Xp) modes

approximately coincides with each other. As shown in

Fig. 12, the order of the phase velocity is vphXX [
vphXO [ vphOX [ vphOO.

The plot of the normalized frequency corresponding to

k̂ ¼ 0:605 as a function of beam energy (c) is shown in

Fig. 13a and b. As seen in Fig. 13a, for 1.005 \ c\ 1.03,

the frequency of the (Obp - Op) and (Obp - Xp) modes

decreases with beam energy and for 1.03 \ c\ 1.1

increases. Also from Fig. 13b, for 1.005 \ c\ 1.06, the

frequency of the (Xbp - Xp) and (Xbp - Op) modes

increases with beam energy and for 1.08 \ c\ 1.1

decreases. As shown in Fig. 13a and b, the orders of the

normalized frequency are: xX-X [ xX-O [ xO-X [xO–O.

The plot of the normalized phase velocity corresponding

to f = 2.34 GHz as a function of beam energy is illustrated

in the Fig. 14. Figure 14 shows that, the phase velocity is a

increasing function of the beam energy and remains con-

stant after c[ 1.05. The order of the phase velocity is

vphXX [ vphOX [ vphXO [ vphOO for c[ 1.05.

Dispersion relation analysis

Figure 15 shows the plot of the growth rate as a function of

frequency for all of the modes. As seen in the figure, the

growth rate and the frequency bandwidth of the (Xbp - Op)

mode are greater than the other modes.

The variation in the normalized maximum growth rate

(ðImk̂ÞMax) and frequency of maximum growth rate (fMax)

with the cyclotron frequency for four modes are shown in

Figs. 16, 17, 18 and 19. It is clear from the Fig. 16 that, for

the (Xbp - Xp) mode the ðImk̂ÞMax and fMax increase with

cyclotron frequency up to Xce = 0.02 and remain relatively

constant thereafter. It is clear that at sufficiently strong

magnetic field, the electron motion will be effectively one

dimensional since the transverse motion of the electron

beam in the combined axial magnetic field and the RF

fields of the helix will be suppressed. It is noteworthy that

using plasma in the helix, not only the maximum growth

rate will increase, but also the frequency increases as well.

As seen in Fig. 17, for the (Obp - Op) mode the ðImk̂ÞMax

and fMax reach their highest value at Xce = 0.05. The

maximum growth rate and the frequency decrease with

increasing the cyclotron frequency and remain approxi-

mately constant after Xce = 0.07. Figure 18 shows that for

(Xbp - Op) mode the maximum growth rate and the

Fig. 3 continued
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Fig. 4 Plot of the normalized

frequency (x̂) as a function of

the normalized wave number (k̂)

for several values of the plasma

frequency (xp) for a (Xbp -

Xp), b (Obp - Op), c (Xbp -

Op), d (Obp - Xp). The

parameters are

xb = 0, c = 1.0, Xce = 0.06

and xp = 0.0, 0.02, 0.04, 0.06

and 0.08
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frequency are increasing function of Xce and remain

relatively constant after Xce = 0.09. Figure 19 illustrates

that for (Obp - Xp) mode the maximum growth rate

and the respected maximum frequency have opposite

behavior. It is clear from this figure that maximum

gain and frequency are constant for Xce [ 0.11. From

Figs. 16, 17, 18, and 19, one can conclude that the point

where the maximum growth rate and frequency becomes

constant is different for every mode. The angular rotation

velocity for infinitely long non-neutral plasma col-

umn confined radially by a uniform magnetic field given

by [4, 24] x�
re ¼ Xce=2c 1 � 1 � 2x2

b=X
2
ce

� �1=2
n o

. In the

presence of plasma or some positive ions laminar

rotation frequency expressed by: x�
re ¼ Xce=2c

1 � 1 � 2x2
b=X

2
ce 1 � f � b2

b

� �� �1=2
n o

. Here, f is the frac-

tional charge neutralization. The Brillouin flow in the case

of propagation in vacuum corresponds to Xce 	
ffiffiffi
2

p
xb=c3=2

and in the presence of plasma; we should be rewriting

the right-hand side of the above equation as

2x2
b 1 � f � b2

b

� �
=c. In this case, there is no variation in the

axial velocity across the beam. There is a maximum pos-

sible radial variation in the axial velocity of the beam as the

axial magnetic field increases, Xcec
3
2=

ffiffiffi
2

p
xb ! 1. This

radial variation depends on the parameters of the beam and

plasma. According to the above equation, the angular

rotation frequency goes to zero as the magnetic field goes

to infinity.

The variation in the ðImk̂ÞMax and fMax with the plasma

frequency for the four modes is shown in Figs. (20)-(23).

Figure 20 shows that for (Xbp - Xp) mode for xp \ 0.04,

the maximum growth rate increases with plasma frequency

and the frequency of the maximum growth rate decreases

with plasma frequency. It is clear from the Fig. 20 that, for

xp [ 0.07, the maximum growth rate increases with

increasing plasma frequency and the frequency of the

maximum growth rate remains relatively constant.

Figure 21 shows that for (Obp - Op) mode, for

xp \ 0.04, the maximum growth rate increases with

plasma frequency and the frequency of the maximum

growth rate decreases. It is clear from Fig. 21 that for

xp [ 0.1, the maximum growth rate increases with plasma

frequency and the frequency of the maximum growth rate

remains relatively constant.

Figure 22 shows that for (Xbp - Op) mode for xp [ 0.1,

the maximum growth rate increases with the increasing

plasma frequency and the frequency of maximum growth

rate remains relatively constant. Figure 23 shows that for

(Obp - Xp) mode the behaviors of the variation of the

ðImk̂ÞMax and fMax with increasing plasma frequency are

the same as each other. The highest values of the growth

rate and the frequency are at xp = 0.06. The presence of

plasma strongly increases the growth rate. The presence of

plasma should increase the growth rate of the electro-

magnetic wave. The growth rate is proportional to the

Pierce gain parameter known in the theory of TWTs

C ¼ ðZIb=4VbÞ1=3
. Where, Ib is the electron beam current

and Z is the coupling impedance of electrons to the wave,

which depends on the transverse structure of the wave in

the beam region. The coupling impedance of solid electron

beam in the presence of plasma can be much larger than the

vacuum case [25]. On the other hand, presence of plasma

leads to higher field concentration inside the helix than

outside.

Figure 24a shows the comparison between the maxi-

mum growth rates of the four modes as a function of the

plasma frequency. It is clear that the behaviors of the

(Xbp - Xp) with (Xbp - Op) modes and (Obp - Op) with

Fig. 4 continued
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Fig. 5 Variation of the

normalized phase velocity (v̂ph)

with frequency (f) for several

values of the plasma frequency

(xp) for a (Xbp - Xp),

b (Obp - Op), c (Xbp - Op),

d (Obp - Xp). The parameters

are xb = 0, c =

1.0, Xce = 0.04 and

xp = 0.0, 0.04 and 0.08
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(Obp - Xp) modes approximately have similar behavior.

As seen in this figure, for xp \ 0.02, all the modes

approximately have an equal maximum growth rate. It is

clear that for xp [ 0.04, the maximum growth rate of

(Obp - Xp) mode is greater than the others.

Figure 24b shows the comparison between the maxi-

mum frequencies of the four modes as a function of the

plasma frequency. It is clear that the behaviors of the

(Xbp - Xp) with (Xbp - Op) modes and (Obp - Op) with

(Obp - Xp) modes approximately have similar behavior.

The variation in the normalized growth rate and the fre-

quency of the maximum growth rate with the beam–plasma

frequency for the all modes are shown in Figs. 25, 26, 27,

and 28. Figure 25 shows that for (Xbp - Xp) mode, for

xb \ 0.0125, the maximum growth rate increases with

beam density and the frequency of the maximum growth

rate remains relatively constant. It is clear from the figure

that for xb [ 0.0225, the maximum growth rate and the

maximum frequency have the opposite behavior.

Figure 26 shows that for (Obp - Op) mode, the maxi-

mum growth rate has a maximum value at xb = 0.025. As

seen in this figure for xb [ 0.025, the maximum growth

rate decreases and the maximum frequency remains rela-

tively constant.

Figure 27 shows that for (Xbp - Op) mode for

xb \ 0.0225, the maximum growth rate increases and the

maximum frequency decreases as the xb increases. As seen

in this figure for xb [ 0.03, the maximum growth rate and

the maximum frequency remain relatively constant.

Figure 28 shows that for (Obp - Xp) mode, for

xb [ 0.015, the maximum growth rate increases and the

maximum frequency remains approximately constant. The

Fig. 5 continued

Fig. 6 Plot of the normalized

frequency (x̂) as a function of

the cyclotron frequency (Xce)

for k̂ ¼ 0:5. The parameters are

xp = 0.04, xb = 0.04,

c = 1.03122

135 Page 20 of 35 J Theor Appl Phys (2014) 8:135

123



Fig. 7 Variation of the

normalized phase velocity (v̂ph)

with frequency (f) for several

values of the cyclotron

frequency (Xce) for a (Xbp -

Xp), b (Obp - Op), c (Xbp -

Op), d (Obp - Xp). The

parameters are xp = 0.04,

xb = 0.04, c = 1.03122, and

Xce = 0.04, 0.08 and 0.1
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efficiency of a plasma-filled device estimated in the same

way as for vacuum Cherenkov device [26]. The electron

efficiency is g ffi ðc þ 1Þ=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2 � 1Þ

p
C, and for low-volt-

age devices described by g ffi ð
ffiffiffiffiffi
Vb

p
ZIbÞ1=3

. The effect of

beam energy and current is to increase the efficiency of

device.

Figure 29 shows the comparison between the maximum

growth rate of the four modes as a function of xb. It is clear

that the behaviors of the (Xbp - Xp) and (Xbp - Op) modes

as a function of xb are the same as well as the behavior of

the (Obp - Op) and (Obp - Xp) modes. As seen in Fig. 29

for xb [ 0.0125, the maximum growth rate of (Obp - Op)

mode is higher than the others. Figure 30 shows the com-

parison between the maximum frequency of the four modes

as a function of the xb. It is clear that the behaviors of the

(Xbp - Xp) and (Xbp - Op) modes as a function of xb are

the same as well as the behavior of the (Obp - Op) and

(Obp - Xp) modes. As seen in Fig. 30 the maximum fre-

quency of (Xbp - Xp) mode is higher than the others.

The variation in the normalized maximum growth rate

and frequency of maximum growth rate with the beam

energy effect for the four modes are shown in Figs. 31, 32,

33, and 34. As seen in Fig. 31, the maximum frequency

remains relatively constant as the beam energy increases.

Figure 31 shows that the highest value of the maximum

growth rate occurs at a special value of beam energy.

Figs. 32, 33 and 34 show that the maximum growth rate

and frequency are constant for c[ 1.03, c[ 1.01 and

c[ 1.015, respectively. It is consistent with Fig. 14 where

Fig. 7 continued

Fig. 8 Plot of the normalized

frequency (x̂) as a function of

the plasma frequency (xp) for

k̂ ¼ 0:605. The parameters are

Xce = 0.04, xb = 0.04,

c = 1.03122
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Fig. 9 Variation of the

normalized phase velocity (v̂ph)

with frequency (f) for several

values of the plasma frequency

(xp) for a (Xbp - Xp),

b (Obp - Op), c (Xbp - Op),

d (Obp - Xp). The parameters

are Xce = 0.04, xb = 0.04,

c = 1.03122, and

xp = 0.0, 0.02, 0.04, 0.06 and

0.08
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Fig. 9 continued

Fig. 11 Plot of the normalized

frequency (x̂) as a function of

the beam–plasma frequency

(xb) for k̂ ¼ 0:605. The

parameters are

Xce = 0.04, xp = 0.011,

c = 1.03122

Fig. 10 Plot of the normalized

phase velocity (v̂ph) as a

function of the plasma

frequency (xp) for

f = 2.305 GHz. The parameters

are Xce = 0.04, xb = 0.04,

c = 1.03122
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Fig. 12 Plot of the normalized

phase velocity (v̂ph) as a

function of the plasma

frequency (xb) for

f = 2.34 GHz. The parameters

are Xce = 0.04, xp = 0.011,

c = 1.03122

Fig. 13 Plot of the normalized

frequency (x̂) as a function of

the beam energy (c) for

k̂ ¼ 0:605. a (Obp - Xp) and

(Obp - Op), b (Xbp - Op) and

(Xbp - Xp). The parameters are

Xce = 0.04, xb = 0.01,

xp = 0.011
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Fig. 15 The plot of the growth

rate ðImk̂Þ as a function of

frequency (f) for all of the

modes. The parameters are

c = 1.03122, xp =

0.011, xb = 0.01 and

Xce = 0.11

Fig. 16 The variation in the

normalized maximum growth

rate (ðImk̂ÞMax) (solid line) and

frequency of maximum growth

rate (fMax) (dashed line) with the

cyclotron frequency (Xce) for

the (Xbp - Xp). The parameters

are c = 1.03122, xp = 0.011,

xb = 0.01

Fig. 14 Plot of the normalized

phase velocity (v̂ph) as a

function of the beam energy (c)

for f = 2.34 GHz. The

parameters are Xce =

0.04, xp = 0.011, xb = 0.01
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Fig. 17 The variation in the

normalized maximum growth

rate (ðImk̂ÞMax) (solid line) and

frequency of maximum growth

rate (fMax) (dashed line) with the

cyclotron frequency (Xce) for

the (Obp - Op). The parameters

are c = 1.03122,

xp = 0.011, xb = 0.01

Fig. 18 The variation in the

normalized maximum growth

rate (ðImk̂ÞMax) (solid line) and

frequency of maximum growth

rate (fMax) (dashed line) with the

cyclotron frequency (Xce) for

the (Xbp - Op). The parameters

are c = 1.03122, xp = 0.011,

xb = 0.01

Fig. 19 The variation in the

normalized maximum growth

rate (ðImk̂ÞMax) (solid line) and

frequency of maximum growth

rate (fMax) (dashed line) with the

cyclotron frequency (Xce) for

the (Obp - Xp). The parameters

are c = 1.03122, xp = 0.011,

xb = 0.01
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Fig. 20 The variation in the

normalized maximum growth

rate (ðImk̂ÞMax) (solid line) and

frequency of maximum growth

rate (fMax) (dashed line) with the

plasma frequency (xp) for the

(Xbp - Xp). The parameters are

c = 1.03122, Xce = 0.04 and

xb = 0.04

Fig. 21 The variation in the

normalized maximum growth

rate (ðImk̂ÞMax) (solid line) and

frequency of maximum growth

rate (fMax) (dashed line) with the

plasma frequency (xp) for the

(Obp - Op). The parameters are

c = 1.03122, Xce = 0.04 and

xb = 0.04

Fig. 22 The variation in the

normalized maximum growth

rate (ðImk̂ÞMax) (solid line) and

frequency of maximum growth

rate (fMax) (dashed line) with the

plasma frequency (xp) for the

(Xbp - Op). The parameters are

c = 1.03122, Xce = 0.04 and

xb = 0.04
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Fig. 23 The variation in the

normalized maximum growth

rate (ðImk̂ÞMax) (solid line) and

frequency of maximum growth

rate (fMax) (dashed line) with the

plasma frequency (xp) for the

(Obp - Xp). The parameters are

c = 1.03122, Xce = 0.04 and

xb = 0.04

Fig. 24 Comparison between

the a normalized maximum

growth rate (ðImk̂ÞMax),

b frequency of maximum

growth rate (fMax) of the four

modes as a function of the

plasma frequency, xp. The

parameters are

c = 1.03122, Xce = 0.04 and

xb = 0.04

J Theor Appl Phys (2014) 8:135 Page 29 of 35 135

123



Fig. 25 The variation in the normalized maximum growth rate (ðImk̂ÞMax) (solid line) and frequency of maximum growth rate (fMax) (dashed

line) with the beam–plasma frequency (xb) for the (Xbp - Xp). The parameters are c = 1.03122, Xce = 0.04 and xp = 0.011

Fig. 26 The variation in the normalized maximum growth rate (ðImk̂ÞMax) (solid line) and frequency of maximum growth rate (fMax) (dashed

line) with the beam–plasma frequency (xb) for the (Obp - Op). The parameters are c = 1.03122, Xce = 0.04 and xp = 0.011
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Fig. 27 The variation in the normalized maximum growth rate (ðImk̂ÞMax) (solid line) and frequency of maximum growth rate (fMax) (dashed

line) with the beam–plasma frequency (xb) for the (Xbp - Op). The parameters are c = 1.03122, Xce = 0.04 and xp = 0.011

Fig. 28 The variation in the normalized maximum growth rate (ðImk̂ÞMax) (solid line) and frequency of maximum growth rate (fMax) (dashed

line) with the beam–plasma frequency (xb) for the (Obp - Xp). The parameters are c = 1.03122, Xce = 0.04 and xp = 0.011
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the phase velocities of all modes are constant as the beam

energy increases.

Conclusions

Now, we can summarize the specific results of this project

as follows.

1. In cold helix analysis, increasing in cyclotron fre-

quency values, increases the normalized oscillation

frequency (x̂) and normalized phase velocity (v̂ph) for

(Xbp - Xp) and (Obp - Xp) modes while decreases x̂
and v̂ph for (Obp - Op) and (Xbp - Op) modes.

2. In cold helix analysis, increasing in plasma frequency

values, increases the normalized oscillation frequency

(x̂) and normalized phase velocity (v̂ph) for all of the

four modes.

3. In hot helix analysis, in special value of k̂ the

normalized frequency of all four modes for

0.0 \ Xce \ 0.03 decreases and for higher values of

Fig. 30 Comparison between

the frequency of maximum

growth rate (fMax) of the four

modes as a function of the

beam–plasma frequency, xb.

The parameters are

c = 1.03122, Xce = 0.04 and

xp = 0.011

Fig. 29 Comparison between

the normalized maximum

growth rate (ðImk̂ÞMax) of the

four modes as a function of the

beam–plasma frequency, xb.

The parameters are

c = 1.03122, Xce = 0.04 and

xp = 0.011
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Xce the (Xbp - Xp) and (Obp - Xp) modes are

increase and (Obp - Op) and (Xbp - Op) modes

decrease. Increasing in the cyclotron frequency

increases the phase velocity of (Xbp - Xp) and

(Obp - Xp) modes and decreases the phase velocity

of (Obp - Op) and (Xbp - Op) modes.

4. In hot helix analysis, all of the four modes increase as

the plasma frequency increases. As seen in these

figures, the phase velocity is a decreasing function of

frequency. The order of the phase velocity as a

function of plasma frequency is vphOX [ vphO [
vphX [ vphXO.

5. In hot helix analysis, the normalized phase velocity of

the (Xbp - Xp) and (Xbp - Op) modes approximately

coincides and increases as the xb increases, while the

modes (Obp - Op) and (Obp - Xp) coincide with

each other and approximately stay constant as the xb

increases.

6. The phase velocity of all four modes in f = 2.34 GHz

is increasing function of the beam energy and

Fig. 32 The variation in the

normalized maximum growth

rate (ðImk̂ÞMax) (solid line) and

frequency of maximum growth

rate (fMax) (dashed line) with the

beam energy (c) for the (Obp -

Op). The parameters are

Xce = 0.04, xb = 0.04 and

xp = 0.1

Fig. 31 The variation in the

normalized maximum growth

rate (ðImk̂ÞMax) (solid line) and

frequency of maximum growth

rate (fMax) (dashed line) with the

beam energy (c) for the (Xbp -

Xp). The parameters are

Xce = 0.04, xb = 0.04 and

xp = 0.1
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remains constant after c[ 1.05. The order of the

phase velocity is vphXX [ vphOX [ vphXO [ vphOO for

c[ 1.05.

7. One can conclude that the cyclotron frequency where

the maximum growth rate and frequency becomes

constant is different for every mode.

8. The comparison between the maximum growth rates

of the four modes as a function of the plasma

frequency, xp shows that the behaviors of the (Xbp -

Xp) and (Xbp - Op) modes approximately are the

same and the (Obp - Op) and (Obp - Xp) modes have

similar behavior. As seen in this figure, for xp \ 0.02,

all the modes approximately have an equal maximum

growth rate.

9. The comparison between the maximum growth rate

of the four modes as a function of xb shows that

Fig. 33 The variation in the

normalized maximum growth

rate (ðImk̂ÞMax) (solid line) and

frequency of maximum growth

rate (fMax) (dashed line) with the

beam energy (c) for (Xbp - Op).

The parameters are

Xce = 0.04, xb = 0.04 and

xp = 0.1

Fig. 34 The variation in the

normalized maximum growth

rate (ðImk̂ÞMax) (solid line) and

frequency of maximum growth

rate (fMax) (dashed line) with the

beam energy (c) for the (Obp -

Xp). The parameters are

Xce = 0.04, xb = 0.04 and

xp = 0.1
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the behaviors of the (Xbp - Xp) and (Xbp - Op)

modes as a function of xb are the same as well as

the behavior of the (Obp - Op) and (Obp - Xp)

modes.

10. The maximum growth rate and frequency are constant

for, c[ 1.03, c[ 1.01 and c[ 1.015, respectively.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.
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