
Saravi et al. Journal of Theoretical and Applied Physics 2013, 7:8
http://www.jtaphys.com/content/7/1/8
RESEARCH Open Access
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method with finite difference method for
determination of maximum beam deflection
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Abstract

This paper deals with the determination of maximum beam deflection using homotopy perturbation method
(HPM) and finite difference method (FDM). By providing some examples, we compare the results with exact
solutions and conclude that HPM is more accurate, more stable and effective and can therefore be found widely
applicable in structure engineering.

Keywords: Nonlinear differential equations, Analytical approximate methods, Numerical methods, Force method,
Exact solution, Maximum beam deflection
Introduction
Nonlinear systems have been widely used in many areas of
physics and engineering and are of significant importance
in mechanical and structural dynamics for the compre-
hensive understanding and accurate prediction of motion
and deformation. In order to develop engineering and
applied science, it is necessary to study analytical and
numerical methods for solving all available problems.
Various methods for solution of such equations have been
proposed. Surveys of the literature with numerous
references and useful bibliographies have been given by
Nayfeh [1], Mickens [2], Jordan and Smith [3], and more
recently by He [4].
Most of nonlinear differential equations have no expli-

cit solutions which are expressible in finite terms; even if
a solution can be found, it is often too complicated to
display clearly the principal features of the solution. Due
to such difficulties, one of the most time-consuming and
difficult tasks appear among the researchers of nonlinear
problems.
With the rapid development of nonlinear science, there

appears an ever-increasing interest of scientists in the
analytical asymptotic techniques for nonlinear problems,
and several analytical approximation methods have been
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developed to solve linear and nonlinear ordinary and
partial differential equations.
Some of these techniques include perturbation

method (PM) [5,6], variational iteration method [7,8],
homotopy perturbation method (HPM) [9-12], energy
balance method [13-17], variational approach method
[18-20], parameter-expansion method [21-24], amplitude-
frequency formulation [25-27], iteration perturbation
method [28,29], etc. Among these methods, the PM and
HPM are considered to be two of the powerful methods
capable of handling strongly nonlinear behaviors and can
converge to an accurate solution for smooth nonlinear
systems.
The application of HPM in linear and nonlinear

problems has been devoted by scientists and engineers,
because this method continuously deforms the under
study problem which is difficult into a simple problem
which is easy to solve. The HPM was first proposed by
Ji-Huan He in 1999 [9] for solving the linear and
nonlinear differential and integral equations. The
method is a coupling of the traditional perturbation
method and homotopy in topology. This method, which
does not require a small parameter in an equation, has a
significant advantage in providing an analytical approxi-
mate solution to a wide range of nonlinear problems in
applied sciences. Recent development of the HPM is
presented by Ji-Huan He in 2008 [10]. Elementary
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introduction and interpretation of the method are given
in the publications [9-12].
One of the responsibilities of the structural design

engineer is to devise arrangements and proportions of
members that can withstand economically and efficiently
for the conditions anticipated during the lifetime of a
structure. A central aspect to this structure is the calcula-
tion of the beam deformation, which has very wide
applications in structural engineering. The nonlinear
differential equation of beam deformation under static
load is given in the following form [30]:

d2

dx2
y xð Þ

� �
� M xð Þ

EI

� �
1þ d

dx
y xð Þ

� �2
" #3

2

¼ 0: ð1Þ

In Equation 1, M is the bending moment, E is the
elastic modulus, and I is the second moment of area that
must be calculated with respect to axis perpendicular to
the applied loading. Note that the bending moment
changes for different conditions of supporting and
loading.
The finite difference method by Taylor [31], which is

one of the known numerical methods in civil
engineering-structure, and civil engineers frequently may
be consulted for analyzing the engineering structures,
such as beams, columns, and plates. For analyzing beams
using FDM and determination of maximum beam
deflection, we need to eliminate the nonlinear part of
differential equation and change nonlinear differential
equation to linear one. We mention that this change
reduces the accuracy of numerical solution results. In
small structures this error is negligible, but in large
structures the error rate will increase.
In this paper, we introduce HPM to civil engineers for

analyzing the engineering structures, such as beams, col-
umn, and plates. The main target of this paper is to
solve the nonlinear differential equation of beam elastic
deformation with different conditions of supporting and
loading and then to determine the maximum beam
deflection by applying the HPM and to compare the
approximate results with FDM and exact solution.

The description of homotopy perturbation method
To illustrate the basic ideas of this method, we consider
the following equation [9],

A uð Þ � f rð Þ ¼ 0; rєΩ ð2Þ
with the following boundary condition:

B u;
∂u
∂n

� �
¼ 0; rєΩ ð3Þ

where A is a general differential operator, B a boundary
operator, f(r) a known analytical function, and Γ is the
boundary of the domain Ω. A can be divided into two
parts which are L and N, where L is linear and N is
nonlinear. Hence we can write Equation 2 in following
form:

L uð Þ � N uð Þ � f rð Þ ¼ 0: ð4Þ
The homotopy perturbation structure is given as

follows:

H v; pð Þ ¼ 1� pð Þ L vð Þ � L u0ð Þ½ �
þ p A vð Þ � f rð Þ½ �

¼ 0; ð5Þ
where

v r; pð Þ : Ω� 0; 1½ �→R ð6Þ
In Equation 5, pє [0, 1] is an embedding parameter

and u0 is the first approximation that satisfies the
boundary condition. We can assume that the solution of
Equation 5 can be written as a power series in p, in the
following form:

v ¼ v0 þ pv1 þ p2v2 þ p3v3 þ . . . ð7Þ
And the best approximation for solution is

v ¼ limp→1v ¼ v0 þ v1 þ v2 þ v3 þ . . . ð8Þ

The application of homotopy perturbation method for
determination of maximum beam deflection
Beam with two fixed ends, under concentrated load at the
middle of span
The nonlinear differential equation of beam deformation
with two fixed ends, under concentrated load at the
middle of span is in the following form (Figure 1) [30]:

�
d2

dx2
y xð Þ

�
� F 4x� Lð Þ

8EI

� �
1þ d

dx
y xð Þ

� �2
" #3

2

¼ 0

with the following boundary conditions:

y 0ð Þ ¼ 0;
d
dx

y 0ð Þ ¼ 0: ð10Þ

To solve Equation 9 by HPM, first we change the
Equation 9 to the following form:

d2

dx2
y xð Þ

� �
� F 4x� Lð Þ

8EI

� �
1þ 3

2
d
dx

y xð Þ
� �2

" #
¼ 0;

ð11Þ
To solve Equation 11 by HPM, we consider the

following process after separating the linear and
nonlinear parts of the equation. A homotopy can be
constructed in the following form:



Figure 1 Beam with two fixed ends, under concentrated load at the middle of span.
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H y; pð Þ ¼ 1� pð Þ d2

dx2
y xð Þ � F 4x� Lð Þ

8EI

� �

þ p

(
d2

dx2
y xð Þ � F 4x� Lð Þ

8EI
:

�
1þ 3

2
d
dx

y xð Þ
� �2�)

¼ 0:

ð12Þ

We can assume that the solution of Equation 12 can
be written as a power series in p, in the following form:

y xð Þ ¼ y0 xð Þ þ py1 xð Þ þ p2y2 xð Þ þ p3y3 xð Þ þ ::::

ð13Þ

By substituting Equation 13 into Equation 12, we have

H y; pð Þ ¼ 1� pð Þ
(

d2

dx2

�
y0 xð Þ þ py1 xð Þ þ p2y2 xð Þ

þp3y3 xð Þv
�
� F 4x� Lð Þ

8EI

�

þp

*
d2

dx2

"
y0 xð Þ þ py1 xð Þ þ p2y2 xð Þ þ p3y3 xð Þ

�

� F 4x� Lð Þ
8EI

(
1þ 3

2

�
d
dx

�
y0 xð Þ þ py1 xð Þ

þp2y2 xð Þ þ p3y3 xð Þ
��2+

¼ 0
ð14Þ

After expansion and rearranging based on coefficient
of p-term, we obtain the following results:
p0 :
d2

dx2
y0 xð Þ

� �
þ Fx

2EI
þ FL
8EI

� �

¼ 0; y0 0ð Þ ¼ d
dx

y0 0ð Þ ¼ 0; ð15Þ

p1 :
d2

dx2
y1 xð Þ

� �

þ � 3Fx
4EI

þ 3FL
16EI

� �
d
dx

y0 xð Þ
� �2

¼ 0; y1 0ð Þ ¼ d
dx

y1 0ð Þ ¼ 0; ð16Þ

p2 :
d2

dx2
y2 xð Þ

� �

þ � 3Fx
2EI

þ 3FL
8EI

� �
d
dx

y0 xð Þ
� �

d
dx

y1 xð Þ
� �

¼ 0; y2 0ð Þ ¼ d
dx

y2 0ð Þ ¼ 0; ð17Þ

By solving Equations 15, 16, and 17, we have

y0 xð Þ ¼ � 1
12

: Fx
3

EI

� �
þ 1

16
: FLx

2

EI

� �
ð18Þ

y1 xð Þ ¼ 3
1; 024

: F3

EIð Þ3
 !

� 8
21

x7 þ 2
3
Lx6 � 2

5
L2x5 þ 1

12
L3x4

� �

ð19Þ

y2 xð Þ ¼ 3
65; 536

: F5

EIð Þ5
 !

� 32
55

x11 þ 8
5
Lx10 � 16

9
L2x9 þ L3x8 � 2

7
L4x7 þ 1

30
L5x6

� �

ð20Þ
According to the HPM, we can conclude that

y xð Þ ¼ limp→1y xð Þ
¼ y0 xð Þ þ y1 xð Þ þ y2 xð Þ þ y3 xð Þ þ :::: ð21Þ

Therefore, substituting the values of y0(x), y1(x), and y2
(x) from Equations 18, 19, and 20 into Equation 21, we get



3� � 2� �� �
Table 2 Comparison of HPM with formula in mechanics of
materials for L ¼ 3:00 m; EI ¼ 500 N

m2 ; F ¼ 100N

Displacement from left
support xa (m)

HPM
yHPM
b (m)

Formula in mechanics of
materials yexact

c (m)

0.10 0.0004 0.0004

0.20 0.0014 0.0014

0.30 0.0029 0.0029

0.40 0.0049 0.0049

0.50 0.0073 0.0073

1.00 0.0208 0.0208
ax = L / 2 = 1.50; bymax, HPM (L / 2)= 0.0281; cymax, exact (L / 2) = 0.0281.
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y xð Þ ¼ � 1
12

: Fx
EI

þ 1
16

: FLx
EI

þ
"

3
1; 024

: F3

EIð Þ3
 !

:

 
� 8
21

x7 þ 2
3
Lx6

� 2
5
L2x5 þ 1

12
L3x4

!#

þ
"

3
65; 536

: F5

EIð Þ5
 ! 

� 32
55

x11 þ 8
5
Lx10

� 16
9
L2x9 þ L3x8 � 2

7
L4x7 þ 1

30
L5x6

!#

ð22Þ

In the mechanics of materials for beam with two fixed
ends, under concentrated load at the middle of span, the
deformation is computed by following formula [30]:

yexact xð Þ ¼ F=48EI 3Lx2 � 4x3:
� �

: ð23Þ

Note that the Equation 23 was determined by using
force method in the mechanics of materials [30].
The results of comparison between HPM with formula

in mechanics of materials for beam with two fixed ends
and under concentrated load at the middle of span are
given in Tables 1 and 2.
Beam with two fixed ends, under linear distributed load
The nonlinear differential equation of beam deformation
with two fixed ends, under linear distributed load is in
the following form (Figure 2) [30],

d2

dx2
y xð Þ

� �

� W 6Lx� L2 � 6x2ð Þ
12EI

� �
1þ d

dx
y xð Þ

� �2
" #3

2

¼ 0; ð24Þ
Table 1 Comparison of HPM with formula in mechanics of
materials for L ¼ 1:00 m; EI ¼ 500 N

m2 ; F ¼ 100N

Displacement from left
support xa (m)

HPM
yHPM
b (m)

Formula in mechanics of
materials yexact

c (m)

0.10 0.000108 0.000108

0.20 0.000367 0.000367

0.30 0.000675 0.000675

0.40 0.000933 0.000933
ax = L / 2=0.50; bymax, HPM (L / 2) = 0.001042; cymax, exact(L / 2) = 0.001042.
with the following boundary conditions:

y 0ð Þ ¼ 0;
d
dx

y 0ð Þ ¼ 0: ð25Þ

To solve Equation 24 by HPM, first we change
Equation 24 to the following form:

d2

dx2
y xð Þ

� �
� W ð6Lx� L2 � 6x2

12EI

� �

1þ 3
2

d
dx

y xð Þ
� �2

" #
¼ 0 ð26Þ

Now, we use HPM to solve Equation 26. We consider
the following process after separating the linear and
nonlinear parts of the equation. A homotopy can be
constructed in the following form:

H y; pð Þ ¼ 1� pð Þ d2

dx2
y xð Þ �W 6Lx� L2 � 6x2ð Þ

12EI

� �

þp

(
d2

dx2
y xð Þ �W 6Lx� L2 � 6x2ð Þ

12EI

⋅ 1þ 3
2

d
dx

y xð Þ
� �2

" #)

¼ 0 ð27Þ

We can assume that the solution of Equation 27 can
be written as a power series in p, in the following form:

y xð Þ ¼ y0 xð Þ þ py1 xð Þ þ p2y2 xð Þ þ p3y3 xð Þ þÄn ð28Þ



Figure 2 Beam with two fixed ends, under linear distributed load.
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Substituting Equation 28 into Equation 27 leads to

H y; pð Þ ¼ 1� pð Þ
�
d2

dx2
ðy0 xð Þ þ py1 xð Þ þ p2y2 xð Þ

þp3y3 xð ÞvÞ �W 6Lx� L2 � 6x2ð Þ
12EI

�

þp

*
d2

dx2
y0 xð Þ þ py1 xð Þ þ p2y2 xð Þ þ p3y3 xð Þ� �

�W 6Lx� L2 � 6x2ð Þ
12EI

	
1þ 3

2

�
d
dx

�
y0 xð Þ

þpy1 xð Þ þ p2y2 xð Þ þ p3y3 xð Þ
��

2

�+
¼ 0

ð29Þ

After expansion and rearranging based on coefficient
of p-term, we obtain the following results:

p0 :
d2

dx2
y0 xð Þ

� �
þ wx2

2EI
� wLx

2EI
þ wL2

12EI

� �

¼ 0; y0 0ð Þ ¼ d
dx

y0 0ð Þ ¼ 0; ð30Þ
Table 3 Comparison of HPM with formula in mechanics of
materials for L ¼ 1:00 m; EI ¼ 500 N

m2 ;w ¼ 100N

Displacement from left
support xa (m)

HPM
yHPM
b (m)

Formula in mechanics of
materials yexact

c (m)

0.10 0.000067 0.000067

0.20 0.000213 0.000213

0.30 0.000367 0.000367

0.40 0.000480 0.000480
ax = L / 2 =0.50; bymax, HPM (L / 2) = 0.000521; cymax, exact (L / 2) = 0.000521.
p1 :
d2

dx2
y1 xð Þ

� �

þ 3wx2

4EI
� 3wLx

4EI
þ wL2

8EI

� �
d
dx

y0 xð Þ
� �2

¼ 0; y1 0ð Þ ¼ d
dx

y1 0ð Þ ¼ 0; ð31Þ

p2 :
d2

dx2
y2 xð Þ

� �

þ 3wx2

2EI
� 3wLx

2EI
þ wL2

4EI

� �
d
dx

y0 xð Þ
� �

d
dx

y1 xð Þ
� �

¼ 0; y2 0ð Þ ¼ d
dx

y2 0ð Þ ¼ 0;

ð32Þ

By solving the Equations 30, 31, and 32, we come to

y0 xð Þ ¼ w
12EI


 �
�Lx3 þ 1

2
L2x2 þ 1

2
x4

� �
ð33Þ

y xð Þ ¼ w3

1; 152 EIð Þ3
 !

4
15

x10 � 4
3
Lx9 þ 11

4
L2x8 � 3L3x7

þ 11
6
L4x6 � 3

5
L5x5 þ 1

12
L6x4

0
B@

1
CA

ð34Þ

y2 xð Þ ¼ 5w5

663; 552 EIð Þ5
 ! 
2
5
x16 � 16

5
Lx15 þ 80

7
L2x14 � 24L3x13 þ 197

6
L4x12

� 153
5

L5x11 þ 197
10

L6x10 � 26
3
L7x9 þ 5

2
L8x8

� 3
7
L9x7 þ 1

30
L10x6

!
ð35Þ



Table 4 Comparison of HPM with formula in mechanics of
materials for L ¼ 3:00 m; EI ¼ 500 N

m2 ;w ¼ 100N

Displacement from left
support xa (m)

HPM
yHPM
b (m)

Formula in mechanics of
materials yexact

c (m)

0.10 0.0007 0.0007

0.20 0.0026 0.0026

0.30 0.0055 0.0055

0.40 0.0090 0.0090

0.50 0.0130 0.0130

1.00 0.0334 0.0334
ax = L / 2 = 1.50; bymax, HPM (L / 2) = 0.0422; cymax, exact (L / 2) = 0.0422.

i ¼ 2→ y4 � 4y3 þ 6y2 � 4y1 þ y0½ � ¼ wh4

EI
¼ k ð43Þ
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According to the HPM, we can conclude that

y xð Þ ¼ limp→1y xð Þ
¼ y0 xð Þ þ y1 xð Þ þ y2 xð Þ þ y3 xð Þ þ :::: ð36Þ

Therefore, substituting the values of y0(x), y1(x), and y2
(x) from Equations 33, 34, and 35 into Equation 36, we
obtain the following result:

y xð Þ ¼ w
12EI


 �
�Lx3 þ 1

2
L2x2 þ 1

2
x4

� �� �

þ

"
w3

1; 152 EIð Þ3
 ! 4

15
x10 � 4

3
Lx9 þ 11

4
L2x8 � 3L3x7

þ 11
6
L4x6 � 3

5
L5x5 þ 1

12
L6x4

0
B@

1
CA
#

þ

"
5w5

663; 552 EIð Þ5
 !

 2
5
x16 � 16

5
Lx15 þ 80

7
L2x14

�24L3x13 þ 197
6

L4x12 � 153
5

L5x11

þ 197
10

L6x10 � 26
3
L7x9 þ 5

2
L8x8

� 3
7
L9x7 þ 1

30
L10x6

!�
ð37Þ

In the mechanics of materials for beam with two fixed
ends, under linear distributed load, the deformation is
computed by following formula [30]:
Figure 3 Beam with two fixed ends, under linear distributed load.
yexact xð Þ ¼ wx2

24EI
L� xð Þ2 ð38Þ

Once more, we note that the Equation 38 was
determined by using force method in the mechanics of
materials [30].
The results of comparison between HPM with the for-

mula in mechanics of materials for beam with two fixed
ends, under linear distributed load, are given in Tables 3
and 4.

The application of finite difference method for the
determination of maximum beam deflection
In this section, we consider beam with two fixed ends,
under linear distributed load (Figure 3) [31].
For the determination of maximum beam deflection

with the FDM, we consider the linear differential equa-
tion in following form [31],

d4y
dx4

¼ w
EI

; ð39Þ

with the following boundary conditions:

y 0ð Þ ¼ 0;
d
dx

y 0ð Þ ¼ 0: ð40Þ

Now writing Equation 39 in the finite difference form,
we obtain [31]:

1
h4

�4yiþ1 þ 6yi � 4yi�1 þ yi�2½ � ¼ w
EI

ð41Þ

where h is the interval. We divided the beam into six
equal parts as we illustrated in Figure 3. Applying
Equation 41 at each interior point 1 to 5, we get the
following:

i ¼ 1→ y3 � 4y2 þ 6y1 � 4y0 þ y�1½ � ¼ wh4

EI
¼ k ð42Þ



Table 5 Results comparison of HPM with FDM and exact
solution for the different L values

L=3.00\;\text{m} EI=500N/
{{m}^{2}}

w=100N
Z

L=3.00\;
\text{m}

L ¼ 1:00 m; EI ¼ 500 N
m2 ;w ¼ 100N 0.00052 0.00051 0.00052

L = 2.00 m, EI = 500N/m2,w = 100N 0.00833 0.00822 0.00833

L = 3.00 m, EI = 500N/m2,w = 100N 0.04218 0.04163 0.04218
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i ¼ 3→ y5 � 4y4 þ 6y3 � 4y2 þ y1½ � ¼ wh4

EI
¼ k ð44Þ

i ¼ 4→ y6 � 4y5 þ 6y4 � 4y3 þ y2½ � ¼ wh4

EI
¼ k ð45Þ

i ¼ 5→ y7 � 4y6 þ 6y5 � 4y4 þ y3½ � ¼ wh4

EI
¼ k ð46Þ

Note the points labeled -1 and 7 lie outside the beam
domain. These are called imaginary points. The values
at these points can be determined judiciously. Now, ap-
plying the difference operator for boundary conditions
(y0 = y6 = 0), we get the following:

dy
dx

¼ 1
2h

yiþ1 � yi�1½ � ¼ 0 ð47Þ

i ¼ 0→y1 � y�1 ¼ 0→y�1 ¼ y1 ð48Þ

i ¼ 6→y7 � y5 ¼ 0→y7 ¼ y5⋅ ð49Þ

Also because of symmetry, we have

y1 ¼ y5; y2 ¼ y4⋅ ð50Þ

Using Equations 48 to 50 into Equations 42 to 46 in
which the latter five equations reduce to the following
three meaningful equations in y1, y2, and y3:

7y1 � 4y2 þ y3 ¼ k ð51Þ

�7y1 þ 7y2 � 4y3 ¼ k ð52Þ

2y1 � 8y2 þ 6y3 ¼ k: ð53Þ

Solving this system of equations leads to

ymax ¼ y3 ¼ 80
24

k ¼ 80
24

⋅
wh4

EI
ð54Þ

But h = l / 6, therefore, we get

ymax ¼ y3 ¼ 0:00257
wL4

EI
ð55Þ
The exact solution for this problem is [31]

ymax ¼ 1
384

⋅
wL4

EI
ð56Þ

To illustrate the accuracy of the HPM, we present the
comparison results of HPM with FDM and exact solu-
tion in Table 5.

Conclusions
In this paper, HPM and FDM have been successfully ap-
plied for the determination of maximum beam deflec-
tion with specified loading and supporting conditions.
Comparison of the results obtained by HPM and FDM
with exact solution reveals that the HPM is more accur-
ate and more stable and effective and can therefore be
found widely applicable in civil-structure engineering.
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