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Abstract Using a traveling wave reduction technique, we

have shown that Maccari equation, (2?1)-dimensional

nonlinear Schrödinger equation, medium equal width

equation, (3?1)-dimensional modified KdV–Zakharov–

Kuznetsev equation, (2?1)-dimensional long wave-short

wave resonance interaction equation, perturbed nonlinear

Schrödinger equation can be reduced to the same family of

auxiliary elliptic-like equations. Then using extended

F-expansion and projective Riccati equation methods,

many types of exact traveling wave solutions are obtained.

With the aid of solutions of the elliptic-like equation, more

explicit traveling wave solutions expressed by the hyper-

bolic functions, trigonometric functions and rational func-

tions are found out. It is shown that these methods provide

a powerful mathematical tool for solving nonlinear evolu-

tion equations in mathematical physics. A variety of

structures of the exact solutions of the elliptic-like equation

are illustrated.

Keywords Soliton � Nonlinear evolution equation �
F-expansion method � Projective Riccati equation method

Introduction

The effort in finding exact solutions to nonlinear equations

is significant for the understanding of most nonlinear

physical phenomena. For instance, the nonlinear wave

phenomena observed in fluid dynamics, plasma, and opti-

cal fibers are often modeled by the bell-shaped sech solu-

tions and the kink-shaped tanh solutions [1]. In recent

years, there has been much interest in investigating dif-

ferent kinds of exact solutions of nonlinear evolution

equations (NLEEs), such as soliton, negaton, peakon,

complexiton, cuspon, rational, periodic, and quasiperiodic

solutions. Exact solutions to nonlinear partial differential

equations play an important role in nonlinear physical

science since they can provide much physical information

and more insight into the physical aspects of the problem

and thus lead to further applications. In recent years, many

methods for obtaining explicit traveling and solitary wave

solutions of NLEEs have been proposed such as inverse

scattering transform method [2], Darboux transformation

method [3, 4], Hirota’s bilinear method [5], Bäcklund

transformation method [6], homogeneous balance method

[7], solitary wave ansatz method [8, 9], Jacobi elliptic

function expansion method [10], the tanh function method

[11], ðG0

G
Þ expansion method [12, 13], F-expansion method

[14], projective Ricatti equation method [15, 16, 17] and so

on. Among them extended F-expansion and projective

Ricatti equation methods have been proved to be a pow-

erful mathematical tool to investigate the exact solutions

for NLEEs. In the present paper, we will employ the

extended F-expansion and projective Ricatti equation

methods for solving the elliptic-like equation which is

given as

Aw00 þ Bw þ Dw3 ¼ 0; ð1Þ

where A, B and D are arbitrary constants. This equation

can also be written in more simplified form as

w00 þ a1w þ a3w
3 ¼ 0; ð2Þ
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with a1 = B/A and a3 = D/A. Equation (1) or its simplified

form is one of the most important auxiliary equation,

because many NLEEs can be converted to Eq. (1) using

suitable transformations. The main step for solving the

coupled systems lies in making a appropriate transforma-

tion to obtain the implicit relation between these two

unknowns u and v as functions of third unknown w; then

the system will be decoupled and the equation in w can be

solved by the above foresaid methods. The rest of the paper

is structured as follows: in ‘‘Description of methods’’ we

give brief descriptions of extended F-expansion and pro-

jective Riccati equation methods; in ‘‘Traveling wave

reduction of some nonlinear evolution equations’’, a few

NLEEs of physical interest are transformed into elliptic-

like equations. In ‘‘The exact traveling wave solutions of

elliptic-like equation’’, we have obtained traveling wave

solutions of elliptic-like equation using extended F-

expansion and projective Riccati equation methods. In

‘‘Conclusions’’, some conclusions are given.

Description of methods

The extended F-expansion method

We now describe the extended F-expansion method for

NLEEs. We concisely show what is F-expansion method

and how to use it to find various periodic wave solutions to

nonlinear wave equations [14]. In this method a nonlinear

partial differential equation (PDE)

Pðu; ut; ux; uy; uxt; utt; uyt; uxx; . . .Þ ¼ 0; ð3Þ

can be converted to a nonlinear ordinary differential

equation (ODE)

Oðu; u0; u00; u000; . . .Þ ¼ 0; ð4Þ

upon using a wave variable n = k1x1 ? k2x2 ? k3x3 ? � � �
klxl - xt, so that u(x1, x2, x3� � �, t) = u(n) and the

localized wave solution u(n) travels with speed of x.

Now suppose that u(n) can be expanded as follows

uðnÞ ¼
Xn

j¼0

Xj

i¼0

cjiF
iðnÞGj�iðnÞ; cnn 6¼ 0; ð5Þ

or

uðnÞ ¼ a0 þ
Xn

i¼1

aiF
iðnÞ þ

Xn

j¼1

bjF
�jðnÞ; an 6¼ 0; ð6Þ

where cji, a0, ai and bj are constants to be determined,

F(n) and G(n) satisfy the following relations

F02 ¼ P1F4 þ Q1F2 þ R1;G02 ¼ P2G4 þ Q2G2 þ R2; ð7Þ

G2 ¼ lF2 þ m;R1 ¼ Q2
1 � Q2

2 þ 3P2R2

3P1

; l ¼ P1

P2

;

m ¼ Q1 � Q2

3P2

; m 6¼ 0:

ð8Þ

The integer n is determined by considering the homoge-

neous balance between the governing nonlinear terms and

the highest order partial derivatives of u in nonlinear ODE

Eq. (4).

Substituting Eqs. (5) or (6) into nonlinear ODE Eq. (4)

and using Eqs. (7) and (8), we obtain a series in FpGq

(p = 0, 1, 2, � � �l; q = 0, 1) or (Fp, p = 0, 1, 2, � � �l).
Equating each coefficient of FpGq or (Fp) to zero yields a

system of algebraic equations for cji (j = 0, 1, 2, � � �n;

i = 0, � � �, j) and ki, x, or (ai, bj , i = 1, 2, � � �n;

j = 1, 2, � � �n; ki, x).

Now solving these equations by use of Mathematica,

cij, ki and x can be expressed in terms of Pi, Qi, Ri, l, m
and the parameters of nonlinear ODE Eq. (4). Substituting

these results into Eqs. (5) or (6) gives the general form of

traveling wave solutions (see ‘‘Appendix 1’’).

With the aid of Appendices 1 and 2 and the relation Eqs.

(7) and (8) the appropriate kinds of the Jacobi elliptic

function solutions of Eq. (3) including the single functions

and the combined function solutions can be chosen. As we

know, when m ? 1, Jacobi elliptic functions degenerate as

hyperbolic functions and m ? 0, Jacobi elliptic functions

degenerate as trigonometric functions in the manner of

‘‘Appendix 1’’. So we can get the corresponding hyperbolic

function solutions and trigonometric function solutions.

The projective Riccati equation method

The well-known projective Riccati equations read as

f
0 ðnÞ ¼ pf ðnÞgðnÞ; ð9Þ

g0ðnÞ ¼ R þ pg2ðnÞ � rf ðnÞ; ð10Þ

where p = 0 is a real constant, R and r are two real

constants. The relation between f and g is

g2 ¼ �p R � 2rf þ r2 þ d
R

f 2

� �
; d ¼ �1; R 6¼ 0: ð11Þ

Consider a given nonlinear PDE in the unknown

u(x, y, z, � � �, t), which is a solution of ODE O(u, u
0
,

u00, � � �) = 0, obtained by the traveling wave reduction

uðx; y; z; . . .; tÞ �! uðn ¼ k1x þ k2y þ k3z þ � � � þ kntÞ:
Now we seek solutions of u(n) in the following form

uðnÞ ¼
Xn

i¼1

f i�1ðnÞ½Aif ðnÞ þ BigðnÞ� þ A0; R 6¼ 0; ð12Þ

where Ai and Bi are constants to be fixed later, and f(n) and

g(n) are solutions of Eqs. (9) and (10). The parameter n in
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Eq. (12) can be determined by balancing the highest order

partial derivative and nonlinear term in O(u, u
0
,

u
00
, � � �) = 0.

On substituting Eq. (12) along with conditions Eqs. (9)–

(11) into ODE, and setting the coefficient of figj

(j = 0, 1, i = 0, 1, 2, 3, …) to zero yields a set of over

determined algebraic equations, from which the constants

Ai, Bi, R, r, and ki can be found explicitly.

According to [15, 16], the exact solutions of Eqs. (9) and

(10) are of the form

Case 1 When p = -1, d = -1, R = 0

f1ðnÞ ¼
R sechð

ffiffiffiffi
R

p
nÞ

r sechð
ffiffiffi
R

p
nÞ þ 1

; g1ðnÞ ¼
ffiffiffi
R

p
tanhð

ffiffiffi
R

p
nÞ

r sechð
ffiffiffi
R

p
nÞ þ 1

:

ð13Þ

Case 2 When p = -1, d = 1, R = 0

f2ðnÞ ¼
R cschð

ffiffiffiffi
R

p
nÞ

r cschð
ffiffiffi
R

p
nÞ þ 1

; g2ðnÞ ¼
ffiffiffi
R

p
cothð

ffiffiffi
R

p
nÞ

r cschð
ffiffiffi
R

p
nÞ þ 1

:

ð14Þ

Case 3 When p = 1, d = -1, R = 0

f3ðnÞ ¼
R secð

ffiffiffi
R

p
nÞ

r secð
ffiffiffi
R

p
nÞ þ 1

; g3ðnÞ ¼
ffiffiffi
R

p
tanð

ffiffiffi
R

p
nÞ

r secð
ffiffiffi
R

p
nÞ þ 1

;

ð15Þ

f4ðnÞ ¼
R cscð

ffiffiffi
R

p
nÞ

r cscð
ffiffiffi
R

p
nÞ þ 1

; g4ðnÞ ¼
�

ffiffiffi
R

p
cotð

ffiffiffi
R

p
nÞ

r cscð
ffiffiffi
R

p
nÞ þ 1

:

ð16Þ

Case 4 When R = r = 0

f5ðnÞ ¼
C

n
¼ Cpg5ðnÞ; g5ðnÞ ¼

1

pn
; ð17Þ

where C is a constant. Substitute the constants Ai, Bi, -

R, r, and ki into Eq. (12) along with Eqs. (13)–(17) to

obtain soliton and periodic (or rational) solutions of the

nonlinear PDE of concern.

Traveling wave reduction of some nonlinear evolution

equations

The (2?1)-dimensional Maccari system

In this paper, we are interested to reveal new exact trav-

eling wave solutions for the following (2 ? 1)-dimensional

soliton equation

iut þ uxx þ uv ¼ 0; ð18aÞ
vt þ vy þ ðuu�Þx ¼ 0; ð18bÞ

where u(x, y, t) is complex function and v(x, y, t) is real

function. Eqs. (18a), (18b) is similar to integrable Zakharov

equation in plasma physics to describe the behavior of

sonic Langmuir solitons which are Langmuir oscillations

trapped in regions of reduced plasma density caused by the

ponderomotive force due to a high-frequency field [when

x = y in Eq. (18b)]. Recently, Maccari [18] obtained Eqs.

(18a), (18b) by an asymptotically exact reduction method

based on Fourier expansion and spatiotemporal rescaling

from the Kadomtsev–Petviashvili equation. The

integrability property was explicitly demonstrated and

Lax pairs were also obtained. Zhao [19] constructed

some general traveling wave solutions of Maccari

equation. Also, several periodic and soliton solutions of

the above system have recently been reported [12, 20, 21].

Maccari’s system is a kind of NLEEs that are often

presented to describe the motion of the isolated waves,

localized in a small part of space, in many fields such as

hydrodynamic, plasma physics, nonlinear optic, etc. To

find some new exact solutions of Eqs. (18a) and (18b), we

first introduce the following transformations

uðx; y; tÞ ¼ eigwðnÞ; vðx; y; tÞ ¼ vðnÞ; ð19aÞ
g ¼ kx þ ly þ kt; n ¼ sðx þ qy � 2ktÞ; ð19bÞ

where w(n) and v(n) are real functions, k, l, k, s and

q are real constants. Substituting Eqs. (19a), (19b) into Eqs.

(18a) and (18b), we have

s2w00ðnÞ � ðk þ k2ÞwðnÞ þ wðnÞvðnÞ ¼ 0; ð20aÞ

ðq � 2kÞv0ðnÞ þ ðw2ðnÞÞ0 ¼ 0: ð20bÞ

To simplify ordinary differential Eqs. (20a) and (20b),

integrating Eq. (20b), we have

vðnÞ ¼ 1

2k � q
w2ðnÞ þ C1; ð21Þ

where q = 2k and C1 is an integration constant.

Substituting Eq. (21) into Eq. (20a), we obtain

Aw00ðnÞ þ BwðnÞ þ Dw3ðnÞ ¼ 0; ð22Þ

where A ¼ 1; B ¼ C1�k�k2

s2 and D ¼ 1
s2ð2k�qÞ : Thus, looking

for exact solutions of Eq. (22) leads to finding explicit

solutions of Eqs. (18a) and (18b) and latter is easier to

solve than Eqs. (18a) and (18b). By applying the extended

F-expansion and projective Riccati equation methods to

Eq. (22), we can get some new exact traveling wave

solutions of Eqs. (18a) and (18b).

The (2?1)-dimensional nonlinear Schrödinger system

We consider the coupled (2?1)-dimensional nonlinear

system of Schrödinger equations as

iut � uxx þ uyy þ juj2u � 2uv ¼ 0; ð23Þ

vxx � vyy � ðjuj2Þxx ¼ 0; ð24Þ
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where u(x, y, t) and v(x, y, t) are complex-valued functions.

Nonlinear PDE systems of the type given by Eqs. (23) and

(24) play an important role in atomic physics, and the

functions u and v have different physical meanings in different

disciplines of physics [2, 22, 23]. Important applications are,

for instance, in fluid dynamics [2] and plasma physics [22]. In

the context of water waves, u is the amplitude of a surface

wave packet while v is the velocity potential of the mean flow

interacting with the surface waves [23]. However, in the

hydrodynamic context, u is the envelope of the wave packet

and v is the induced mean flow [2]. In addition, Eqs. (23) and

(24) are relevant in a number of different physical contexts,

describing slow modulation effects of the complex amplitude

v, due to a small nonlinearity, or a monochromatic wave in a

dispersive medium. To obtain the exact solutions of Eqs. (23)

and (24), we use the transformations

uðx; y; tÞ ¼ wðnÞ expðigÞ; vðx; y; tÞ ¼ /ðnÞ; ð25Þ
n ¼ kðx þ ly þ 2ða � blÞtÞ; g ¼ ax þ by þ ct: ð26Þ

where k, l, a, b and c are constants to be determined. Note

that n and g are traveling wave variables, not necessarily in

the same direction. That is, n and g are independent linear

functions of x, y and t. Then w and / are assumed to be

rational functions of exp(n). When w is positive real, w is

the modulus of the complex function u, and g is the

argument. The modulus and argument are traveling waves

but the two waves may be in different directions. From

Eqs. (23) and (24), we may obtain the system of ODEs

k2ðl2 � 1Þw00 þ ða2 � b2 � cÞw þ w3 � 2w/ ¼ 0; ð27Þ

ðl2 þ 1Þ/00 þ ðw2Þ00 ¼ 0: ð28Þ

Integrating Eq. (28) with respect to n yields

/ ¼ w2

l2 þ 1
þ C2; ð29Þ

where C2 is an integration constant. Substituting Eq. (29)

into Eq. (27), we obtain

Aw00 þ Bw þ Dw3 ¼ 0; ð30Þ

where A = k2(l2 - 1), B = (a2 - b2 - c - 2C2) and

D ¼ l2�1
l2þ1

: This equation can also be written in more sim-

plified form as w00 ? a1w ? a3w
3 = 0, where a1 ¼

a2�b2�c�2C2

k2ðl2�1Þ and a3 ¼ l2�1
l2þ1

:

Medium equal width equation

The medium equal width (MEW) equation is used as a

model PDE for the simulation of one-dimensional wave

propagation in nonlinear media with dispersion processes

[24] and is given by

ut þ 3u2ux � auxxt ¼ 0: ð31Þ

The MEW Eq. (31), which is related to the regularized long

wave and KdV equation, has solitary waves with both

positive and negative amplitudes, all of which have the same

width. The MEW equation is a nonlinear wave equation with

cubic nonlinearity with a pulse-like solitary wave solution.

This equation appears in many physical applications and is

used as a model for nonlinear dispersive waves. The equation

gives rise to equal width undular bore. Using the wave

variable n = x - vt converts Eq. (31) to an ODE

vu þ u3 þ avu00 ¼ 0; ð32Þ

which is obtained after integrating once and setting the

constant of integration to zero.

The (2?1)-dimensional long wave-short wave

resonance interaction equation

The nonlinear interaction of multiple waves results in sev-

eral new physical developments [25]. The resonance

interaction of long-wave with short-wave was first probed

by Benney [26] for capillary-gravity waves in deep water.

In this case simple interaction equations cannot be obtained,

because for deep water waves there is no wave in the long

wavelength limit. However, simple interaction equations

can be realized in a stable stratified for oblique propagation

of long and short-waves [27]. The single component two-

dimensional long wave short wave resonance interaction

(LSRI) equation for a two-layer fluid model has been

derived in [28] using the multiple scale perturbation method

and bright and dark type one and two-soliton solutions have

been reported. Ohta et al. [29] derived the integrable two

component analogue of the two-dimensional LSRI system

as a governing equation for the interaction of the nonlinear

dispersive waves by applying the reductive perturbation

method. It has been shown in the two layer fluid model that

resonance between the long-wave component and short-

wave component takes place when the phase velocity of the

former matches the group velocity of the latter [28]. This is

a ubiquitous phenomenon which appears in hydrodynamics,

bio-physics, plasma physics and in nonlinear optical sys-

tems. There exist many nonlinear wave equations in fluid

mechanics, such as the KdV equation, the Boussinesq

equation, the (2?1)-dimensional dispersive long wave

equation in shallow water, etc. The (2?1)-dimensional

LSRI equation can be written as

Sxx � LS � iðSt þ SyÞ ¼ 0 ð33Þ

Lt � ð2SS�Þx ¼ 0 ð34Þ

where L and S denote the long interfacial wave and the

short surface wave packets, respectively, and S* is the
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complex conjugate of S. This system describes the long and

short wave propagation at an angle to each other in a two-

layer fluid. It has been shown that Eqs. (33) and (34)

possess the bright and the dark double-soliton solutions,

position and dromion solutions and coherent soliton

structures. To solve Eqs. (33) and (34) by using our

methods, we first reduce Eqs. (33) and (34) to a system of

ODEs. We make the transformations

Sðx; y; tÞ ¼ SðnÞ expðigÞ; Lðx; y; tÞ ¼ LðnÞ; ð35Þ
n ¼ qðx þ ly � vtÞ; g ¼ ax þ by þ ct; ð36Þ

where n and g are real parameters and q, l, v, a, b, and

c are constants. The substitution of Eqs. (35) and (36) into

Eqs. (33) and (34) yields

iqð2a � v � lÞeig dS

dn
þ q2 d2S

dn2
þ ðb þ cÞS � SL

� �
eig ¼ 0;

ð37Þ

v
dL

dn
� 2

d2S

dn2
¼ 0: ð38Þ

From Eq. (38) we get

L ¼ 1

v
ð2S2 þ CÞ; ð39Þ

where C is the constant of integration. From Eq. (37) we

have

2a � v � l ¼ 0 i:e v ¼ 2a � l; ð40Þ

and

q2 d2S

dn2
þ ðb þ cÞS � SL ¼ 0: ð41Þ

From Eqs. (39) and (41), we eliminate L and get

q2 d2S

dn2
þ b þ c � C

v

� �
S � 2

v
S3 ¼ 0: ð42Þ

This equation can be converted into an elliptic like equa-

tion with a1 ¼ ðbþcÞv�C

vq2 and a3 ¼ �2
vq2 and obtained exact

solutions.

The (3?1)-dimensional modified KdV–Zakharov–

Kuznetsev equation

Here, we consider the (3?1)-dimensional modified KdV–

Zakharov–Kuznetsev equation given in the form as [30]

ut þ bu2ux þ uxxx þ uxyy þ uxzz ¼ 0; ð43Þ

where b is a nonzero constant. This equation transformed

to elliptic-like equation using traveling wave transform

u(x, y, z, t) = u(n), where n = x ? y ? z - vt. Here v is

constant and permits us converting Eq. (43) into an ODE,

3u00 þ 1

3
bu3 � vu þ C ¼ 0; ð44Þ

where C is a constant of integration and taken as zero for

simplicity. This elliptic equation can be solved by F-

expansion and projective Riccati equation methods.

Perturbed nonlinear Schrödinger equation

The nonlinear Schrödinger equation with its perturbation

terms is given by [31]

iut þ
1

2
uxx þ Fðjuj2Þu ¼ i�R½u; u��; ð45Þ

when R[u, u*] = 0, Eq. (45) reduces to the dimensionless

nonlinear Schrödinger equation with non-Kerr law. If

F(|u|2) = |u|2 and R[u, u*] = 0, Eq. (45) is the nonlinear

Schrödinger equation with Kerr law. The first term

represents the evolution term, the second term is the

group velocity dispersion term. Here R is a spatio-

differential or integro-differential operator while the

perturbation parameter e with 0 \ e\ 1 is called the

relative width of the the spectrum that arises due to quasi-

monochromaticity and the perturbation terms are

R ¼djuj2m
uþauxþbuxx�cuxxxþkðjuj2uÞxþhðjuj2Þxu

þqjuxj2u� inðu2u�
xÞx� igu2

xu�� ifu�ðu2Þxx

� ilððjuj2ÞxuÞ� ivuxxxx� imuxxxxxþðr1uþr2uxÞ
Zx

1

juj2ds

ð46Þ

In Eq. (46), d is the coefficient of nonlinear damping or

amplification depending on its sign and m could be 0, 1, 2.

For m = 0, d is the linear amplification or attenuation

according to d being positive or negative. For m = 1, d
represents the two-photon absorption (or a nonlinear gain if

d[ 0). If m = 2, d gives a higher order correction

(saturation or loss) to the nonlinear amplification-

absorption. Also, b is the bandpass filtering term. In

Eq. (46), k is the self-steepening coefficient for short

pulses (typically \100 fs), c is the higher order dispersion

coefficient. Here l is the coefficient of Raman scattering and

a is the frequency separation between the soliton carrier and

the frequency at the peak of EDFA gain. Moreover, q
represents the coefficient of nonlinear dissipation induced by

Raman scattering. The coefficients of n, g and f arise due to

quasi-solitons. The integro-differential perturbation terms

with r1 and r2 are due to saturable amplifiers. The

coefficients of the higher order dispersion terms are,

respectively, given by c, v and m. It is known that the

NLSE, as given by Eq. (45), does not give correct prediction

for pulse widths smaller than 1 ps. For example, in solid state
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solitary lasers, where pulses as short as 10 fs are generated,

the approximation breaks down. Thus, quasi-mono-

chromaticity is no longer valid and so higher order

dispersion terms come in. If the GVD is close to zero, one

needs to consider the third and higher order dispersion for

performance enhancement along trans-oceanic and

transcontinental distances. Also, for short pulse widths

where GVD changes, within the spectral bandwidth of the

signal cannot be neglected, one needs to take into account the

presence of higher order dispersion terms. This reasoning

leads to the inclusion of the fourth and sixth order dispersion

terms that are, respectively, given by the coefficients of v and

m. In this paper we study the dimensionless form of the

perturbed NLSE with Kerr law nonlinearity, which is the

special case of Eq. (45) and given as

iut þ uxx þ ajuj2u þ i½c1uxxx þ c2juj
2
ux þ c3ðjuj

2Þxu� ¼ 0;

ð47Þ

where c1 is the third order dispersion, c2 is the nonlinear

dispersion, while c3 is also a version of nonlinear

dispersion. Since u = u(x, t) is a complex function, we

assume that Eq. (47) has traveling wave solutions in the

form

uðx; tÞ ¼ wðnÞ expðiðHx � XtÞÞ; n ¼ kðx � ctÞ; ð48Þ

where H; X; k and c are arbitrary constants to be

determined. Substituting Eq. (48) into Eq. (47) and

separating the real and imaginary parts, we have

k2ð1 � 3c1HÞw00 þ ðX � H2 þ c1H
3Þw þ ða � c2HÞw3

¼ 0;

ð49Þ

c1k2w000 � ðc � 2H þ 3c1H
2Þw0 þ ðc2 þ 2c3Þw2w0 ¼ 0:

ð50Þ

Integrating Eq. (50) with respect to n once and setting the

integration constant to be zero, then we have

c1k2w00 þ ð2H � c � 3c1H
2Þw0 þ 1

3
c2 þ

2

3
c3

� �
w3 ¼ 0:

ð51Þ

The necessary and sufficient condition for a non-constant

function w = w(n) satisfying both Eqs. (49) and (51) is that

the coefficients of Eqs. (49) and (51) satisfying the

proportional ratio are as follows:

c1

1 � 3c1H
¼ 2H � c � 3c1H

2

X � H2 þ c1H
3
¼

1
3
c2 þ 2

3
c3

a � c2H
ð52Þ

For the sake of simplicity we set A ¼ c1k2; B ¼ 2H � c �
3c1H

2 and D ¼ 1
3
c2 þ 2

3
c3; then the Eqs. (51) can be

written as

Aw00ðnÞ þ BwðnÞ þ Dw3ðnÞ ¼ 0: ð53Þ

The exact traveling wave solutions of elliptic-like

equation

Using extended F-expansion method

Considering the homogeneous balance between w00(n) and

w3(n) in Eq. (1), we assume that w(n) can be expanded by

the extended F-expansion in the following form

wðnÞ ¼ a0 þ a1FðnÞ þ b1GðnÞ; ð54Þ

where a0, a1 and b1 are constants to be determined later,

F(n) and G(n) satisfy the relations Eqs. (7) and (8).

Substituting Eq. (54) into Eq. (22) along with Eqs. (7) and

(8), collecting the coefficients of the FnGm(n = 0, 1, 2, 3;

m = 0, 1) and setting them to zero, we get a system of

algebraic equations:

F0 : a0B þ a3
0D þ 3a0mb2

1D ¼ 0; ð55Þ

F : a1B þ 3a2
0a1D þ 3a1mb2

1D þ a1AQ1 ¼ 0; ð56Þ

G : b1B þ 3a2
0b1D þ mb3

1D þ b1AQ2 þ 2mb1AP2 ¼ 0;

ð57Þ

F2 : 3a0a2
1D þ 3la0b2

1D ¼ 0; ð58Þ

FG : 6a0a1b1 ¼ 0; ð59Þ

F2G : b1a2
1BD þ lb3

1D þ 2lb1AP2 ¼ 0; ð60Þ

F3 : a3
1D þ 3la1b2

1D þ 2a1AP1 ¼ 0: ð61Þ

On solving the above system of algebraic equations with

symbolic computations, we obtain following two kinds of

solutions.

Case 1

a0 ¼ 0; a1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2AP1

D

r
; b1 ¼ 0; ð62Þ

the following constraint among the coefficients A and B of

Eq. (22) should be respected B ? AQ1 = 0.

Case 2

a0 ¼ 0; a1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
�AP1

2D

r
; b1 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffi
�AP1

2lD

s

: ð63Þ

For this case, the following constraint among the

coefficients A and B of Eq. (22) has been obtained

2Bl ? A(2l Q1 - 3m P1) = 0. On substituting Eq. (62)

into Eq. (54), we obtain the following traveling wave

solutions as

wsjðnÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2P1A

D

r
FðnÞ; ð64Þ
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where the superscript sj means single Jacobi, A and

D should verify constraint relation. These solutions are the

single nondegenerative Jacobi elliptic function solutions.

The relations between values of (R1, Q1, P1) and the cor-

responding Jacobi elliptic function F(n) of Eqs. (7), (8) are

given in ‘‘Appendix 1’’. Substituting the values of

(R1, Q1, P1) and the corresponding Jacobi F(n) chosen

from ‘‘Appendix 1’’ into the general form of the traveling

solution Eq. (64), we can simultaneously obtain different

periodic wave solutions to the elliptic-like Eq. (1).

For example if we choose R1 = 1, Q1 = -(1 ?

m2), P1 = m2, then F(n) = sn(n), thus

wðnÞ ¼ �m

ffiffiffiffiffiffiffiffiffiffi
�2A

D

r
FðnÞ; ð65Þ

where AD \ 0, B = (1 ? m2)A.

Substituting Eq. (63) into Eq. (54) we obtain the com-

bined nondegenerative Jacobi elliptic function solutions,

wcjðnÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
�P1A

2lD

s h ffiffiffi
l

p
FðnÞ þ �GðnÞ

i
; ð66Þ

where the superscript cj means combined Jacobi,

e = ±1, P1A/D \ 0, l[ 0, A and B should verify

constraint relation. With the aid of ‘‘Appendix 2’’, if we

select dn2(n) = m2cn2(n) ? (1 - m2), and set

FðnÞ ¼ cnðnÞ;GðnÞ ¼ dnðnÞ; l ¼ m2; m ¼ 1 � m2; ð67Þ

and from ‘‘Appendix 2’’, we find that the respective

coefficients of nonlinear ODE for cn(n) and dn(n) are

P1 ¼ �m2;Q1 ¼ 2m2 � 1;Q2 ¼ 2 � m2 ð68Þ

Inserting Eqs. (67) and (68) into Eq. (66) we have

wcj
1 ðnÞ ¼ �

ffiffiffiffiffiffiffi
�A

2D

r
½mcnðnÞ þ �dnðnÞ�: ð69Þ

In the same manner with the aid of Appendices 1 and 2 as

mentioned above, we can obtain the following solutions

wcj
2 ðnÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1 � m2ÞA

2D

r
½msdðnÞ þ �ndðnÞ�: ð70Þ

wcj
3 ðnÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1 � m2ÞA

2D

r
½mscðnÞ þ �ncðnÞ�: ð71Þ

wcj
4 ðnÞ ¼ �

ffiffiffiffiffiffiffi
�A

2D

r
½mcsðnÞ þ �dsðnÞ�: ð72Þ

wcj
5 ðnÞ ¼ �

ffiffiffiffiffiffiffi
�A

2D

r
½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � m2Þ

p
ncðnÞ þ �dcðnÞ�: ð73Þ

wcj
6 ðnÞ ¼ �

ffiffiffiffiffiffiffi
�A

2D

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � m2Þ

p
scðnÞ þ �dcðnÞ

h i
; ð74Þ

where e = ±1, AD \ 0, B = -(1 - 2m2)A/2. Similarly,

by choosing Pi, Qi and Ri from ‘‘Appendix 1’’, one can get

many other families of solutions in terms of JEFs. How-

ever, for the limit of length of paper, we omit them here.

Using projective Riccati equations method

Considering the homogeneous balance between w
00
(n) and

w3(n) in Eq. (2), the solution of Eq. (2) is written as

wðnÞ ¼ A0 þ A1f ðnÞ þ B1gðnÞ; ð75Þ

where A0, A1 and B1 are constants to be determined later

and f(n) and g(n) satisfy Eqs. (9)–(11). Substituting

Eq. (75) into Eq. (22) and making use of Eqs. (9)–(11),

becomes a polynomials for f i (i = 0, 1, 2, 3) and f j

g(j = 0, 1, 2), setting the coefficients of the polynomials

to zero yields a set of algebraic equations.

const : a1A0 þ a3A3
0 � 3a3pB2

1R ¼ 0; ð76Þ

f ðnÞ : �pA1R þ a1A1 þ 3a3A2
0A1 þ 6a3prA0B2

1

� 3a3pA1B2
1R

¼ 0; ð77Þ

gðnÞ : a1B1 þ 3a3A2
0B1 � a3pB3

1R ¼ 0; ð78Þ

f 2ðnÞ : 3prA1

þ a3 3A0A2
1 þ 6prA1B2

1 � 3pA0B2
1

r2 þ d
R

� �� �

¼ 0;

ð79Þ

f ðnÞgðnÞ : prB1 þ 6a3A0A1B1 þ 2a3prB3
1 ¼ 0; ð80Þ

f 3ðnÞ : a3 A3
1 � 3pA1B2

1

r2 þ d
R

� �� �
� 2pA1

r2 þ d
R

� �

¼ 0;

ð81Þ

f 2ðnÞgðnÞ : a3 3A2
1B1 � pB3

1

r2 þ d
R

� �� �
� 2pB1

r2 þ d
R

� �

¼ 0:

ð82Þ

From above set of equations, using the Wu elimination

method [32], we have the following solutions:

1. A0 ¼ A1 ¼ r ¼ 0;B2
1 ¼ � 2

a3
;R ¼ � a1

2p
; p ¼ �1; d ¼ �1;

2. A0 ¼ B1 ¼ r ¼ 0;A2
1 ¼ � 2d

a1a3
;R ¼ � a1

p
; p ¼ �1; d ¼ �1;

3. A0 ¼ 0;A2
1 ¼ � r2þd

4a1a3
;B2

1 ¼ � 1
2a3

;R ¼ � 2a1

p
; p ¼ �1; d ¼ �1:

Therefore we obtain 16 kinds of exact solutions of

elliptic-like equation.
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Case 1 Dark soliton solutions

w1ðnÞ ¼ �
ffiffiffiffiffiffiffiffiffi
� a1

a3

r
tanh

ffiffiffiffiffi
a1

2

r
n

� �
; a1 [ 0; a3\0: ð83Þ

Case 2 Singular dark soliton solutions

w2ðnÞ ¼ �
ffiffiffiffiffiffiffiffiffi
� a1

a3

r
coth

ffiffiffiffiffi
a1

2

r
n

� �
; a1 [ 0; a3\0: ð84Þ

Case 3 Bright soliton solutions

w3ðnÞ ¼ �
ffiffiffiffiffiffiffiffiffi
� 2

a3

r
sechð ffiffiffiffiffiffiffiffiffi�a1

p
nÞ; a1\0; a3\0: ð85Þ

Case 4 Formal soliton solutions

w4ðnÞ ¼ �
ffiffiffiffiffi
2

a3

r
cschð ffiffiffiffiffiffiffiffiffi�a1

p
nÞ; a1\0; a3 [ 0: ð86Þ

Case 5 Periodic wave solutions

w5ðnÞ ¼ �
ffiffiffiffiffi
a1

a3

r
tan

ffiffiffiffiffiffiffiffiffi
� a1

2

r
n

� �
; a1\0; a3\0: ð87Þ
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Fig. 1 a A kink type dark solitary wave solution with a1 = 2 and

a3 = -1. b A bell type solitary wave solution with a1 = -2 and

a3 = -1. c, d represents periodic wave solutions at a1 = 2 and

a3 = -1. e A combined formal soliton solution with a1 = 2, a3 =

-1, r = 2, and p = 1. f A combined formal periodic wave solution

with a1 = -2, a3 = 1, r = 0.5, and p = 1
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Case 6 Periodic wave solutions

w6ðnÞ ¼ �
ffiffiffiffiffi
a1

a3

r
cot

ffiffiffiffiffiffiffiffiffi
� a1

2

r
n

� �
; a1\0; a3\0: ð88Þ

Case 7 Periodic wave solutions

w7ðnÞ ¼ �
ffiffiffiffiffiffiffiffiffi
� 2

a3

r
secð ffiffiffiffiffi

a1

p
nÞ; a1 [ 0; a3\0: ð89Þ

Case 8 Periodic wave solutions

w8ðnÞ ¼ �
ffiffiffiffiffiffiffiffiffi
� 2

a3

r
cschð ffiffiffiffiffi

a1

p
nÞ; a1 [ 0; a3\0: ð90Þ

Case 9 Combined formal soliton like solutions

w9ðnÞ ¼ �
ffiffiffiffiffiffiffiffiffi
� a1

a3

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 1

p
sechð

ffiffiffiffiffiffiffi
2a1

p
nÞ

r sechð
ffiffiffiffiffiffiffi
2a1

p
nÞ þ 1

þ p tanhð
ffiffiffiffiffiffiffi
2a1

p
nÞ

r sechð
ffiffiffiffiffiffiffi
2a1

p
nÞ þ 1

" #
;

a1 [ 0; a3\0:

ð91Þ

Case 10 Combined formal soliton like solutions

w10ðnÞ ¼ �
ffiffiffiffiffiffiffiffiffi
� a1

a3

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 1

p
cschð

ffiffiffiffiffiffiffi
2a1

p
nÞ

r cschð
ffiffiffiffiffiffiffi
2a1

p
nÞ þ 1

þ p cothð
ffiffiffiffiffiffiffi
2a1

p
nÞ

r cschð
ffiffiffiffiffiffiffi
2a1

p
nÞ þ 1

" #
;

a1 [ 0; a3\0:

ð92Þ

Case 11 Combined formal periodic wave like solutions

w11ðnÞ ¼ �
ffiffiffiffiffiffiffiffiffi
� a1

a3

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

p
secð

ffiffiffiffiffiffiffiffiffiffiffi
�2a1

p
nÞ

r secð
ffiffiffiffiffiffiffiffiffiffiffi
�2a1

p
nÞ þ 1

þ p tanð
ffiffiffiffiffiffiffiffiffiffiffi
�2a1

p
nÞ

r secð
ffiffiffiffiffiffiffiffiffiffiffi
�2a1

p
nÞ þ 1

" #
;

a1\0; a3 [ 0:

ð93Þ

Case 12 Combined formal periodic wave like solutions

w12ðnÞ ¼ �
ffiffiffiffiffiffiffiffiffi
� a1

a3

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

p
cscð

ffiffiffiffiffiffiffiffiffiffiffi
�2a1

p
nÞ

r cscð
ffiffiffiffiffiffiffiffiffiffiffi
�2a1

p
nÞ þ 1

þ p cotð
ffiffiffiffiffiffiffiffiffiffiffi
�2a1

p
nÞ

r cscð
ffiffiffiffiffiffiffiffiffiffiffi
�2a1

p
nÞ þ 1

" #
;

a1\0; a3 [ 0:

ð94Þ

Case 13 New soliton solutions

w13ðnÞ ¼ �
ffiffiffiffiffiffiffiffiffi
� a1

a3

r
tanhð

ffiffiffiffiffiffiffi
2a1

p
nÞ

r sechð
ffiffiffiffiffiffiffi
2a1

p
nÞ þ 1

; a1 [ 0; a3\0:

ð95Þ

Case 14 New periodic wave solutions

w14ðnÞ ¼ �
ffiffiffiffiffiffiffiffiffi
� a1

a3

r
tanð

ffiffiffiffiffiffiffiffiffiffiffi
�2a1

p
nÞ

r secð
ffiffiffiffiffiffiffiffiffiffiffi
�2a1

p
nÞ þ 1

; a1\0; a3 [ 0:

ð96Þ

Case 15 New periodic wave solutions

w15ðnÞ ¼ �
ffiffiffiffiffiffiffiffiffi
� a1

a3

r
cotð

ffiffiffiffiffiffiffiffiffiffiffi
�2a1

p
nÞ

r cscð
ffiffiffiffiffiffiffiffiffiffiffi
�2a1

p
nÞ þ 1

; a1\0; a3 [ 0:

ð97Þ

Case 16 Rational solutions

w16ðnÞ ¼ �
ffiffiffiffiffiffiffiffiffi
� 2

a3

r
1

n
; a3 [ 0 ð98Þ

where a1 = 0. So, one can obtain the full set of exact solu-

tions of NLEEs by substituting the various solutions of

elliptic like equations into original NLEEs. In Fig. 1 we

shows the 2-dimensional profile plots of some of the

solutions.

Conclusions

In this work, we apply extended F-expansion method and

projective Riccati equation method to obtain the single and

combined generalized solutions of nonlinear wave equa-

tions. Many different new forms of traveling wave solu-

tions such as periodic wave solution, solitary wave solution

or bell-shaped soliton solutions and shock wave solution or

kink-shaped soliton solutions are obtained. These results

have proven that extended F-expansion method and pro-

jective Riccati equation method are reliable and efficient in

handling nonlinear problems. Considering the utility of

these equations in plasma and hydrodynamics and other

branches of physics, these solutions may find practical

applications. These methods can be applied to solve other

systems of nonlinear differential equations.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.

Solution R Q P F(n) m = 0 m = 1

1 1 -(1 ? m2) m2 sn sin tanh

2 1 - m2 2m2 - 1 -m2 cn cos sech

3 m2 - 1 2 - m2 -1 dn 1 sech

4 m2 -(1 ? m2) 1 ns cosec coth

5 -m2 2m2 - 1 1 - m2 nc sec cosh

6 -1 2 - m2 m2 - 1 nd 1 cosh

7 1 2 - m2 1 - m2 sc tan sinh

8 1 - m2 2 - m2 1 cs cot cosech

9 1 -(1 ? m2) m2 cd cos 1

10 m2 -(1 ? m2) 1 dc sec 1

J Theor Appl Phys (2014) 8:114 Page 9 of 10 114

123



Appendix 1

Table of Jacobi elliptic functions

Appendix 2

Jacobi elliptic functions with modulus 0 \ m \ 1 have the

identity in the form G2 = l F2 ? m cn2ðnÞ¼�sn2ðnÞþ
1; dn2ðnÞ¼�m2sn2ðnÞþ1; cd2ðnÞ¼�ðm2�1Þ

m2 nd2ðnÞþ 1
m
;

cd2ðnÞ¼�ðm2 �1Þsd2ðnÞþ1; dn2(n) = m2cn2(n) ? (1 -

m2), nd2(n) = -m2sd2(n) ? 1, ns2(n) = cs2(n) ? 1, nc2

(n) = sc2(n) ? 1, dc2(n) = (1 - m2)nc2(n) ?m2, dc2(n)

= (1 - m2)sc2(n) ? 1.
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