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Abstract A spin—isospin dependent three-dimensional
approach has been applied for the formulation of the three-
nucleon bound state, and a new expression for Faddeev equa-
tion based on three-nucleon free basis states has been obtained.
The advantage of this new expression is that the Faddeev
integral equation has been simpler for numerical calculation.

Keywords Faddeev equation - Three-dimensional
approach - Three-nucleon bound state

Introduction

During the past years, the three-dimensional (3D) approach
has been developed for few-body bound and scattering
problems [1-13]. The motivation for developing this
approach is introducing a direct solution of the integral
equations avoiding the very involved angular momentum
algebra occurring for the permutations, transformations and
especially for the three-body forces.

In the case of the three-body bound state, the Faddeev
equation has been formulated for three identical bosons as a
function of vector Jacobi momenta, with the specific stress
upon the magnitudes of the momenta and the angles between
them [2]. Adding the spin—isospin to the 3D formalism was a
major additional task which was carried out in Ref. [5]. In
this paper we have attempted to reformulate the three-
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nucleon (3N) bound state and have obtained a new expres-
sion for Faddeev integral equation. To this end, we have used
3N free basis state for representation of 3N wave function.
This manuscript is organized as follows. In Sect. 2, we
have derived a new expression for Faddeev equation in a
realistic 3D scheme as a function of Jacobi momenta vec-
tors and the spin—isospin quantum numbers. Then, we have
chosen suitable coordinate system for describing Faddeev
components of total 3N wave function as function of five
independent variables for numerical calculations. Finally, in
Sect. 3, a summary and an outlook have been presented.

3N bound state in a 3D momentum representation

Faddeev equation for the 3N bound state with considering
pairwise interactions is described by [14]:

W) = GorPly™), (1)

where |y is Faddeev component of the total 3N wave
function, M, being the projection of total angular
momentum along the quantization axis, P = P,P»3; +
P3P is the sum of cyclic and anti-cyclic permutations of
three nucleons, ¢ denotes the two-body transition operator
which is determined by a Lippmann—-Schwinger equation
and G is the free 3N propagator which is given by:
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where E is the binding energy of 3N bound state. To solve
Eq. (1) in the momentum space, we introduce the 3N free
basis state in a 3D formalism as [6]:

|pq"})> = |pqm51 mszms3mtl mlzml3>
= |qm51mf|>‘pmﬂzm53mtsz3>7 (3)
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This basis state involves two standard Jacobi momenta
p and q which are the relative momentum vector in the
subsystem and the momentum vector of the spectator
with respect to the subsystem, respectively [14]. |y) =
|mg, my,mgmy my,my,) is the spin—isospin parts of the basis
state where the quantities m,_,(m, ;) are the projections of
the spin (isospin) of each three nucleons along the
quantization axis. The introduced basis states are
completed and normalized as:

> / dp / dqlpqy)(pqy| = 1, (4)

(P'dY|pqy) = o(p" — p)d(q — q)d,,. (5)

Now, we start by inserting the completeness relation twice
into Eq. (1) as follows:

(payly™) = _£_3qz./dp”/dq”2/dp/dq

4m 7

< (payltlp"q"y")(p"q"Y"|Plp'dy ) (P'dY [™").
(6)

The matrix elements of the permutation operator P are
evaluated as [6]:

1 1
(p”q"v”\Plp' / /> _ 5([)” _ iq// _ q/>5(p/ + q// JrEq/)

X 5m’§’1 m’v 5m m’ 5m” m’ 5m” m’ 5m” mj 5m;’ m;,
s 3 My

1
+5(p/l+§q//+q/>5<pl_q/l_iq/>

X 5m” m’ 5m m’2 (Sm’s’} m’YI bm;lm;z 5m m;} 5m,’3 m,

(7)
and for the two-body #-matrix we have:

" n.n

tp"q"y") =

<pm52m53mt2mfs|t(€)|p,,mﬂm m m >

5((] - q”)émﬂmg’] 5m,] my s (8)

(pqy

where ¢ = E — @q , is the energy carried by a two-body

subsystem in a three-nucleon system. Substituting Egs. (7)
and (8) into Eq. (6) yields:

( "lpM'>:ﬁZ/dq/

Aon / /
m 4m mg, my,

X { Z <pm52ms3mfzm13‘l(e)lnm;]mgzm; m;2>

/ /
i, mj,

I / I M,
X< Tqmg mszmb‘1mzlmt2m11|‘// >

+ Z (g, g, e,y |£(€) | — qmi i i ;)

m, m)
53713

i M)}

X <1t’q’m’ Mg, 1 1, my,

o
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m 4m msl mrl mgnt,
x { (B, |1(6) o, o )
g o, P )

+ <pm52mé‘3mizmT3|t(6)P23|nm;]mgm;1 m;>
il . 9)

In the last equality, we have used the antisymmetry of
Faddeev component of the 3N wave function as:

Py = — |y, (10)

and also we have considered:

/o]
<7'cqm mslmm my,m

1 /
n:_q+q7

5 7=q+5q" (11)

The antisymmetrized two-body #-matrix is introduced as
[4]:

a <p/mw m m mt3 |l|pm32 Mgy 1My, My >

= <P mszms3mt2mt3|t( P23)|pmszms3mf2mls>7 (12)

where |pmg,mg,m,m,), is the antisymmetrized two-body
state which is defined as:

1
|pm~Y2m‘Y3ml‘2mt3>a = 75(1 - P23)|pm$2ms3ml‘2mf3>' (13)
Hence, the final expression for Faddeev equation is

explicitly written:

FEE, 2

/
dm m,1 mhm;,

(pqy|y™) =

Jui

X (prmg,mg,my, my, |t(€) |mmg mim; m;),

I ’o ! 1,1,M,
x (n'q'm g Iy, my ). (14)
As a simplification, we rewrite this equation as:

—1
¥ (p,q) = v Z

m 4m m!'m; mym;,
[ aduziizi, omant ), (5)

where we have used index 7 instead of m!ms m,m!'m,m
for simplicity. The previous expression which has been
presented in Ref. [5] is:

E got,gyz’ém m1 m,Sm,l

el

v, (p.q) =

p__i
m 4m

/ Aq om0 sy (), (16)

It is clear that in the new Faddeev integral equation,
Clebsch—Gordan coefficients g, and g, and summing up
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on o/ does not exist. Thus, this new expression is simpler
for numerical calculations in comparison with the previous
one.

For solving Eq. (15), one needs the matrix elements of
the antisymmetrized two-body f-matrix. We connect this
quantity to its momentum-helicity representation in
“Appendix 1”. To solve this integral equation numerically,
we have to define a suitable coordinate system. It is con-
venient to choose the spin polarization direction parallel to
the z axis and express the momentum vectors in this
coordinate system. With this selection, we can write the
two-body f-matrix and 3N wave function as (see Appen-
dices 1 and 2):

ml mlmym,

amwmh mfz My

. _ L —il(mg, +my) o, —(m!+m}) @ ] ;Emmim) m,
(p,TC 6) =e 2 3 ! v ta mgzmhmbm,3

(P, %Xp, COSP s X, T, Y €), (17)
[//{:’11 (p7 q) _ e—i[(m.;z Fmgy )@, +(my, —M;)(Pq]il//{y% (P,qu COSQ,,, X, C]),
(18)
ilpr(n Xat, COSP 1, X, ).
(19)

where X' = q' - Z, ¢' = ¢, and the labels + are related to

Mo . , i,
yi'(n',q) =e illmsy ) g+t =My

the signs of sin ¢, sin ¢, and sin ¢,,,. With considering:

GOn = q)l + q)nq/a GO = @/ + (pﬂ:’q" (20)

Our final Faddeev equation from Eq. (15) is rewritten as:

1
:E,I’_2 3¢ Z

m 4mmmmm

M,
ilpy r(p7-xp7 COS(ppq>xq7 q)

00 1 2n
/ dq / A / ! 1)y il )0
0 1 0
« ims; =M (9,9 H&’;",',;r:':n”; e (P, %p,COSP 0, X, T, Vs €)*
X 1/11;’11 (ﬂl,xnf,COSQDR/q/,X/, q/)7 (21)

where the variables are developed similar to the 3N
scattering as [13]:

-z,

£=H

Xq:

Xp = " Z,

p

1
_ i
\/4‘1’7L

1
= \/ 9+ Zq’z +q9'yqq

9% +a9'yeq s

1 !
. . 29Xt qx
Xp = - L="—""
T
1 7.7
o . GXgt3qx
Xp =W -L=—"7"—),
b
5Dpq + 4 Vpy
Ao~ 2994 Pq
y;m—l"7t—47I s

1 /

T T ARl

g = oq =

o= =P
g =

Ypg = P A = Xpxq+ \/m\/mcowppq,

1 — xf,\/l — x"2cos(¢p, — 9,
1 —x2V1 — x"cos(p, — '),

/

Yoo = PG = x,X +

Yag = q-q :qu/ +

cose _ IS ‘- (Is ) i) (ﬁ ) i) _ Ypr — XpXn
SPy =
! \/1 (ﬁ.i)z\/l_(A i \/1—x2 l—x
cosp q —(7-2)(q  z Vg — XpX'
n'q ’
R M—(qf i VTRV
I (A (G A /
COSPrg 7-q (71: Z)(q Z) Yng — XnX

(22)

It is clear that the Faddeev component of the wave func-
tion { is explicitly calculated as a function of five inde-
pendent variables. In Appendices 4 and 5, we discuss
about the x’- and ¢'-integration and also determination of
the signs of sine functions without any ambiguity. The
Faddeev integral equation (21) represents a set of three-
dimensional homogenous integral equations, which after
discretization turns into a huge matrix eigenvalue equa-
tion. The huge matrix eigenvalue equation requires an
iterative solution method. We can use a Lanczos-like
scheme that is proved to be very efficient for nuclear few-
body problems [15].

In this stage, we discuss about the total number of
coupled integral equations. The total number of coupled
Faddeev equations for the 3N bound state in a realistic 3D
formalism according to the spin—isospin states is given
by:

i=1

N =2(N, x Ny) = 2<N, X ime,), (23)

where N, and N, are the total number of spin and isospin
states, respectively, and N,  ; is the number of spin states
for each nucleon. It is clear that N, ; ; = 2 and N, = 3 for
our problem. The factor 2 is related to signs of sine
functions of azimuthal angles which is explained in
“Appendix 5”. Consequently, the total number of
coupled Faddeev equations for either *H or *He is
N = 48. The total 3N wave function |¥™) is given by
[14]:

(M) = (1 +P)™). (24)

Now, we derive an expression for the matrix elements of
the total 3N wave function by inserting the 3N free basis
state as follows:

N
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MY = (pqyly™) + (pqy|P1aPas ™)

+ (pqy|P13Pas |Yy™). (25)

By applying the permutation operator Py,P,3 and Py3P53 to
the 3N free basis state, Eq. (25) can be written as [6]:

(pqy

(pay¥™) = (pay Y™ + (P27 ™) + (P3qaysl¥™),
(26)
with:
13 1 B
P, =— ip - Z(L qQ =p— E(L Vo = Mg, Mg Mg My, My My
1 3 1
p; = 2P+4q7 q3 = —p— an V3 = Mgy Mg Mg, My My, My,

(27)
As a simplification, Eq. (26) is rewritten as:
P (p,q) = v (P, @) + ¥ (P2 @) + ¥ (P3,q3). (28)

Now, we rewrite this equation in the selected coordinate
system as:

\Ilfyr (p’ q) — e*i[(msz g )(/)p+(m51 *Ml>‘/7q]iw{;41

X (p7 XP, COS(ppq7 xq7 q)
+ e_i[(ms_; +my, )(f’pz +(msg _Ml)(f’qz]ilp{gz

X (p2>xpz ) COS(szqz 1 Xqp 42)
+ e_i[(mﬂ +my, )(/’113 +(ms3 _Ml>(pq3 ] ilp{%

X (PS yXp3s COS(pp3q3 y Xq3 q3) (29)
By considering:

(ppz = (pl] + (ppzq’ g0112 =
Ppy = PgF Ppig: Pgy =

goq + quzQ’
Pq+ Pysq>
Eq. (29) can be written as:
i‘I’f{” (P, Xp, €080, %4, q)
= i‘//yr (P, xp, COSPpys Xq5 q) + €2 3 )0
X {e*"[('"“»* )0 MO Y M (s %, €OSP 00001 42)
+ e—i[(m,,.] 15, ) @y (i 7M/>(Pq3q]il//{/\-;1’ (PS 2 Xp3, COSPyy 435 Xq35 43 ) } .

(31)

where:
1 9

P2 = |—— q\— P? +4q +3pqYpqs
1 1 9

p3=|- SPty QI* p? +4q — 3pqYpqy,

! 2 ! 2
@2 =P =54/ =1\/P*+ 74 = Paypq;
1 o, 1,
= |=p—5dl =1/P*+ 0+ Py,
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1 3
_ T 2P% T 5%

Xp, =Py Z
P2 2 )
P2
—1px, +3gx
I ot L )
Xpy =P3 2=——"——"
pP3
1
P 34X
xqzqu'Z: bl
q2
1
~ ~ —pxp—iqxq
Xgy =32 = )
q3

i ]

—(p,-7)(q, - 2) Paa

COSPprq, = \/1 ~ (Pz 2 \/1 (G pe = \/1 _xlzn\/l )

i e A

— XpaXgy

cosp (p3 Z)((h Z) _ P22 — XpsXgs
I’?‘I% - )
\/1—(1’31 \/1 (45 -2)° \/1*)‘2\/1*’52
zp)lt/ 4‘1
cosp 4 (p,-2)(q-2) R
SPprg =
\/1 (p, - 2) \/1 (G-2)° \/lfxz\/lfx2
~ *%P)‘,uﬁ»q
cosp A= (0;-8)(G-2)  _ T —ed
SPpiqg = - )
w b 21— (@27 \J1-5/1-4
N PYpa—34
44— (4 -2)(q- Z) =~ XaXq
CO8Q,,, = ;
S g
4 (4;-2)(q- Z) ﬂwq 7q_xqzxq
COSP g =
\/1 (45 - 2) \/1 \/l—xz\/l—x2
(32)

The labels + are related to the signs of sing,,, sing,,.,
and sin ¢, .. which are determined in “Appendix 57.

Summary and outlook

We extend the recently developed formalism for a new
treatment of the Nd scattering in three dimensions for the
3N bound state [13]. We propose a new representation of
the 3D Faddeev equation for the 3N bound state including
the spin and isospin degrees of freedom in the momentum
space. This work provides the necessary formalism for the
calculation of the 3N bound state observables which is
under preparation.

Open Access This article is distributed under the terms of the
Creative Commons Attribution License which permits any use, dis-
tribution, and reproduction in any medium, provided the original
author(s) and the source are credited.

Appendix 1: Connection between the antisymmetrized
NN t-matrix and its helicity representation

In our formulation, we need the matrix elements of the an-
tisymmetrized two-body #-matrix. We connect these matrix
elements to the corresponding ones in the momentum-
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helicity representation. The antisymmetrized momentum-
helicity basis state which is parity eigenstate is given by [4]:

|p; PS23/; 123)™ = 7(1 — P23)|p; PS234) ,|123)

1 ,
= \/5(1 = 1a(=) ) |ps PS234) 1l 23),

(33)

Here, S,3 is the total spin, A is the spin projection along
relative momentum of two nucleons, #,3 is the total isospin
and |f3) = |f37) is the total isospin state of the two
nucleons. 7 is the isospin projection along its quantization
axis which reveals the total electric charge of system.
For simplicity, t is suppressed since electric charge is
conserved. In Eq. (33), P,3 is the permutation operator
which exchanges the two nucleons labels in all spaces i.e.,
momentum, spin and isospin spaces, and |p;pSxi), is
parity eigenstate which is given by:

. 1 fo
|P; PS234), = %(1 + 1,P7)[P; PS234), (34)
where P, is the parity operator, n, = =+ 1 are the
parity eigenvalues and |p;pS,34) is momentum-helicity
state. The antisymmetrized two-body #-matrix is given
by [6]:

mzmxmz

1
tamzm xm,zm@ (p p ) ) = Zé(m,, +m,})‘(m;, +m;?)e

% Z( - 523+m>

St
11 11
X C<§§t237mtvmts)c<§§t23”ﬂ mn, )
11 11
X C<——S23§m.Yzm53)‘0)C< stzmszmﬁ/“o>

Sz; Szz 715221‘2%
x de/ d’ by XP') (p p7 )7

*i(;~0‘/’,7*)~;)l/’,,/)

(35)
where based on momentum-helicity basis states the two-
body #-matrix is defined as:

75523&3

/J’ (p7p7 )

=" (p; PSa3/; taa|t(€)[p’; p'S23 A5 123)™,

(36)
These two-body #-matrix elements are connected to the
solutions of Lippmann—Schwinger equation as follows:

S s, €N 3 ()5 ()
dSB (yPP )
rcSzzfzs(p P Vo' 6) (37)

nS73t73 (

p,p;e) =

where:

Yo = XpXpy + 4/ 1 — x%, /1— xz,COS(pppr. (38)

It should be mentioned that the fully off-shell NN #-matrix

Fi5303
L
Schwinger equations which are solved numerically in Ref.

[4]. Finally, Eqgs. (35) and (17) can be written as:

(p,P',yppi€), obeys a set of coupled Lippmann—

"l "1 szmh
tam;,mgmrzmu (p,pse) =e

(P %p, €OS Py, Xt P V' €), (39)

: / / ml, m,, m) m,
—i[(ms, +mA3)4f’,;*(m,;2 +’n5'§)({,[),:|ti s27s3
: a My M3 My Ny

where the labels =+ are related to the sign of sin ¢, which
is determined as:

sin @,y = /1 —cos?2q,,. (40)

we consider positive sign for ¢, € [0, 7] and negative sign
for ¢, € [r,2n].

Appendix 2: Azimuthal dependency of the 3N wave
function

We introduce the 3N momentum-helicity basis state as:

IP; PS234, @; GS1A) = [p; PS234)[q; 4S1A), (41)
where:

Sz - PIPS23A) = A|PSas i), (42)
Si1 - q|qSiA) = A|gSiA). (43)

Thus, Faddeev component of the 3N wave function can be
written as:

Yi(p.q) = > (paylp; BS234, 4; GS1A)

S23ASIA

(p; PS232, q; GS1 AJY™), (44)
with considering:
IPS232) = Rs(P)|2Sp3 ) = e 5% e 20 |25,57), (45)
1GS1A) = Rs(q)|2S1A) = e*fsi%e*fsloqisl/\), (46)

We have written:

(Pqy|p; PS234, q; GS1A)

= (PqyIRs(P)Rs(q)|p; 25234, 4; ZS1 A)
_ <pqy|e—15,3rppe—1521(), e—lS*](pqe_iS,‘l'04|p, ZAS23A, q iS]/\>
= e Pag )0 (payleSnte T\ |p; 2837, @ 21 A).
(47)
Also, with considering:
|P; pS234) = R, (P)|pZ; 25234)
= ¢ 1 H525)0p =1 t55)0 | g 75,32, (48)
la; 4S1A) = Ry, (Q)|qZ; 251 A)
= e e bt gz 25, ), (49)

We have written:

o
% @ Springer
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(p; S232, q; GS1 AlyY™)
= (p#; 28232, q%; 21 AIR; | (D)R; ' (4)[y™)
= (pz; 25237, qZ; 28, | 525)0 o115 +553)9,
o LatS1)04 i (Li+57) 0, |l//M,>
= (pz; 38237, q7; 7S) N|e/Lr52)0r o1 (L5000
ei(L;+S§3)<pq ei(Lf,#S{)o{, ei(L;;+S§)<pq |lpM,>
= M (pg; 38537, qi; 7Sy Al eGS0 o1 (L 55) 05
ei(LZ,#S‘I')Oq WM, > (50)
Consequently, Eq. (44) can be rewritten as:

l//;l/lz (p, (]) — efi[(lnjfrmg)qa,ﬁ(mﬂ*Mr)wq]

x Y (payle nle i p; 38550, q; 281 A)

S ASIA
N N (1Y (172
X (pi; 28937, qi; 28 A|eLrt5:)0 1L +S5)0pq
(74§
el(Lq+S‘>6q|l70M'>. (51)

Finally, this equation can be written as:

'//{,% (p,q) = ey 4 )0y (me =M:) i‘//{yl 2 Xp; COSQPpy5 Xg, q)

(52)

Appendix 3: Parity and time reversal invariance
of the total 3N wave function

In this section, we discuss about properties of the total
wave function under the parity and time reversal invari-
ance. Parity invariance would mean:

Y1) = (pqy|P, P [PY) = (—p, —qy|P<[¥™")
= (—p, —@|¥") = (—p, —qy*")
+ (=2 — @ M) + (—p3, —a373 ™),
(53)

(pqy

where we have used P,|¥") = |¥M) for the 3N total
wave function. Eq. (53) leads to:

(P, ayy™) = (—p, —ayy™"),

(P2, @2 W) = (—p2, —@ona "), (54)
<P37Q373WM'> = (-3, *Q3V3|¢Mt>~

So we have:

M, —i(M,—M,)nk | M,
ilpv’(p,xp,cos(ppq,xq,q) = ¢ M 2

(p, —Xp, COSPp, —Xg, q), (55)

M, —i(M;—M,;)n £ \pM,
\Pyt(paxp7cosq)pq7x¢17q):e (o " le[

(p7 _xpaCOS(qu7 _xq7q>7 (56)

@ Springer

where M; =m; | + m; , + m; 5. The time reversal
invariance might be more interesting. The total wave
function can be written as:

WMy = (pqy|T~'T|WM) = P (—p, —q, —y[T|¥™)
= M) (—p, —q, — [P, (57)

(pqy

Considering parity and time reversal invariance leads to:

(pay[ )i =>4 (pg, ¥ M)
= 2L (pg, —p[ ) + (g, — 72 Y™
+ <P3‘I3a —73W7M'>}- (58)

So we have:

i‘//y' (]77 x['7 COS(pp‘N x¢Z7 q) = iZ(M‘JrMI)niI//:i\'/II (P"xpv COS(ppq’ )Cq, q)>
(59)
i‘l"y’(p,x/,,cosqom,xw q) = iz(M"+M/)nhP:{,"/I'(vap7 COSPpy: Xg, q)-
(60)

Appendix 4: The x'-integration

According to Eq. (21), the x'-integration carried out as:
1
J(p’xP?COS(qu,xqu) = / dx,c(x,)‘](n,vxn’aCos¢n’q’axlvql)a
—1
(61)
where the C is known function determined by r,*

and exponential functions. This equation can be rewritten
as:

0
J(p7x,,,cos<ppq,xq,q):/dx’C(x’)J(n’,xnr,cosq)n,q,,x',q’)
|
I
+/dx’C(x’)J(rc’,xnr,cosqon,q,,x’,q’)
0
1

- / A C(—x V(7 (=), 2 (),
0
o8Py (=X'), —x',q)
1
—|—/dx/C(x/)J(n’,xnr,cosqon/q,,x’,q/),
0
(62)

Finally, by considering parity invariance which is
described in “Appendix 37, Eq. (62) can be written:
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1

J(P,Xp, COSP,y, Xq, q) = /dx’{(—)1'/"““‘/”C(—x’)](n'(—x’)7
0
— Xy (=x'), €080, (—¥), %', q)
+ C(X ) (' X, cOSQy, X', q') }
(63)

Appendix 5: The ¢'-integration

According to Eq. (21), the ¢'-integration for fixed

Ps 4> Xp, Xgy COSQ,,, and ¢’ can be written as:
2n
I(Q’pa ¢q) - / d§0, im1 (9 (p)eﬂmw"‘l'e#mw"’q’
0
x A*[cos(p, — ¢'),cos(@, — ¢'),cosq,,]

@),

where the A £ and B £ are known functions determined
by z,= and * \, respectively. As we know, the exponential
functions e™%x/ and e~ "™¢wy

x sB* [cos(op, — (64)

are functions of cosq,,
and cosq,, by considering their sine functions as:

sin @, = £4/1 —cose?,,
Sin @y = £4/1 = cospl,,.

Also, the cosine functions cos¢,,, and cos@,,, are function
of ¢, —

(65)

@'. Substituting ¢" = ¢' — ¢, leads to:

2n
(9, 0,) = / de/e™m?" gtimons g=im ey AX cos "
0
cos(¢,, — "), coswpq]Bi [cose”]
= Ii(gopq), (66)

where the labels of /= (cos¢,,,) depend on the sign of sin ¢,,,.
It is clear that the angles ¢, and ¢, belong to the interval
[—=, 0] when ¢” varies in the interval [0, 7] and they belong
to the interval [0, ] when ¢” varies in the interval [r, 27].
Furthermore, since the labels of B * depend on the sign of
sin @, thus for ¢” € [0, 7] and ¢" € [r, 27], we can choose
negative and positive labels, respectively. Consequently, the
integral I (cosg,,) can be decomposed as:

T
Ii((p ) _ /dq)// *lnll(p”e*l'mﬂq)nq/‘e+l'm3|(p7[/q/ \Ai
rq
0
"
X [cos¢ ,cos(<ppq —
2n
I / d(P”e_l-ml¢//e+im2(pnq/e—imgq)n/q/Ai
K

x [cosq”, cos(¢,, —

@"),c08¢,,]B [cose"]

"), c089,,|B"[cosep"].  (67)

Now, we discuss about the labels of AT, As we know, the
labels of A* are related to the sign of sin ®pr- We can write

Ppr = Ppg — Prg» and then we have:
sin @, = sin @,,,co8Q,, — COSP,, Sin @, (68)
where:
. ; B
COSanq = T q- )(q ) Ynq XnXq
\/1 - \/1 - \/1 — xn\/r:;g
_ %q + quw
g =

T

sin @, = £4/1 —cos?q,,.

It is clear that the angle ¢, belongs to the interval [0, 7]

(69)

when ¢” varies in the interval [0, 7] and belong to the
interval [, 2n] when ¢” varies in the interval [rn, 2m].
Thus, depending on various intervals of variables ¢, and
¢@", we can choose the positive or negative sign for
sing,, and sin¢,,, and then we can calculate sing,,
[0,1] and

[-1,0], we can consider positive and negative

from Eq (68). Consequently, for sing,, €

sin ¢, €

signs of A * | respectively. Substituting ¢ = 21 — ¢”, in
the second integral of Eq. (67) yields:
n
/dqouleJriml(p”’eJrimg(p,[q/efimg(pnrq;A:t
0
x [cos™, cos(,, + @), cos¢,,|B [cosg™], (70)

Therefore, Eq. (67) can be rewritten:

n

_ 0o . )
Ii((ppq) _ /dgo” im1 @ yima| | ims| @z A+
0

X [cos@”, cos(@,, — ¢"),cos¢,,]B~ [cosp”]

T
+ / d(p//e+im](p”e+img(p”q/e*im3(pn/qrAi
0
x [cos@”, cos(@,, + ¢"),cosp,,|B" [cose"].

(71)
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