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Abstract

In this paper, we consider the nonlinear boundary value problem for the electrohydrodynamic (EHD) flow of a fluid in
an ion-drag configuration in a circular cylindrical conduit. This phenomenon is governed by a nonlinear second-order
differential equation. The degree of nonlinearity is determined by a nondimensional parameter α. We present two
semi-analytic algorithms to solve the EHD flow equation for various values of relevant parameters based on optimal
homotopy asymptotic method (OHAM) and optimal homotopy analysis method. In 1999, Paullet has shown that for
large α, the solutions are qualitatively different from those calculated by Mckee in 1997. Both of our solutions obtained
by OHAM and optimal homotopy analysis method are qualitatively similar with Paullet’s solutions.
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Background
The electrohydrodynamic flow of a fluid in an ion-drag
configuration in a circular cylindrical conduit is gov-
erned by a nonlinear second-order ordinary differential
equation. Perturbation solutions of fluid velocities for
different orders of nonlinearities were given by McKee
et al. [1]. In their study, a description of the problem
was presented in which the governing equations were
reduced to the following nonlinear boundary value prob-
lem (BVP):

d2u
dr2

þ 1
r
du
dr

þ H2 1� u
1� αu

� �
¼ 0; 0 < r < 1; ð1Þ

subject to boundary conditions

u0 0ð Þ ¼ 0; u 1ð Þ ¼ 0; ð2Þ

where u(r) is the fluid velocity, r is the radial distance from
the centre of the cylindrical conduit, H is the Hartman
electric number and the parameter α is a measure of the
strength of the nonlinearity. In [1], the authors used a
regular perturbation technique to obtain two perturbation
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solutions given by Equations 4 and 6 depending on the
value of the nonlinearity control parameter α.
For α << 1 and assuming a solution of the form

u rð Þ ¼
X1
n¼0

αnun r; αð Þ: ð3Þ

Mckee et al. [1] obtained the O(α3) perturbation solu-
tion as

u r; αð Þ ¼ 1� I0 Hrð Þ
I0 Hð Þ þ α u1 Hrð Þ þ C1ð ÞI0 Hrð Þ þ v1 Hrð ÞK0 Hrð Þ½ �þ

α2 u2 Hrð Þ þ C2ð ÞI0 Hrð Þ þ v2 Hrð ÞK0 Hrð Þ½ �:
ð4Þ

Similarly, for α >> 1, the authors [1] proposed that the
solution to the BVP could be expanded in the series of
the form

u rð Þ ¼
X1
n¼0

α�nun r; αð Þ ð5Þ

with an O(1) leading-order term and obtained the per-
turbation solution as

u r; αð Þ ¼ H2

4
1þ 1

α

� �
1� r2
� �þ 1

α2
2
Zr

0

log 1� s2ð Þ
s

dsþ π2

6

0@ 1A:

ð6Þ
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Figure 1 Square residual error E3 for the third-order OHAM
(C2 = −0.1809055, C3 = 0.275378).
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Figure 2 Square residual error E4 of the fourth-order optimal
HAM (c2 = 0.0242099, c3 = −6.19495).
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Paullet [2] proved the existence and uniqueness of the so-
lution to the BVP (1) and (2) in the following theorem:
Theorem 1. For any α > 0 and any H2 ≠ 0, there exists

a solution to the BVP (1) and (2). Furthermore, this solu-
tion is monotonically decreasing and satisfies 0 < u(r) <
1 / (α + 1) for all r ∈ (0,1).
Remark 1. By a solution of Equations 1 and 2, we mean

a function u(r) ∈ C[0,1] \ C2(0,1) that satisfies Equation 1
for 0 < r < 1 along with Equation 2. In order for such a
function to be a solution, we must necessarily have u(r) <
1/α on (0,1); if u(r) ever equals 1/α, it is no longer C2,
owing to the term u(r) / (1 − αu(r)) in Equation 1 [2].
Paullet [2] claimed an error in the perturbation and

numerical solutions given in [1] for large values of α.
This stems from the fact that for large α, the solutions
are O(1/α), not O(1) as proposed in the perturbation ex-
pansion used in [1]. For α << 1, our solutions obtained
by the two semi-analytic algorithms (proposed in the
‘Application of OHAM to EHD flow problem’ and
‘Application of optimal homotopy analysis method to
EHD flow problem’ subsections) are in complete agree-
ment with those of [1] and [2], but for α >> 1, the pro-
posed solution profiles are similar to those of [2]. Thus,
based on our work in this paper, we support Paullet’s so-
lution profiles for α >> 1.
Recently, Mastroberardino [3] proposed an analytical

method based on the homotopy analysis method (HAM)
to find the solutions of Equations 1 and 2 for α ∈ (0,1]
and H2 up to 4. The author [3] has shown that the
homotopy perturbation method (HPM) yields a diver-
gent solution for all of the cases considered. The HAM
solutions are quite accurate for lower values of the para-
meters α and H2, but the accuracy decreases rather fast
for higher values of these parameters even though fairly
higher order (20 to be precise) solutions were consid-
ered, as shown in Table one of [3]. Further, from Figure
two of [3], we observe that even a slight deviation from
the optimal value of ℏ causes a huge square residual
error for α = 0.5, 1 and H2 = 4. This, along with the
qualitative difference between the solution profiles of
Mckee et al. [1] and Paullet [2] for α >> 1, motivated us
to look for algorithms giving accurate solutions for
higher values of the parameters as well.
The aim of the present work is to propose two algo-

rithms for the solutions of the above BVP (1) and (2) for
all values of relevant parameters using optimal homo-
topy asymptotic method (OHAM) and optimal homo-
topy analysis method. We show that even the third- and
fourth-order solutions obtained from OHAM and opti-
mal homotopy analysis method, respectively, are highly
accurate for α >> 1. From Figures 1 and 2, we see that
the square residual errors E3/E4 are stable even for larger
deviations from the optimal value of C1 (in the case of
OHAM) or c1 (in the case of optimal homotopy analysis
method) as compared to the deviations in ℏ (in the case
of HAM). A comparison is made between OHAM, opti-
mal homotopy analysis method and HAM via exact
square residual errors. It is shown that for higher values
of α and H2, the respective third- and fourth-order
OHAM and optimal homotopy analysis method solu-
tions are more accurate than the 20th-order HAM solu-
tions. Further, the central processing unit (CPU) time is
also calculated and compared for these methods, estab-
lishing the superiority of OHAM and optimal homotopy
analysis method over the HAM solution. Also, the solu-
tion profiles shown for α = 4, 10, H2 = 1 and α = 4, 10,
H2 = 10 by Figures 3 and 4 respectively match Paullet’s
solution profiles shown in Figures one and two of [2] for
the corresponding values of the parameters.

Analysis of the method
Optimal homotopy asymptotic method
Since the last two decades, homotopy perturbation
method [4] and homotopy analysis method [5] based on
the topological concept of homotopy have become very
popular in solving nonlinear ordinary/partial differential



Figure 3 OHAM solution u(r) for H2 = 1 and α = 4 (red), α = 10
(blue).

Pandey et al. Journal of Theoretical and Applied Physics 2012, 6:45 Page 3 of 10
http://www.jtaphys.com/content/6/1/45
equations [6,7]. Later, in 2008, Marinca et al. [8-11]
introduced a new analytical method known as OHAM
to solve a variety of nonlinear problems. This method is
straightforward and reliable, and it does not need to look
for ℏ curves like HAM. This method provides us a con-
venient way to control the convergence of the series so-
lution and allows the adjustment of the convergence
region wherever it is needed via unspecified number of
convergence control parameters. These parameters are
determined in such a way that the optimal values are
yielded unlike the ℏ curve method used in HAM. The
OHAM solution generally agrees with the exact solution
at larger domains as compared to HPM and HAM solu-
tions. OHAM is based on a generalized zeroth-order
deformation equation (8) and does not consider the mth-
order deformation equation like HAM.
We apply OHAM to the following nonlinear differen-

tial equation:

A u rð Þð Þ þ f rð Þ ¼ 0; B uð Þ ¼ 0;⇔L u rð Þð Þ þ f rð Þ
þ N u rð Þð Þ ¼ 0; B uð Þ ¼ 0;

ð7Þ
Figure 4 OHAM solution u(r) for H2 = 10 and α = 4 (red),
α = 10 (blue).
where, A = L + N, L is a linear operator, N is a nonlinear
operator, r denotes the independent variable, u(r) is an
unknown function, f(r) is a known function and B is a
boundary operator.
A homotopy h(ϕ(r,q),q): R × [0,1] → R is constructed

satisfying

1� qð Þ L ’ r; qð Þð Þ þ f rð Þ½ � ¼ H qð Þ L ’ r; qð Þð Þ þ f rð Þ½
þ N ’ r; qð Þð Þ�; B ’ r; qð Þð Þ ¼ 0;

ð8Þ

where, q ∈ [0,1] is an embedding parameter, H(q) is a non-
zero auxiliary function for q ≠ 0 and H(0) = 0. As the em-
bedding parameter q increases from 0 to 1, the ϕ(r,q) varies
from the initial approximation u0(r) to the solution u(r).
The auxiliary function H(q) is chosen as

H qð Þ ¼ qC1 þ q2C2 þ q3C3 þ⋯; ð9Þ

where C1, C2, C3,⋯ are constants to be determined. It is
very important to choose these constants properly since
the convergence of the solution depends on them.
Expanding ϕ(r,q) in a power series with respect to the

parameter q, we get

ϕ r; q;C1;C2;⋯ð Þ ¼ u0 rð Þ þ u1 r;C1ð Þq þ u2 r;C1;C2ð Þq2 þ⋯:

ð10Þ

Substituting Equation 10 into Equation 8 and equating
the coefficients of like powers of q, we obtain the follow-
ing equations:

L u0 rð Þð Þ þ f rð Þ ¼ 0; B u0ð Þ ¼ 0; ð11Þ

L u1 rð Þð Þ ¼ L u0 rð Þð Þ þ f rð Þ þ C1 L u0 rð Þð Þ½
þ N0 u0 rð Þð Þ þ f rð Þ�; B u1ð Þ ¼ 0;

ð12Þ

L u2 rð Þð Þ ¼ L u1 rð Þð Þ þ C1 L u1 rð Þð Þ þ N1 u0 rð Þ;u1 rð Þð Þ½ �
þ C2 L u0 rð Þð Þ þ N0 u0 rð Þð Þ þ f rð Þ½ �;B u2ð Þ

¼ 0; ð13Þ
L u3 rð Þð Þ ¼ L u2 rð Þð Þ

þ C1 L u2 rð Þð Þ þ N2 u0 rð Þ; u1 rð Þ; u2 rð Þð Þ½ �
þ C2 L u1 rð Þð Þ þ N1 u0 rð Þ; u1 rð Þð Þ½ �
þ C3 L u0 rð Þð Þ þ N0 u0 rð Þð Þ þ f rð Þ½ �; B u3ð Þ

¼ 0; ð14Þ
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⋮
L um rð Þð Þ¼ L um�1 rð Þð ÞþC1 L um�1ð Þ½

þNm�1 u0; u1;⋯;um�1ð Þ�
þC2 L um�2ð Þ þ Nm�2 u0; u1;⋯; um�2ð Þ½ �
þ⋯þ Cm�1 L u1 rð Þð Þ þ N1 u0 rð Þ; u1 rð Þð Þ½ �
þCm L u0 rð Þð Þ þ N0 u0 rð Þð Þ þ f rð Þ½ �;

B umð Þ ¼ 0; ð15Þ

where Nm(u0, u1,⋯, um) is the coefficient of qm in the ex-
pansion of N(φ(r,q)) about the embedding parameter q.
The above equations are called the zeroth-, first-,

second- and mth-order problems, respectively.
As q → 1, in Equation 10,

u r;Cið Þ ¼ u0 rð Þ þ
X1
k¼1

u r;Cið Þ: ð16Þ

Truncating Equation 16 at level k = m, the mth-order
solution is given by

eum r;C1;C2;⋯;Cmð Þ ¼ u0 rð Þ
þ
Xm
i¼1

ui r;C1;C2;⋯;Cið Þ:

ð17Þ

Substituting Equation 17 into Equation 7, one gets the
following residual:

Rm r;C1;C2;⋯;Cmð Þ ¼ L eum r;C1;C2;⋯;Cmð Þð Þ
þ f rð Þ
þ N eum r;C1;C2;⋯;Cmð Þð Þ:

ð18Þ

If Rm = 0, then ũm will be the exact solution, which
does not happen in practice, especially in nonlinear pro-
blems. In order to find the optimal values of Ci, i = 1, 2,
3,⋯, we first construct the functional (called the square
residual error)

Em C1;C2;⋯;Cmð Þ ¼
Zb

a

R2 r;C1;C2;⋯;Cmð Þdr;

ð19Þ

([a,b] being the domain of the problem), and then
minimizing it, we get
∂Em

∂C1
¼ ∂Em

∂C2
¼ ⋯ ¼ ∂Em

∂Cm
¼ 0: ð20Þ

Substituting the optimal values of Ci’s obtained from
Equation 20 into Equation 17, the mth-order approxi-
mate solution ũm is obtained.
As discussed in [12], computing En(C1, C2, C3,⋯, Cn)

directly with a symbolic computational software is im-
practical. Thus, we approximate Equation 19 using a
Gaussian quadrature with eight nodes followed by min-
imizing Equation 19 using the Mathematica function
Minimize; the optimal values of these convergence con-
trol parameters are obtained.
OHAM faces the practical problem of computing higher

order iterates since as many number of parameters Cm are
to be computed as the order of iterates. The method is
well suited for the electrohydrodynamic (EHD) problem
as shown by the various solution profiles and tables.

Application of OHAM to EHD flow problem

Choosing L ¼ d2

dr2 and f = H2 and using Equation 11, the
zeroth-order problem for Equation 1 with boundary con-
ditions (2)

d2u0 rð Þ
dr2

þ H2 ¼ 0; u0
0 1ð Þ ¼ 0; u0 0ð Þ

¼ 0 gives u0 rð Þ
¼ 1

2
H2 � H2r2
� �

: ð21Þ

As the fourth-order approximate solution gives a very
accurate solution even for higher values of the nonli-
nearity parameter α and the Hartmann electric number
H. These iterates are obtained from Equations 12 to 14,
and the first three iterates are listed below:

� First-order problem:

d2u1 rð Þ
dr2

¼ d2u0 rð Þ
dr2

þ H2 þ C1
d2u0 rð Þ
dr2

þ 1
r
du0 rð Þ
dr

�
�αu0 rð Þ d

2u0 rð Þ
dr2

� α

r
u0 rð Þ du0 rð Þ

dr

þH2 1� 1þ αð Þu0 rð Þð Þ
	
;

u1
0 1ð Þ ¼ 0;u1 0ð Þ ¼ 0: ð22Þ

� Second-order problem:



�
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d2u2 rð Þ
dr2

¼ d2u1 rð Þ
dr2

þ C1
d2u1 rð Þ
dr2

þ 1
r
du1 rð Þ
dr

�αu0 rð Þ d
2u1 rð Þ
dr2

� αu1 rð Þ d
2u0 rð Þ
dr2

� α

r
u0 rð Þ du1 rð Þ

dr
� α

r
u1 rð Þ du0 rð Þ

dr

�H2 1þ αð Þu0 rð Þ
	

þC2 Au0 þ H2

 �

; u2
0 1ð Þ ¼ 0; u2 0ð Þ ¼ 0:

ð23Þ

� Third-order problem:

d2u3 rð Þ
dr2

¼ d2u2 rð Þ
dr2

þ C1
d2u2 rð Þ
dr2

þ 1
r
du2 rð Þ
dr

�
�αu0 rð Þ d

2u2 rð Þ
dr2

� αu1 rð Þ d
2u1 rð Þ
dr2

� αu2 rð Þ d
2u0 rð Þ
dr2

� α

r
u0 rð Þ du2 rð Þ

dr
� α

r
u1 rð Þ du1 rð Þ

dr
� α

r
u2 rð Þ du0 rð Þ

dr

�H2 1þ αð Þu2 rð Þ�þ C2
d2u1 rð Þ
dr2

þ 1
r
du1 rð Þ
dr

�
�αu0 rð Þ d

2u1 rð Þ
dr2

� αu1 rð Þ d
2u0 rð Þ
dr2

� α

r
u0 rð Þ du1 rð Þ

dr

� α

r
u1 rð Þ du0 rð Þ

dr
�H2 1þ αð Þu0 rð Þ

	
þ C3 Au0 þ H2


 �
; u3

0 1ð Þ ¼ 0;u3 0ð Þ ¼ 0: ð24Þ

Solving Equations 22 to 24, we get the first three iter-
ates as follows:

u1 rð Þ ¼ 1
24

H2C1 �1þ r2
� �

12þ H2 �5þ r2
� � �1þ αð Þ
 �

;

ð25Þ
1 � ��

u2 rð Þ ¼

720
H2 �1þ r2 30 C1 þ C2ð Þ

� 12þH2 �5þ r2
� � �1þ αð Þ� �

þC1
2
n
720þ 10H2ð47� 77αþ r2 �7þ 13αð Þ

þH4
�
61� 260þ 199α2 � 14r2 1� 5αþ 4α2

� �
þr4 1� 10αþ 9α2

� ��o	
; ð26Þ
u3 rð Þ ¼ � 1
604; 800

H2 �1þ r2
� �

25; 200 C2 þ C3ð Þ½
� 12þ H2 �5þ r2

� � �1þ αð Þ� �þ 1; 680C1
2f720

þ10H2 47� 77αþ r2 �7þ 13αð Þ� �þ H4 61� 260ð
þ199α2 � 14r2 1� 5αþ 4α2

� �þ r4 1� 10αþ 9α2
� ��g

þC1
3f1; 209; 600þ 5; 600Hð193� 424αþ r2 �23ð

þ62αÞÞ þ 56H4 4; 853� 26; 310αþ 25; 597α2
�

þr2 �922þ 5; 940α� 6; 278α2
� �þ r4 53� 710αð

þ897α2
�Þ þ H6 20; 775� 203; 959αþ 456; 665α2

�
�273; 481α3r4 405� 9; 989αþ 31; 835α2 � 22; 251α3

� �
þ15r6 �1þ 49α� 299α2 þ 191α3

� �þ r2 4; 845ð
þ56; 861α� 139; 315α2 þ 87; 299α3

�Þg
þ1; 680C1f180 1þ 4C2ð Þ þ H4C2 61� 260αþ 199α2

�
�14r2 1� 5αþ 4α2

� �þ r4 1� 10αþ 9α2
� ��

þ5H2ð3 �5þ r2
� � �1þ αð Þ þ 2C2 47� 77αð

þr2 �7þ 13αð Þ�g�: ð27Þ

Substituting the above iterations in Equation 17, the
mth-order approximate solution is obtained as

eum r;C1;C2;C3;⋯;Cmð Þ ¼ u0 rð Þ þ u1 r;C1ð Þ
þu2 r;C1;C2ð Þ
þ⋯um r;C1;C2;C3;⋯;Cmð Þ:

ð28Þ

From Equation 18, the mth-order residual is

Rm r;C1;C2;C3;⋯;Cmð Þ ¼ d2eum
dr2

þ 1
r
deum
dr

þ H2 1� eum
1� αeum

� �
m ¼ 1; 2; 3⋯: ð29Þ

Substituting Equation 29 in Equation 19 and computing
the square residual error Em numerically using the Gauss
quadrature formulae with eight node points followed by
minimizing Em, the optimal values of the convergence
control parameters C1, C2, C3,⋯, Cm are obtained.

Optimal homotopy analysis method
The optimal homotopy analysis method was first proposed
by Liao [12] containing exactly three convergence control
parameters at any level of approximation in contrast to
OHAM. The optimal homotopy analysis method is based
on a generalized zeroth-order deformation equation (31).
Liao [12] used special deformation functions which are
determined completely by only one characteristic param-
eter |c2| < 1 and |c3| < 1, respectively. To illustrate the
procedure, consider the nonlinear equation



X1

Table 1 Comparison of exact square residual errors at α = 0.5 and different values of H2

Auxiliary parameters Ci α = 0.5, H2 = 0.5 α = 0.5, H2 = 1 α = 0.5, H2 = 2 α = 0.5, H2 = 4

OHAM C1 −0.108084 −0.128187 −0.064627 −0.0236008

C2 −0.478377 −0.295243 −0.564313 −0.78968

C3 0.527761 0.270073 0.724121 1.19611

E3 7.527668 × 10−12 1.51604 × 10−8 5.41811 × 10−6 7.36637 × 10−4

Optimal homotopy analysis method c1 −0.566753 −0.374439 −0.0316471 −0.276117

c2 0.0199658 −0.321575 −0.357213 0.389223

c3 −0.0812378 −0.391183 −8.72346 −0.37244

E4 2.40146 × 10−12 8.90742 × 10−8 4.68025 × 10−6 2.05172 × 10−4

HAM ℏ −0.375 −0.276 −0.275 −0.205

E20 7.772 × 10−12 1.230 × 10−9 5.319 × 10−8 4.568 × 10−5
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N u rð Þ½ � ¼ 0: ð30Þ

Marinca and Herisanu [9] constructed a general form
of the zeroth-order deformation equation:

1� B qð Þð ÞL ϕ r; qð Þ � u0 rð Þ½ � ¼ c1A qð ÞN ϕ r; qð Þ½ �; r∈Ω; q∈ 0; 1½ �;
ð31Þ

where N is a nonlinear operator, L is a linear operator and
A(q) and B(q) are called deformation functions satisfying

A 0ð Þ ¼ B 0ð Þ ¼ 0;A 1ð Þ ¼ B 1ð Þ ¼ 1; ð32Þ
the Taylor series of which:

A qð Þ ¼
X1
m¼1

μmq
m;B qð Þ ¼

X1
m¼1

σmq
m; ð33Þ

exist and are convergent |q| ≤ 1.
There are infinite number of deformation functions sat-

isfying the properties (32) and (33). For the sake of com-
putational efficiency, we use the following one-parameter
deformation functions:
Table 2 Comparison of exact square residual errors at α = 1 a

Auxiliary parameters Ci α = 1, H2 = 0.5

OHAM C1 −0.377725

C2 0.0420993

C3 −0.01487

E3 2.591989 × 10−11

Optimal homotopy analysis method c1 −0.835839

c2 0.587823

c3 0.546788

E4 1.74228 × 10−11

HAM ℏ −0.303

E20 4.634 × 10−11
A1 q; c2ð Þ ¼
m¼1

μm c2ð Þqm;

B1 q; c3ð Þ ¼
X1
m¼1

σm c3ð Þqm; ð34Þ

where |c2| < 1 and |c3| < 1 are constants called the conver-
gence control parameters, and

μ1 c2ð Þ ¼ 1� c2; μm c2ð Þ
¼ 1� c2ð Þc2m�1; m > 1; ð35Þ

σ1 c3ð Þ ¼ 1� c3; σm c3ð Þ
¼ 1� c3ð Þc3m�1; m > 1: ð36Þ

Using these deformation functions, the zeroth-order
deformation equation takes the form

1� B1 q; c3ð Þð ÞL ’ r; qð Þ � u0 rð Þ½ �
¼ c1A q; c2ð ÞN ’ r; qð Þ½ �; r∈Ω; q∈ 0; 1½ �; ð37Þ

where c1 ≠ 0 is an auxiliary parameter called the conver-
gence control parameter. Thus, we have at most three
nd different values of H2

α = 1, H2 = 1 α = 1, H2 = 2 α = 1, H2 = 4

−0.35981 −0.30792 −0.168637

0.0623337 0.06334952 −0.1809055

−0.0164235 −0.00274481 0.275378

1.55047 × 10−9 1.05203 × 10−7 1.17518 × 10−4

−0.950907 −0.022845 −0.0455211

−0.411825 −0.3021 0.0242099

−0.037081 −12.3406 −6.19495

−1.0616 × 10−9 1.5504 × 10−4 4.27912 × 10−4

−0.292 −0.254 −0.198

4.996 × 10−9 2.363 × 10−6 3.461 × 10−4



" #

Table 3 Comparison of exact square residual error at α = 1.5 and different values of H2

Auxiliary parameters Ci α = 1.5, H2 = 0.5 α = 1.5, H2 = 1 α = 1.5, H2 = 2 α=1.5, H2 = 4

OHAM c1 −0.429884 −0.443299 −0.6898 −0.499435

c2 0.0742146 0.139540 0.0298953 0.07564

c3 −0.0128337 −0.02021099 0.5407644 1.06037

E3 2.0763995 × 10−9 3.8790 × 10−7 2.6342 × 10−6 1.5866 × 10−4

Optimal homotopy analysis method c1 −0.675245 −0.800339 −0.341231 −0.0427887

c2 0.2038278 0.741063 −0.301007 0.111194

c3 −0.030015 −1.36725 −0.623547 −7.00114

E4 1.3619 × 10−8 2.563 × 10−5 6.744 × 10−5 1.6 × 10−3

HAM ℏ −0.393372 −0.0164281 −0.6237173 −0.32296

E9 8.195638 × 10−8 8.1234 × 10−4 0.177825 0.551513
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convergence control parameters: c1, c2 and c3. As the
embedding parameter q increases from 0 to 1, ϕ(r;q)
deforms continuously from the initial guess u0(r) to the
exact solution u(r) since ϕ(r;0) = u0(r) and ϕ(r;1) = u(r).
Note that ϕ(r;q) is determined by the auxiliary oper-

ator L, the initial guess u0(r) and the convergence con-
trol parameters c1, c2 and c3, and we have great freedom
to choose them. Assuming that all of them are so prop-
erly chosen that ϕ(r;q) has the Taylor series representa-

tion as ’ r; qð Þ ¼ u0 rð Þ þ
X1
m¼1

um rð Þqm; which converges

at q = 1, thus the solution by optimal homotopy analysis
method will be given as

u rð Þ ¼ u0 rð Þ þ
X1
m¼1

um rð Þ; ð38Þ

where um rð Þ ¼ 1
m!

∂m’ r;qð Þ
∂qm q¼0

�� is the mth-order homotopy

derivative [9].
Taking the mth-order homotopy derivative on both

sides of Equation 37, we get the mth-order deformation
equation:
0.0 0.2 0.4 0.6 0.8 1.0

0.010

0.005

0.000

0.005

4( )R r

r

Figure 5 Residual R4(r) for H
2 = 4, α = 0.5 (red - OHAM,

blue - optimal HAM).
L um rð Þ � χm
Xm�1

k¼1

σm�k c3ð Þuk rð Þ

¼ c1
Xm�1

k¼0

μm�k c2ð ÞN uk rð Þ½ �; ð39Þ

subject to the given boundary conditions.

Application of optimal homotopy analysis method to EHD
flow problem
Now, we apply the optimal homotopy analysis method as
developed above to the EHD flow (Equations 1 and 2).
Assuming the initial guess u0(r) = 0 and the linear oper-

ator L ¼ d2
dr2, Equation 39 becomes

d2

dr2
um rð Þ � χm

Xm�1

k¼1

σm�k c3ð Þuk rð Þ
" #

¼ c1
Xm�1

k¼0

μm�k c2ð ÞN uk rð Þ½ �; ð40Þ

where

N uk rð Þ½ � ¼ uk
00 rð Þ þ 1

r
uk

0 rð Þ
þ H2 1� χk � 1þ αð Þuk�1 rð Þ� �
� α

Xk
i¼1

ui rð Þuk�i
00 rð Þf g

� α

r

Xk
i¼0

ui rð Þuk�i
0 rð Þf g; ð41Þ

and σm(c3) and μm(c2) are given in Equations 35 and 36.



0.0 0.2 0.4 0.6 0.8 1.0

0.04

0.03

0.02

0.01

0.00

0.01

0.02

0.03

r

4( )R r

Figure 6 Residual R4(r) for H
2 = 4, α = 1 (red - OHAM,

blue - optimal HAM).
Figure 8 Optimal HAM solution u(r) for H2 = 10 and α = 0.1
(red), 0.5 (blue), 1 (green).
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Using Equations 40 and 41, we compute the first four
iterates as we get a very satisfactory solution from these
four iterates only. These are

u1 rð Þ ¼ � 1
2
H2c1 �1þ c2ð Þ �1þ r2

� �
;

u2 rð Þ ¼ � 1
24

H2c1 �1þ c2ð Þ �1þ r2
� �

� 12þ 1þ c2 � c3ð Þ þ c1 �1þ c2ð Þð
� �24þ H2 �5þ r2

� �
1þ αð Þ� �

;

u3 rð Þ ¼ � 1
720

H2c1 �1þ c2ð Þ �1þ r2
� �

� 360 1þ c2 þ c2
2 � c3 � c2c3

� �

�þ60c1 �1þ c2ð Þ 1þ c2 � c3ð Þ
� �24þ H2 �5þ r2

� �
1þ αð Þ� �

þc2
2 �1þ c2ð Þ2 1; 440þ H2 61� 14r2 þ r4

� �

� 1þ αð Þ2 � 20H2 �31� 46αþ r2 5þ 8αð Þ� ���;
1.0 0.5 0.0 0.5 1.0
0.00

0.05

0.10

0.15

0.20

Figure 7 Optimal HAM solution u(r) for H2 = 1 and α = 0.1
(red-dotted-top), 0.5 (blue-solid-middle), 1 (green-dashed-bottom).
u4 rð Þ ¼ � 1
604; 800

H2c1 �1þ c2ð Þ �1þ r2
� �

� 302; 400 1þ c2 þ c2
3 � c2

2 �1þ c3ð Þ � c3 � c2c3
� �


þ25; 200c1 �1þ c2ð Þ 3þ 3c2
2 � 4c2

2 �1þ c3ð Þ�
�4c3 þ c3

2
� �24þ H2 �5þ r2

� �
1þ αð Þ� �

þ2; 520 �1þ c2ð Þ2 1þ c2 � c3ð Þ 1; 440f
þH2 61� 14r2 þ r4

� �
1þ αð Þ2 � 20H2 �31� 46αð

þr2 5þ 8αð Þ�g þ c1
3 �1þ c2ð Þ3 �2; 419; 200f

þ15H6 �1; 385þ 323r2 � 27r4 þ r6
� �

1þ αð Þ3

þ11; 200H2 �143� 281αþ r2 19þ 43αð Þ� �
�112H4ð2; 884þ 8; 633αþ 5; 749α2

þ2r4 17þ 79αþ 62α2
� �

�r2 566þ 1; 867αþ 1; 301α2
� ��g�:

ð42Þ

The fourth-order optimal homotopy analysis method
solution û4(r) is obtained by substituting Equation 42 in
Equation 38 and is given by

û4 r; c1; c2; c3ð Þ ¼
X4
i¼0

ui r; c1; c2; c3ð Þ: ð43Þ

The optimal values of parameters c1, c2 and c3 are
computed by minimizing the square residual error Em
defined by Equation 19.

Convergence of the solutions
In this section, we discuss the convergence of the third-
order OHAM solution and the fourth-order optimal homo-
topy analysis method solution given in Equations 28 and
43, respectively. The convergence of these two solutions



Table 4 CPU times incurred in calculating the iterations
by OHAM, optimal homotopy analysis method and HAM

Iterations CPU times (s)

4 iterates by optimal homotopy analysis method 2.108

3/4 iterates by OHAM 1.217/3.226

19 iterates by HAM 1,765
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depend on their respective convergence control parameters
C1, C2, C3 and c1, c2, c3. The values of these parameters are
obtained by using the least square method given in the
‘Analysis of the method’ section. From Figures 1 and 2, we
see that the square residual errors E3/E4 are stable even for
larger deviations from the optimal values of C1 (OHAM)
or c1 (optimal homotopy analysis method) as compared to
the deviations in ℏ (HAM) from its optimal value. From
Figure two of [3], we see that when ℏ moves towards the
left of its optimal value −0.198 and approaches −0.30, the
square residual error E20 shoots up from its minimum
value 3.461 × 10−4 to a value greater than 107. So, for a
relatively smaller variation of the order 10−1 in ℏ, there is
a huge variation of the order 1011 in the square residual
error E20, whereas in our proposed algorithm based on
OHAM, a similar variation in the value of C1 about its
optimal value −0.168637 causes no appreciable change in
E3. From Figure 2, we conclude that the sensitivity of E4
(optimal homotopy analysis method) with respect to the
variation in c1 about its optimal value −0.0455211 is much
lesser compared to the sensitivity of E20 (HAM) but is
larger than the sensitivity of E3 (OHAM).
The optimal values of the convergence control para-

meters for all the cases considered are obtained by min-
imizing Equation 19 using the Mathematica function
Minimize and are given in Tables 1, 2 and 3. In addition,
we plot the residual functions R4(r) for both the pro-
posed algorithms in Figures 5 and 6 for the parameters
α = 0.5, H2 = 4 and α = 1, H2 = 4, respectively. These
plots demonstrate the accuracy of OHAM and optimal
homotopy analysis method solutions over the HAM so-
lution [3]. As was done by Mastroberardino in [3], the
residuals have been plotted as a function of r for the op-
timal values of the convergence control parameters C1,
C2, C3 and c1, c2, c3 (given in Tables 1, 2 and 3) and not
as a function of these convergence control parameters
for a fixed value of r as this is a better illustration of
convergence.
Discussion of solution profiles
In this section, we give the various fourth-order solution
profiles for small and large values of α. For α << 1, the
solution profiles obtained by the two proposed methods
are similar to that obtained by Mckee et al. [1].
Case 1
For α << 1, the solution profiles obtained by optimal
homotopy analysis method are depicted in Figures 7 and
8. The similar profiles are obtained by using OHAM as
well. From the figures, it is clear that the profiles
obtained by our approach are the same as that obtained
in [1].

Case 2
For α >> 1, in Figures 3 and 4, we present OHAM solu-
tions of the BVP (1) and (2) for values of α = 4, 10 and
H2 = 1 and α = 4, 10 and H2 = 10, respectively. In the
case of α = 4 (respectively, α = 10), the solutions are
bounded above by 1 / (α + 1) = 0.2 (respectively, 1 /
(α + 1) = 0.09) and are in agreement with those of
Paullet [2]. As noted in [1], for large H2, the solutions
should tend to u(r) = 1 / (α + 1), and such behaviour is
evident in Figures eight and nine. This is in contrast to
Figures twelve and thirteen of [1] where for H2 = 10 and
H2 = 100, the solutions do not exhibit the proper
limiting behaviour and also cross the singularity at 1 / α
and thus are not C2. So, our calculations support Paullet’s
numerical results for α >> 1.

Comparison with HAM solutions
Tables 1, 2 and 3 display the square residual errors E3
(OHAM), E4 (optimal homotopy analysis method) and E20
(HAM) at various values of parameters α and H2. It is
observed that the square residual errors E3/E4 obtained by
OHAM/optimal homotopy analysis method are compa-
rable with E20 (obtained by HAM) for lower values of α
and H2 and are significantly smaller than E20 for higher
values of α and H2. Table 4 shows the ratio of CPU times
incurred to find the 3, 4 and 19 iterates by OHAM, optimal
homotopy analysis method and HAM, respectively. Further,
the CPU time for HAM is very large compared to those for
OHAM and optimal homotopy analysis method.

Conclusions
In this paper, we propose two semi-analytical algorithms
based on OHAM and optimal homotopy analysis
method to obtain semi-analytical solutions for a non-
linear boundary value problem governing electrohydro-
dynamic flow, though the nonlinearity confronted in this
problem is in the form of a rational function posing a
significant challenge in regard to obtaining analytical/
semi-analytical solutions. Earlier in 1997, Mckee et al.
[1] gave numerical solutions to the EHD flow in a circu-
lar cylindrical conduit described by Equations 1 and 2
for various values of H2 and α with the perturbation
expansions of the solutions for small and large values of
parameter α. Later in 1999, Paullet [2] provided a rigor-
ous result concerning the existence, uniqueness and
qualitative properties of the solutions of Equations 1 and
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2 for any α > 0 and H2 ≠ 0. Paullet’s solution [2] for
α << 1 matches with that of Mckee et al. [1], but there was
a difference between the solutions of Paullet and Mckee for
α >> 1. Our solutions obtained from the two proposed
algorithms support Paullet’s solutions for α >> 1. For
α << 1, all the solutions obtained by Mckee et al. [1], by
Paullet [2] and from our proposed algorithms are in good
agreement. For lower values of α and H2, the solutions
obtained by OHAM, optimal homotopy analysis method
and HAM are compatible, whereas for higher values of α
and H2, the algorithm based on OHAM gives better
results than the one based on optimal homotopy analysis
method, and the optimal homotopy analysis method
solutions are better than the HAM solutions.
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