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Abstract

We present a new representation of solutions of focusing nonlinear Schrödinger equation (NLS) equation as a
quotient of two determinants. We construct families of quasi-rational solutions of the NLS equation depending on
two parameters, a and b. We construct, for the first time, analytical expressions of Peregrine breather of order 7 and
multi-rogue waves by deformation of parameters. These expressions make possible to understand the behavior of the
solutions. In the case of the Peregrine breather of order 7, it is shown for great values of parameters a or b the
appearance of the Peregrine breather of order 5.
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Introduction
One of the most direct approaches to model the evolution
of deep water waves is the use of nonlinear Schrödinger
equation (NLS) [1,2]. This equation was first solved in
1972 by Zakharov and Shabat [3] using inverse scat-
tering method. Its and Kotlyarov constructed in 1976
periodic and almost periodic solutions of the focusing
NLS equation [4]. It is in 1979 that Ma found the first
breather-type solution of the NLS equation [5]; this solu-
tion breathes temporally but is spatially localized. In 1983,
Peregrine [6] gave the first example of quasi-rational
solutions of the NLS equation which was localized both
in space and time. Akhmediev, Eleonski, and Kulagin
obtained the first higher order analog of the Peregrine
breather [7] in 1986. Other families of higher order were
constructed by Akhmediev et al. [8,9] using Darboux
transformations; these solutions breathe spatially and are
localized in time. The Peregrine solution appears to be a
limiting case of a breather when the spatial period is taken
to be infinite.
The notion of rogue waves first appeared in studies of

ocean waves; then it moved to other domains of physics
like optics [10], Bose-Einstein condensates [11], etc. A
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lot of experiments about solutions of NLS equation have
been realized; in particular, the basic Peregrine soliton
has been studied very recently in [12,13]; furthermore, the
NLS equation accurately describes physical rogue waves
of relatively high order according to the work [14].
Actually, there is growing interest in studying higher

order rational solutions. In 2010, rational solutions of the
NLS equation have been written as a quotient of two
Wronskians [15]. In 2011, it has been constructed in [16]
a new representation of the solutions of the NLS equation
in terms of a ratio of twoWronskian determinants of even
order 2N composed of elementary functions.
Recently, Guo, Ling, and Liu gave another representa-

tion of the solutions of the focusing NLS equation as a
ratio of two determinants [17] using generalized Darboux
transform. Ohta and Yang have realized a new approach
in [18] which gives a determinant representation of solu-
tions of the focusing NLS equation, obtained from Hirota
bilinear method.
Here we present a new representation of quasi-rational

solutions of NLS expressed as a quotient of two determi-
nants which do not involve limits introduced in [19]. It is
important to note that the formulations given in [16,19]
depend only on two parameters as mentioned in the title;
this remark was first made by VBMatveev in March 2012.
With this method, we obtain very easily explicit analytical
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expressions of the solutions of the NLS equation as defor-
mations of the Peregrine breather of order 7 depending on
two parameters, a and b. The following orders will be the
object of other publications.
These explicit solutions are important since it makes

it possible to understand the behavior of rogue waves.
In particular, it shows the appearance for great values of
parameters a or b of the Peregrine breather of order 5. Pre-
cisely, according to the explicit formulation of the solution
of order 7, the factor of a2 or b2 is exactly the analytical
expression of the Peregrine breather of order 5. This fact
was first pointed out for the orders 3 and 4 by VBMatveev
in March 2012. It was also noticed and highlighted by
Akhmediev et al. in the article [20].
This result, in addition to being the first time that

explicit expressions of deformations of order 7 of the solu-
tions of the equation of NLS are given, makes it possible
to understand the phenomenon of appearance of rogue
waves and their asymptotic behavior.
The method given in this paper is a very powerful tool,

better than that presented in [16,21], and leads to new
results about NLS equation.

Expression of solutions of NLS equation in terms of
a ratio of two determinants
We recall in this section the result exposed in [19]. We
consider the following focusing NLS equation:

ivt + vxx + 2|v|2v = 0. (1)

We use the following notations:
κν , δν , and γν are functions of the parameters λν and ν =

1, . . . , 2N , satisfying the relations

0 < λj < 1, λN+j = −λj,

1 ≤ j ≤ N .
(2)

They are given by the following equations:

κj = 2
√
1 − λ2j , δj = κjλj,

γj =
√

1−λj
1+λj

, 1 ≤ j ≤ N ,
(3)

and
κN+j = κj, δN+j = −δj,
γN+j = 1/γj, 1 ≤ j ≤ N , (4)

The terms xr,ν (r = 1, 3) are defined by

xr,ν = (r − 1) ln γν−i
γν+i ,

1 ≤ ν ≤ 2N .
(5)

The parameters eν are defined by

ej = iaj − bj, eN+j = iaj + bj,
1 ≤ j ≤ N , (6)

where aj and bj, for 1 ≤ j ≤ N , are arbitrary real numbers.

We then define the following expressions:

Aν = κνx/2 + iδνt − ix3,ν/2 − ieν/2,
Bν = κνx/2 + iδνt − ix1,ν/2 − ieν/2,

for 1 ≤ ν ≤ 2N , with κν , δν , and xr,ν defined previously in
Equations 3, 4, and 5.
The parameters eν are defined in Equation 6. For the

following reduction, we choose aj and bj in the form

aj = ã1j2N−1ε2N−1,
bj = b̃1j2N−1ε2N−1,
1 ≤ j ≤ N .

(7)

We consider the parameter λj written in the form

λj = 1 − 2j2ε2, 1 ≤ j ≤ N . (8)

Below we use the following functions for 1 ≤ j ≤ 2N :

f4j+1,k = γ
4j−1
k sinAk ,

f4j+2,k = γ
4j
k cosAk ,

f4j+3,k = −γ
4j+1
k sinAk ,

f4j+4,k = −γ
4j+2
k cosAk ,

(9)

1 ≤ k ≤ N , and

f4j+1,k = γ
2N−4j−2
k cosAk ,

f4j+2,k = −γ
2N−4j−3
k sinAk ,

f4j+3,k = −γ
2N−4j−4
k cosAk ,

f4j+4,k = γ
2N−4j−5
k sinAk ,

(10)

for N + 1 ≤ k ≤ 2N .
We define the functions gj,k for 1 ≤ j ≤ 2N , 1 ≤ k ≤ 2N

in the same way; we replace only the term Ak by Bk :

g4j+1,k = γ
4j−1
k sinBk ,

g4j+2,k = γ
4j
k cosBk ,

g4j+3,k = −γ
4j+1
k sinBk ,

g4j+4,k = −γ
4j+2
k cosBk ,

(11)

for 1 ≤ k ≤ N , and

g4j+1,k = γ
2N−4j−2
k cosBk ,

g4j+2,k = −γ
2N−4j−3
k sinBk ,

g4j+3,k = −γ
2N−4j−4
k cosBk ,

g4j+4,k = γ
2N−4j−5
k sinBk ,

(12)

for N + 1 ≤ k ≤ 2N .
All functions fj,k and gj,k and their derivatives depend on

ε and can all be prolonged by continuity when ε = 0. Then
they have the following result:
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Theorem 1. The function v defined by

v(x, t) = exp(2it − iϕ)

×det((njk)j,k∈[1,2N] )

det((djk)j,k∈[1,2N] )

(13)

is a quasi-rational solution of the NLS Equation 1:

ivt + vxx + 2|v|2v = 0,

where
nj1 = fj,1(x, t, 0),

njk = ∂2k−2fj,1
∂ε2k−2 (x, t, 0),

njN+1 = fj,N+1(x, t, 0),

njN+k = ∂2k−2fj,N+1
∂ε2k−2 (x, t, 0),

dj1 = gj,1(x, t, 0),

djk = ∂2k−2gj,1
∂ε2k−2 (x, t, 0),

djN+1 = gj,N+1(x, t, 0),

djN+k = ∂2k−2gj,N+1
∂ε2k−2 (x, t, 0),

2 ≤ k ≤ N , 1 ≤ j ≤ 2N .

The functions f and g are defined in Equations 9, 10, 11,
and 12.

Proof. We do not have the space to reproduce the proof
here. The reader can find it in [19].
In other words, the solutions of the NLS equation can

be written as

v(x, t) = exp(2it − iϕ) × Q(x, t)

with Q(x, t) defined by
∣∣∣∣∣∣∣∣∣∣∣

f1,1[0] . . . f1,1[N − 1] f1,N+1[0] . . . f1,N+1[N − 1]

f2,1[0] . . . f2,1[N − 1] f2,N+1[0] . . . f2,N+1[N − 1]

...
...

...
...

...
...

f2N ,1[0] . . . f2N ,1[N − 1] f2N ,N+1[ 0] . . . f2N ,N+1[N − 1]

∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣

g1,1[0] . . . g1,1[N − 1] g1,N+1[0] . . . g1,N+1[N − 1]

g2,1[0] . . . g2,1[N − 1] g2,N+1[0] . . . g2,N+1[N − 1]

...
...

...
...

...
...

g2N ,1[0] . . . g2N ,1[N − 1] g2N ,N+1[0] . . . g2N ,N+1[N − 1]

∣∣∣∣∣∣∣∣∣∣∣

Quasi-rational solutions of order 7
We have already constructed in [16,19,21] solutions of the
NLS equation for the cases N = 1 until N = 6. Here, we
give new solutions of the NLS equation in the case N = 7.
We start to give some plots of these solutions in the (x, t)
plan for various values of the parameters.

In the following, for more simplicity, we note ã1 = a and
b̃1 = b.

Figures
If we choose a = 0 and b = 0, we recognize the famous
Peregrine breather of order 7 in Figure 1. If we choose
a = 0 and b = 108, we obtain the following plot in
Figure 2. If we choose a = 1012 and b = −108, we obtain
the following regular plot in Figure 3.
We saw in these plots that when parameters a and b

increase, there is the appearance of circular configura-
tions or more exactly annular configurations. This phe-
nomenon was also highlighted in the article [22]. Indeed,
the previous images given by Figures 2 and 3 are closely
analogous to Figure 2 parameter b in that paper which
gives the case of order 8 as an example. This fact is also
highlighted in the works of the author [23]. In the work
[22], it was pointed out that the shift (here corresponding
to a and b nonzero) pulls out or ‘emits’ a ring of 2N − 1
fundamental (N = 1) rogue elements, corresponding to
15 of them there and to 13 here. It leaves behind a rogue
wave of order N − 2, i.e., 6 there (amplitude=13) and 5
(amplitude=11) in this paper. Of course, Figure 1 here is
analogous to Figure 2 parameter a there (amplitudes 15
and 17, respectively).

Asymptotic behavior
In all these figures, for N = 7, we see that when the
parameters a and b tend towards the infinite, there is
the appearance of the Peregrine breather of order 5.
This remark was made the first time by VB Matveev in
March 2012 for orders 3 and 4 [24]. It was also reported
in [20].
In fact, if one identifies the factors of a2 or b2 (even

of a2 + b2) in the analytical expression of Peregrine of
order 7 given in Additional file 1, one finds exactly that
of the Peregrine breather of order 5. We do not have
enough space in this text to detail these calculations. The
reader who would like to find the expression of the Pere-
grine breather of order 5 will be able to refer to the
article [21].
This explains why when one or the other of parameters

a or b (even both) tend towards infinite in the case of the
Peregrine breather of orderN = 7, it appears in the center
of the figures’ Peregrine breather of order N − 2 = 5.

Analytic expressions
N takes the value 7; we make the following change of vari-
ables X = 2x and T = 4t. The solution of the NLS
equation can be written in the form

vN (x, t) = n(x, t)
d(x, t)

exp(2it)

= (1 − αN
GN (2x, 4t) + iHN (2x, 4t)

QN (2x, 4t)
)e2it
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Figure 1 Solution of NLS, N = 7, a = 0, b = 0.

Figure 2 Solution of NLS, N = 7, a = 0, b = 108.



Gaillard Journal of Theoretical and Applied Physics 2013, 7:45 Page 5 of 6
http://www.jtaphys.com/content/7/1/45

Figure 3 Solution of NLS, N = 7, a = 1012, b = −108.

with

GN (X,T) = ∑N(N+1)
k=0 gk(T)Xk

HN (X,T) = ∑N(N+1)
k=0 hk(T)Xk

QN (X,T) = ∑N(N+1)
k=0 qk(T)Xk

The analytic expression of the Peregrine breather of
order 7 is obtained as a particular case when a = 0 and
b = 0. Because of the length of the coefficients of the poly-
nomials GN , HN , and QN , we present them in Additional
file 1.

Conclusions
We presented here for the first time to my knowledge
the analytical expressions of the Peregrine breather of
order 7 and its associated deformations. The conjecture
about the form of the breather of order N in coordinates
(x, t) is checked, also that the maximum of amplitude
equal to 2N + 1; the degree of the polynomials in x and
t is quite equal to N(N + 1) as that presented in [8].
For a and b nonzero, the maximum is less than that,
as discussed above and seen in Figures 2 and 3. This
new formulation gives a powerful novel method to obtain

the nonsingular solutions of the NLS equation. We will
present Peregrine breathers of a higher order in other
publications. We can also imagine to obtain deforma-
tions with 2N − 2 parameters for Peregrine breathers
of order N. Some advances were made in this direction
recently [24-26].
Also, we explained why, in the case of order N = 7,

when one or the other of the parameters a or b (even both)
tend towards infinite in the case of Peregrine breather of
order N, it appears in the center of the figures’ Peregrine
breather of order N − 2. This phenomenon was checked
for the orders ofN = 3 untilN = 7. It would be important
to prove this conjecture in the general case.

Additional file

Additional file 1: Expressions of the coefficients of the polynomials
G, H, and Q.
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