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Abstract

The conformally invariant linearized de Sitter gravitational wave equation has recently received a lot of attention.
In this article, using the ambient space notations, we solve this field equation in five various cases. In each case,
it has been shown that the solution can be written as the product of a generalized symmetric polarization tensor
of rank 2 and a massless minimally or conformally coupled scalar field in de Sitter space-time. The conformally
covariant graviton two-point functions have been calculated in terms of the massless minimally or conformally
coupled scalar two-point functions, using ambient space notations. In the case of massless minimally coupled
scalar field, the Krien space quantization has been used to avoid the violation of de Sitter invariance. The two-point
functions are expressed in terms of de Sitter intrinsic coordinates from their ambient space counterparts,
which are free of any theoretical problem.
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Introduction
The recent observational data are strongly in favor of a
positive acceleration of the present universe. Therefore,
in a first approximation, the background space-time
might be considered as a de Sitter (dS) space-time, and
the quantization of the massless tensor field (spin-2) on
dS space (dS linear quantum gravity) presents an excel-
lent modality for further researches.
Gravitational fields are long ranged and seem to travel

with the speed of light. In the first approximation, their
equations are expected to be conformally invariant.
Einstein's theory of gravitation, in the background field
method (gab = gab

(BG) + hab) and linear approximation, can
be considered as a massless symmetric tensor field of
rank 2, hab on a fixed background gab

(BG), such as dS
space. It is well known that the massless fields propagate
on the light cone and are invariant under the conformal
group SO(2, 4).
Einstein's classical theory of gravitation, as well as the

equation of hab, is not conformally invariant, thus could
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not be considered as a comprehensive universal theory
of gravitational fields. Many believe that conformal
invariance may be the key that will solve the problems
of quantum gravity.
In dS space, mass is not an invariant parameter for the

set of observable transformations under the dS group
SO(2, 4). The concept of light cone propagation, how-
ever, does exist and leads to conformal invariance.
‘Massless’ is used in reference to propagation on the dS
light cone (conformal invariance). The term ‘massive’
refers to fields that in their Minkowskian limit (zero
curvature) reduce to the massive Minkowskian fields [1].
The organization of this paper is as follows: The

‘Notation’ section is devoted to a brief review of the
ambient space notations. The conformal space, Dirac's
six-cone formalism, and conformally invariant gravita-
tional field equations are introduced in the ‘dS conformal
field equation’ section. In ‘Solution to the conformal field
equation’ section, the conformally invariant gravitational
field equation is solved in five different cases using ambi-
ent space formalism. It is shown that the solution can be
written as the multiplication of a generalized symmetric
polarization tensor of rank 2 and a massless minimally
or conformally coupled scalar field in dS space. The
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conformally invariant graviton two-point functions have
been calculated in ‘The conformal two-point functions’
section using ambient space notations. It is shown that
the conformally invariant graviton two-point functions
can be written in terms of the two-point functions of
the massless minimally or conformally coupled scalar
two-point functions in dS ambient space. In the case of
massless minimally coupled scalar field, in order to avoid
violation of dS invariance, the Krein space quantization
has been used [2]. The two-point functions are written
in terms of dS intrinsic coordinates from their ambient
space counterparts. Finally, a brief discussion and con-
clusion has been given in the ‘Conclusions’ section.
Notation
The dS space-time is made identical to the four dimen-
sional one-sheeted hyperboloid

XH ¼ x ∈ R5; x2 ¼ ηαβ x
αxβ ¼ � H�2

n o
;

α; β; . . . ¼ 0; 1; 2; 3; 4; ð1Þ

where ηαβ = diag (1, − 1, − 1, − 1, − 1). The dS
metric is

ds2 ¼ ηαβdx
αdxβ x2 ¼ �H�2 ¼ gdSabdX

adXb;
��

a; b; . . . ¼ 0; 1; 2; 3; ð2Þ

where Xa's are the four space-time intrinsic coordinates
in dS hyperboloid. Different coordinate systems can be
chosen [3]. Any geometrical object in this space can be
written in terms of the four local intrinsic coordinates
Xa or in terms of the five global ambient space coordi-
nates xα.
The metric (2) is a solution to Einstein's equation with

the cosmological constant Λ = 3H2

Rab � 1
2
Rgab þ Λgab ¼ 0 ð3Þ

The linearized field equation is obtained by setting
gab = gab

(dS) + hab where gab
(dS) is the background metric

(2) and hab is its fluctuation. The wave equation which
is obtained through the above linear approximation
is [4-6]

1
2

∇a∇chbc þ ∇b∇chac � ∇2hab � ∇a∇bh
0 þ 2H2hab

� �
þ 1

2
g dSð Þ
ab ∇2h0 � ∇c∇dh

cd þ H2h0
� � ¼ 0 ð4Þ
where ∇ 2 ≡ ∇ a∇
a is the Laplace-Beltrami operator

on dS space, and h ' ≡ ha
a is the trace of hab with re-

spect to the background metric. Here, ∇ b is the back-
ground covariant derivative; indices are raised and
lowered by the background metric. The field equation
(4) is invariant under the gauge transformation

hab → h gtð Þ
ab þ ∇aζb þ ∇bζa ð5Þ

where ζa is an arbitrary vector.
Now, we adopt the tensor field Kαβ(x) in ambient

space notations. In these notations, the solutions to
the field equations are easily written out in terms of
scalar fields. The symmetric tensor field Kαβ(x) is def-
ined on dS space-time and satisfies the transversality
condition [7,8]

x:Kαβ xð Þ ¼ 0; i:e:; xαKαβ xð Þ ¼ 0 ¼ xβKαβ xð Þ
ð6Þ

The covariant derivative in the ambient space nota-
tions is

DβTα1::αi ::αn ¼ �∂β Tα1::αi ::αn � H2
Xn
i ¼ 1

xαiTα1::β ::αn ð7Þ

where �∂α is a tangential (or transverse) derivative in
dS space

�∂α ¼ θαβ∂β ¼ ∂α þH2xαx:∂; x:�∂ ¼ 0 ð8Þ

θαβ = ηαβ + H2xαxβ is the transverse projector.
In order to express Equation 4 in terms of the ambient

space notations, we use the fact that the ‘intrinsic’ field
hab(X) is locally determined by the transverse tensor
field Kαβ(x) through

Kαβ xð Þ ¼ ∂Xa

∂xα
∂Xb

∂xβ
hab Xð Þ ð9Þ

It is easily shown that the metric gab
(dS) corresponds to

the transverse projector θαβ.
The linearized field equation in ambient space nota-

tions is

Q 1ð Þ
2 þ 6

� �
Kαβ þ D2 ∂2:Kð Þ ¼ 0 ð10Þ
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where ∂2:K ¼ ∂:K � H2xK 0 � 1
2
�∂K 0, D2 ∂2:Kð Þ ¼

H�2S �∂�H2x
� �

∂2:Kð Þ, and Q2
(1) is one of the two

Casimir operators of dS group and

Q 1ð Þ
2 K ¼ Q 1ð Þ

0 � 6
� �

K þ 2ηK 0 þ 2Sx ∂:Kð Þ � 2S∂ x:Kð Þ
ð11Þ

Q 1ð Þ
1 Λ xð Þ ¼ Q 1ð Þ

0 � 2
� �

Λ xð Þ þ 2x�∂:Λ xð Þ
� 2∂x:Λ xð Þ ð12Þ

for any arbitrary vector Λ. The symmetrizer S is defined
for the two vectors ξα and ωβ by S(ξαωβ) = ξαωβ + ωαξβ.

K' is the trace of K, and Q 1ð Þ
0 ¼ � H�2�∂2.

The field equation (10) is invariant under the following
gauge transformation [8]

Kαβ → K gtð Þ
αβ ¼ Kαβ þ D2Λg ð13Þ

where Λg is an arbitrary vector. Because of this gauge
freedom, the field equation (10) can be written in the
following form

Q 1ð Þ
2 þ 6

� �
Kαβ þ cD2 ∂2:Kð Þ ¼ 0 ð14Þ

where c is a gauge-fixing parameter. The field equa-
tion (14) has been considered in [9,10]. In the physical
case �∂:K ¼ 0 ¼ K 0 or equivalently c = 0, the field
equation (10) or (14) reduce to the following eigen-
value equation

Q 1ð Þ
2 þ Q 1ð Þ

2

D E� �
Kαβ ¼ 0 where Q 1ð Þ

2

D E
¼ �6 ð15Þ

which has been considered in our previous work [11].

dS conformal field equation
Barut and Bohm [1] have shown that for the unitary
irreducible representation of the conformal group, the
value of the conformal Casimir operator is 9. However,
according to the calculation of Binegar et al. [12] for the
tensor field of rank 2 and conformal degree 0, this value
becomes 8 and the tensor field of rank 2 does not cor-
respond to any unitary irreducible representation of the
conformal group. In other words, the tensor field that
carries physical representations of the conformal group
must be a tensor field of higher rank. The conformally
invariant wave equations for scalar and vector fields have
been obtained in [13] using Dirac's six-cone formalism,
which transformed according to the unitary irreducible
representation of dS group. The conformal space and
six-cone formalism was first used by Dirac to obtain the
conformally invariant equations [7]. This formalism was
developed by Mack and Salam [14] and many others
[15-17]. This approach to conformal symmetry leads to
the best path to exploit the physical symmetry in con-
trast to approaches based on group theoretical treatment
of state vector spaces. The conformal invariance, as well
as the light cone propagation, constitutes the basis for
constructing ‘massless’ field in dS space. The conform-
ally invariant field equations for a rank-2 tensor field has
been obtained in [11],

Q 1ð Þ
2 þ 4

� �
Q 1ð Þ

2 þ 6
� �

Kαβ ¼ 0;

∂:K ¼ 0 ¼ K 0
ð16Þ

based on Dirac's six-cone formalism, which corresponds
to the two representations of dS group, namely Π2,1

± and
Π2,2

±. However, this equation does not transform accord-
ing to the dS and conformal groups simultaneously.
Using a mixed symmetric field of rank 3 in Dirac's six-

cone formalism, it has been shown that if we want Kαβ to
be a physical state of the dS and conformal groups simul-
taneously, it must satisfy a field equation of order 6 [18],

Q 1ð Þ
2 þ 4

� �2
Q 1ð Þ

2 þ 6
� �

Kαβ ¼ 0;

∂:K ¼ 0 ¼ K 0
ð17Þ

In the next section, we solve this field equation in five
various cases. In each case, it is shown that the solution
can be written as the product of a generalized symmetric
polarization tensor of rank 2 and a massless minimally
or conformally coupled scalar field in dS space-time.

Solution to the conformal field equation
A general solution of Equation 17 can be constructed
from the combination of a scalar field and two vector
fields. Let us first introduce a traceless and transverse
tensor field Kαβ in terms of a five-dimensional constant
vector Z1(Z1α) and a scalar field ϕ1 and two vector fields,
K1 and Kg, by putting [8,11]

K ¼ θφ1 þ S�Z1K1 þ D2Kg ð18Þ

K 0 ¼ 2φ1 þ 2Z1:K1 þ 2H2 x:Z1ð Þ x:K1ð Þ
þ2H�2�∂:Kg � 2x:Kg ¼ 0 ð19Þ
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where �Z1α ¼ θαβZ
β
1 . In solving Equation 17, the follow-

ing various cases are distinguishable.

The physical case
A simple solution to the conformally covariant field
equation (17) is the solution of the following equation

Q 1ð Þ
2 þ 6

� �
Kαβ ¼ 0 ð20Þ

This is an eigenvalue equation with the eigenvalue
hQ2

(1)i = − 6. From the group theoretical point of view,
this corresponds to unitary irreducible representations
of dS group in the sense of Π2,2

± discrete series which
reduce to the physical representations of the Poincare
group in the zero curvature limit. This is why we call it
the physical case.
Using ansatz (18) to the above field equation, we have

Q 1ð Þ
0 þ 6

� �
φ1 ¼ �4Z1:K1; Ið Þ

Q 1ð Þ
1 þ 2

� �
K1 ¼ 0; x:K1 ¼ 0 ¼ ∂:K1; IIð Þ

Q 1ð Þ
1 þ 6

� �
Kg ¼ 2H2x:Z1K1 IIIð Þ

8>>><
>>>:

ð21Þ

The solution to this system of differential equations
is [11]

φ1 ¼ � 2
3
Z1:K1;

K1 ¼ �Z2φ2 � 1
2
D1 Z2:�∂φ2 þ 2H2 x:Z2ð Þφ2

� �
;

Kg ¼ 1
3

H2 x:Z1ð ÞK1 þ 1
9
D1 Z1:K1ð Þ

	 

;

8>>>>><
>>>>>:

ð22Þ

where Z1 and Z2 are two constant 5 vectors, and x.Kg = 0,
�∂:Kg ¼ 1

3H
2Z1:K1 . ϕ2 is a massless minimally coupled

scalar field in dS space

Q 1ð Þ
0 φ2 ¼ 0; φ2 ¼ Hx:ξð Þσ ; σ ¼ 0; � 3; ξ2 ¼ 0 ð23Þ

It is easily shown that

Kαβ ¼ εαβ x; Z1; Z2; ξð Þφ2 ð24Þ
where εαβ is a generalized symmetric polarization tensor

εαβ ¼ S A�Z1α�Z2β þ B�Z1α
�ξβ þ C�Z2α

�ξβ þ D �ξα �ξβ þ Eθαβ
� �

A ¼ � σ

27
σ þ 21ð Þ;

B ¼ � σ

27
σ2 þ 21σ þ 36
� � x:Z2

x:ξ
;

C ¼ � σ

27
σ2 þ 12σ þ 9
� � x:Z1

x:ξ
;

D ¼ � σ σ � 1ð Þ
54 x:ξð Þ2 σH�2Z1:Z2 þ σ2 þ 12σ þ 18

� �
x:Z1ð Þ x:Z2ð Þ� �

;

E ¼ � σ

54
σ � 9ð ÞZ1:Z2 þ σ þ 3ð Þ σ þ 2ð ÞH2 x:Z1ð Þ x:Z2ð Þ� �

;

ð25Þ

where the conditions Z1. ξ = 0 = Z2. ξ are used for simpli-
city. These conditions reduce the number of degrees of
freedom of constant 5 vectors Z1 and Z2 from 5 to 4. It
is obvious that

K 0 ¼ � σ σ þ 3ð Þ
27

σ þ 2ð ÞZ1:Z2 þ σ2 þ 16σ þ 46
� ��

� H2 x:Z1ð Þ x:Z2ð Þ� φ2 ¼ 0 for σ ¼ 0;�3:
ð26Þ

The two solutions that correspond to two different
values of σ are

K 1ð Þ
αβ xð Þ ¼ 0 for σ ¼ 0

and

K 2ð Þ
αβ xð Þ ¼ 2S

	
�Z1α�Z2β �

x:Z2

x:ξ
�Z1α

�ξβ � x:Z1

x:ξ
�Z2α

�ξβ

� 1
3
Z1:Z2θαβ þ 1

3
H�2 Z1:Z2ð Þ�

þ3 x:Z1ð Þ x:Z2ð ÞÞ
�ξα�ξβ

x:ξð Þ2


Hx:ξð Þ�3 for σ ¼ �3:

The semi-physical case
Another simple solution to the conformally covariant
field equation (17) is the solution of the equation

Q 1ð Þ
2 þ 4

� �
Kαβ ¼ 0 ð27Þ

This is also an eigenvalue equation with the eigenvalue
hQ2

(1)i = − 4. From the group theoretical point of view,
this corresponds to unitary irreducible representations
of dS group in the sense of Π2,1

± discrete series. It has no
Poincare correspondence in the zero curvature limit.
This is why we call it the semi-physical case.
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Using ansatz (18) to the above field equation, we have

Q 1ð Þ
1 þ 4

� �
φ1 ¼ � 4Z1:K1; Ið Þ

Q 1ð Þ
1 K1 ¼ 0; x:K1 ¼ 0 ¼ ∂:K1; IIð Þ
Q 1ð Þ

1 þ 4
� �

Kg ¼ 2H2x:Z1K1 IIIð Þ

8>><
>>:

ð28Þ

The solution to this system of differential equations
is [11]

φ1 ¼ � 2
3
Z1:K1;

K1 ¼ �Z2 � x:Z2

x:ξ
�ξ

� �
φ;

Kg ¼ 1
2
H2 3 x:Z1ð ÞK1 � x Z1:K1ð Þ þ H�2 Z1:�∂

� �
K1 � 1

3
D1 Z1:K1ð Þ

	 

;

8>>>>>><
>>>>>>:

ð29Þ

where ϕ is a massless conformally coupled scalar field in
dS space,

Q 1ð Þ
0 � 2

� �
φ ¼ 0; φ ¼ Hx:ξð Þσ ; σ ¼ �1; � 2; ξ2 ¼ 0

ð30Þ

It is easily shown that

Kαβ ¼ ε0αβ x; Z1; Z2; ξð Þφ ð31Þ

where ε' is a generalized symmetric polarization tensor

ε0αβ ¼ S A0�Z1α�Z2β þ B0�Z1α
�ξβ þ C0�Z2α

�ξβ þ D0 �ξα �ξβ þ E0θαβ
� �

A0 ¼ 1
2

σ þ 5ð Þ;
B0 ¼ � 1

2
σ þ 5ð Þ x:Z2

x:ξ
;

C0 ¼ � 1
2

σ � 1ð Þ σ þ 3ð Þ x:Z1

x:ξ
;

D0 ¼ � σ þ 3ð Þ σ � 1ð Þ
6 x:ξð Þ2 H�2Z1:Z2 þ 3 x:Z1ð Þ x:Z2ð Þ� �

;

E0 ¼ � 1
6

σ þ 5ð Þ
ð32Þ

where the conditions Z1. ξ = 0 = Z2. ξ are used for sim-
plicity. These conditions reduce the number of degrees
of freedom of constant 5 vectors Z1 and Z2 from 5 to 4.
It is obvious that

K 0 ¼ � σ þ 1ð Þ σ þ 2ð Þ
2

Z1:Z2ð Þφ
¼ 0 for σ ¼ �1; � 2 ð33Þ
The two solutions that correspond to two different
values of σ are

K 1ð Þ
αβ xð Þ ¼ 2S

	
�Z1α�Z2β � x:Z2

x:ξ
�Z1α

�ξβ � x:Z1

x:ξ
�Z2α

�ξβ

� 1
3
Z1:Z2θαβ þ 1

3
H�2 Z1:Z2ð Þ�

þ3 x:Z1ð Þ x:Z2ð ÞÞ
�ξα�ξβ

x:ξð Þ2


Hx:ξð Þ�1 for σ ¼ �1

and

K 2ð Þ
αβ xð Þ ¼ 3

2
S

	
�Z1α�Z2β �

x:Z2

x:ξ
�Z1α

�ξβ � x:Z1

x:ξ
�Z2α

�ξβ

� 1
3
Z1:Z2θαβ þ 1

3
H�2 Z1:Z2ð Þ�

þ3 x:Z1ð Þ x:Z2ð ÞÞ
�ξα�ξβ

x:ξð Þ2


Hx:ξð Þ�2 for σ ¼ �2:
Special case I
A special solution to the conformal field equation (17)
may be considered as the solution of the equation

Q 1ð Þ
2 þ 4

� �2
Kαβ ¼ 0: ð34Þ

Using the ansatz (18) to the above field equation,
we have

Q 1ð Þ
0 þ 4

� �2
φ1 þ 4 Q 1ð Þ

0 þ 4
� �

Z1:K þ 4Q 1ð Þ
1 Z1:K1; Ið Þ

Q 1ð Þ
1

h i2
K1 ¼ 0; x:K1 ¼ 0 ¼ ∂:K1; IIð Þ

Q 1ð Þ
1 þ 4

� �2
Kg ¼ 2H2 x:Z1 Q 1ð Þ

1 þ 4
� �

K1 þ Q 1ð Þ
1 x:Z1K1

h i
IIIð Þ

8>>>><
>>>>:

ð35Þ

The simplest solution to this system of differential

equations is [11]

φ1 ¼ � 2
3
Z1:K1;

K1 ¼ �Z2 � x:Z2

x:ξ
�ξ

� �
φ; φ : conformally coupled

Kg ¼ 1
2
H2 3 x:Z1ð ÞK1 � x Z1:K1ð Þ þH�2 Z1:�∂

� �
K1 � 1

3
D1 Z1:K1ð Þ

	 


8>>>>>><
>>>>>>:

ð36Þ
The solutions are the same as that given in the semi-

physical case.

Special case II
A simple solution to the conformally covariant field
equation may be the solution of the equation

Q 1ð Þ
2 þ 4

� �
Q 1ð Þ

2 þ 6
� �

Kαβ ¼ 0; ð37Þ

which is considered as a special case.
Using ansatz (18) to the above field equation, the two

following cases are distinguishable:
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First case� �� �8

Q 1ð Þ

0 þ 4 Q 1ð Þ
0 þ 6 φ1 þ 8Q 1ð Þ

0 Z1:K1 þ 16Z1:K1; Ið Þ
Q 1ð Þ

1 þ 2
� �

K1 ¼ 0; x:K1 ¼ 0 ¼ ∂:K1; IIð Þ
Q 1ð Þ

1 þ 4
� �

Q 1ð Þ
1 þ 6

� �
Kg ¼ 4H2 Q 1ð Þ

1 þ 5
� �

x:Z1K1 þ H�2 Z1:�∂
� �

K1 � xZ1:K1

h i
: IIIð Þ

>>><
>>>:

ð38Þ
In this case, we have
φ1 ¼ � 2
3
Z1:K1;

K1 ¼ �Z2φ2 � 1
2
D1 Z2:�∂φ2 þ 2H2x:Z2φ2

� �
;

Kg ¼ 1
9

H2xZ1:K1 þ Z1:�∂K1 þ 2
3
H2D1Z1:K1

	 

:

8>>>>><
>>>>>:

ð39Þ
So, the solutions are the same as that given in the
physical case.

Second case� �� �

Q 1ð Þ

0 þ 4 Q 1ð Þ
0 þ 6 φ1 þ 8Q 1ð Þ

0 Z1:K1 þ 16Z1:K1; Ið Þ
Q 1ð Þ

1 K1 ¼ 0; x:K1 ¼ 0 ¼ ∂:K1; IIð Þ
Q 1ð Þ

1 þ 4
� �

Q 1ð Þ
1 þ 6

� �
Kg ¼ 4H2 Q 1ð Þ

1 þ 5
� �

x:Z1K1 þ H�2 Z1:�∂
� �

K1 � xZ1:K1

h i
: IIIð Þ

8>><
>>: ð40Þ
with the solutions
φ1 ¼ � 2
3
Z1:K1;

K1 ¼ �Z2 � x:Z2

x:ξ
�ξ

� �
φ; φ : conformally coupled

Kg ¼ 1
2
H2 3 x:Z1ð ÞK1 � x Z1:K1ð Þ þ H�2 Z1:�∂

� �
K1 � 1

3
D1 Z1:K1ð Þ

	 

:

8>>>>>><
>>>>>>:

ð41Þ

Þ þ 2
�
Z :K ¼ 0; Ið Þ
The solutions are the same as that given in the semi-
physical case.

The general case
In this subsection, I solve the conformally invariant linear-
ized gravitational field equation in its general form, that is

Q 1ð Þ
2 þ 4

� �2
Q 1ð Þ

2 þ 6
� �

Kαβ ¼ 0: ð42Þ

Using ansatz (18) to this general form of the conform-
ally covariant field equation, the two following cases are
distinguishable:

First case

Q 1ð Þ þ 4
� �2

Q 1ð Þ þ 6
� �

φ þ 8 Q 1ð Þ þ 4
� �

Q 1ð Þ þ 2
� �

Z :K þ 4Q 1ð Þ Q 1ð�8>>

0 0 1 0 0 1 1 1 1 1 1

Q 1ð Þ
1 þ 2

� �
K1 ¼ 0; x:K1 ¼ 0 ¼ ∂:K1; Ið

Q 1ð Þ
1 þ 4

� �2
Q 1ð Þ

1 þ 6
� �

Kg ¼ 2H2 x:Z1Q
1ð Þ
1 Q 1ð Þ

1 þ 2
� �

K1 þ Q 1ð Þ
1 Z1:K1 Q 1ð Þ

1 þ 6
� �� �

K1 þ Q 1ð Þ
1 Q 1ð Þ

1 þ 4
� �

x:Z1K1ð Þ þ 4x:Z1 Q 1ð Þ
1 þ 6

� �
K1

h i
Ið

>><
>>>>:

ð43
In this case, we have

φ1 ¼ � 2
3
Z1:K1;

K1 ¼ �Z2φ2 � 1
2
D1 Z2:�∂φ2 þ 2H2 x:Z2ð Þφ2

� �
;

Kg ¼ 1
3
H2 x:Z1ð ÞK1 þ 1

9
D1 Z1:K1ð Þ

	 

:

8>>>>><
>>>>>:

ð44Þ

So, the solutions are the same as that given in the
physical case.
IÞ
IIÞ

Þ
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Second case
Q 1ð Þ
0 þ 4

� �2
Q 1ð Þ

0 þ 6
� �

φ1 þ 8 Q 1ð Þ
0 þ 4

� �
Q 1ð Þ

0 þ 2
� �

Z1:K1 þ 4Q 1ð Þ
1 Q 1ð Þ

1 þ 2
� �

Z1:K1 ¼ 0; Ið Þ
Q 1ð Þ

1 K1 ¼ 0; x:K1 ¼ 0 ¼ ∂:K1; IIð Þ
Q 1ð Þ

1 þ 4
� �2

Q 1ð Þ
1 þ 6

� �
Kg ¼ 2H2 x:Z1Q

1ð Þ
1 Q 1ð Þ

1 þ 2
� �

K1 þ Q 1ð Þ
1 Z1:K1 Q 1ð Þ

1 þ 6
� �� �

K1 þ Q 1ð Þ
1 Q 1ð Þ

1 þ 4
� �

x:Z1K1ð Þ þ 4x:Z1 Q 1ð Þ
1 þ 6

� �
K1

h i
IIIð Þ

8>>><
>>>:

ð45Þ
with the solutions

φ1 ¼ � 2
3
Z1:K1;

K1 ¼ �Z2 � x:Z2

x:ξ
�ξ

� �
φ; φ : conformally coupled

Kg ¼ 1
2
H2 3 x:Z1ð ÞK1 � x Z1:K1ð Þ þ H�2 Z1:�∂

� �
K1 � 1

3
D1 Z1:K1ð Þ

	 

:

8>>>>>><
>>>>>>:

ð46Þ

The solutions are the same as that given in the semi-
physical case.
In summary, so far, we have shown that the general

solution to the conformal field equation can be written
in terms of the physical and semi-physical solutions of
the wave equations. In the next section, we will calculate
the physical and semi-physical two-point functions.

The conformal two-point functions
The physical two-point function
The two-point function Wαβα ' β '(x, x '), which is a solu-
tion of the wave equation with respect to x or x', can be
found simply in terms of the scalar two-point function.
Very similar to the recurrence formula (18), let us try
the following possibility [11]:

W x; x0ð Þ ¼ θθ0W0 x; x0ð Þ þ SS0θ:θ0W1 x; x0ð Þ
þ D2D

0
2Wg x; x0ð Þ; ð47Þ

where W, W1, and Wg are transverse bi-vectors, W0 is
bi-scalar, and D2D'2 =D'2D2. By imposing this two-point
function to obey Equation 20, with respect to x, it is easy
to show that

Q 1ð Þ
0 þ 6

� �
θ0W0 ¼ �4S0θ0:W1; Ið Þ

Q 1ð Þ
1 þ 2

� �
W1 ¼ 0; ∂:W1 ¼ 0; IIð Þ

Q 1ð Þ
1 þ 6

� �
Wg ¼ 2H2S0 x:θ0ð ÞW1 IIIð Þ

8>>><
>>>:

ð48Þ

The solutions to Equation 48 are as follows [11]:

θ0W0 x; x0ð Þ ¼ � 2
3
S0θ0:W1 x; x0ð Þ; ð49Þ
D0
2Wg ¼ 1

3
H2S0

1
9
D1 θ0:W1ð Þ þ x θ0:W1ð Þ

	 

; ð50Þ

W1 x; x0ð Þ ¼ θ:θ0 � 1
2
D1 θ0: ∂þ2H2 x:θ0ð Þ

h i� �
Wmc x; x0ð Þ;

ð51Þ
where Wmc(x, x') is the two-point function for the mass-
less minimally coupled scalar field. In the ‘Gupta-Bleuler
vacuum’ state [19],

Wmc x; x0ð Þ ¼ iH2

8π2
ε x0 � x00
� �

� δ 1� Z x; x0ð Þð Þ þ θ Z x; x0ð Þ � 1ð Þ½ �; ð52Þ

with

ε x0 � x00
� � ¼ 1 x0 > x00;

0 x0 ¼ x00; Z ¼ �H2x:x0

�1 x0 < x00:

8<
:

ð53Þ

The two-point function (47) also satisfies the field equa-
tion (18) with respect to x'; in this case, one can obtain

Q0
0
1ð Þ þ 6

� �
θW0 ¼ �4Sθ:W1; Ið Þ

Q0
1
1ð Þ þ 2

� �
W1 ¼ 0; ∂0:W1 ¼ 0; IIð Þ

Q0
1
1ð Þ þ 6

� �
D2Wg ¼ 2H2S x0:θð ÞW1 IIIð Þ

8>>><
>>>:

ð54Þ

with the solutions [12]

θW0 x; x0ð Þ ¼ � 2
3
Sθ:W1 x; x0ð Þ; ð55Þ

D2Wg ¼ 1
3
H2S

1
9
D0

1 θ:W1ð Þ þ x0 θ:W1ð Þ
	 


; ð56Þ

W1 x; x0ð Þ ¼ θ0:θ � 1
2
D0

1 θ: ∂þ2H2x0:θ
h i� �

Wmc x; x
0ð Þ;

ð57Þ
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where the primed operators act on the primed coordi-
nates only.
Using Equations 49 to 52 in Equation 47, we have

Wαβα0β0 x; x
0ð Þ ¼ �2Z

27 1� Z2ð Þ2 SS
0 1� Z2
� �

3Z2 � 2
� �

θαβθ
0
α0β0

h
þ 3H2 1þ Z2

� �
θ0α0β0 x

0:θαð Þ x0:θβ
� �

þ 3H2 1þ Z2
� �

θαβ x:θ0α0
� �

x:θ0β0
� �

þ 3H4

1� Z2
21� 2Z2 � 3Z4
� �

x:θ0α0
� �

x:θ0β0
� �

� x0:θαð Þ x0:θβ
� �� 2

Z
20þ Z2 � 9Z4
� �

� H2 θα:θ
0
α0

� �
x0:θβ
� �

x:θ0β0
� �

þ 1� Z2
� �

� 11� 9Z2
� �

θα:θ
0
α0

� �
θβ:θ

0
β0

� �
 d
dZ

Wmc Zð Þ;

ð58Þ

where the relation Q0
(1)Wmc = 0 has been used and

d
dZ

Wmc Zð Þ ¼ iH2

8π2

Z � 2
Z � 1

ε x0 � x00
� �

δ Z � 1ð Þ: ð59Þ

It is evident that if one uses Equations 55 to 57 instead
of Equations 49 to 51 in Equation 47, the final result is
none other than Equation 58.
Equation 58 is the explicit form of the physical (trace-

less and divergenceless) two-point function in ambient
space notations. It can be expressed in terms of the dS
intrinsic coordinates [8,11]

Qaba0b0 X;X
0ð Þ ¼ �2

27 1� Z2ð Þ SS
0 Z 3Z2 � 2

� �
gabg

0
a0b0

�
þ 3Z 1þ Z2

� �
g 0a0b0nanb þ gabna0nb0
� �

þ 40þ 32Z � 20Z2 � 6Z3 þ 9Z4 � 9Z5
� �

� nanbna0nb0 þ 40þ 9Z2 þ 9Z4
� �

gaa0nbnb0

þ Z 11� 9Z2
� �

gaa0gbb0
� d
dZ

Wmc x; x0ð Þ;
ð60Þ

which is dS-invariant and free of any divergences.
The two-point functions Wαβα ' β '(x, x ') and Qaba ' b '(X, X ')

are related through

Qaba0b0 X;X
0ð Þ ¼ ∂xα

∂Xa

∂xβ

∂Xb

∂x0α
0

∂X 0a0
∂x0β

0

∂X 0b0 Wαβα0β0 x; x
0ð Þ:
The semi-physical two-point function
Substituting the two-point function (47) in Equation 27
with respect to x, we have

Q 1ð Þ
0 þ 4

� �
θ0W0 ¼ �4S0θ0:W1; Ið Þ

Q 1ð Þ
1 W1 ¼ 0; �∂ :W1 ¼ 0; IIð Þ
Q 1ð Þ

1 þ 4
� �

D0
2Wg ¼ 2H2S0 x:θ0W1½ � IIIð Þ

8>><
>>: ð61Þ

The solution to part II of Equation 61 is [20]

W1 x; x0ð Þ ¼ θ:θ0
Z � 2
1� Z

þ H2 x:θ0ð Þ x0:θð Þ 3� Z

1� Zð Þ2
" #

Wcc x; x0ð Þ;

ð62Þ

in which Wcc is the conformally coupled scalar two-
point function and

Q 1ð Þ
0 � 2

� �
Wcc ¼ 0; ð63Þ

Wcc x; x0ð Þ ¼ � 1
8π

1
1� Z

þ iπε x0 � x00
� �

θ Z � 1ð Þ
	 


; ð64Þ

d
dZ

Wcc x; x0ð Þ ¼ 1
1� Z

Wcc x; x0ð Þ: ð65Þ

In summary, the solution to the above system of equa-
tions is [21]

θ0W0 x; x0ð Þ ¼ � 2
3
S0θ0:W1 x; x0ð Þ ð66Þ

D0
2Wg x; x0ð Þ ¼ 1

3
H2S0

1
9
D1θ

0:þ xθ0:
	 


W1 x; x0ð Þ; ð67Þ

W1 x; x0ð Þ ¼ θ:θ0
Z � 2
1� Z

þ H2 x:θ0ð Þ x0:θð Þ 3� Z

1� Zð Þ2
" #

Wcc x; x0ð Þ:

ð68Þ
The two-point function (47) also satisfies the field equa-

tion (27) with respect to x'; in this case, one can obtain

Q0
0
1ð Þ þ 4

� �
θW0 ¼ �4Sθ:W1; Ið Þ

Q0
1
1ð ÞW1 ¼ 0; ∂0:W1 ¼ 0; IIð Þ

Q0
1
1ð Þ þ 4

� �
D2Wg ¼ 2H2S x0:θð ÞW1 IIIð Þ

8>><
>>: ð69Þ
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with the solutions

θW0 x; x0ð Þ ¼ � 2
3
Sθ:W1 x; x0ð Þ; ð70Þ

D2Wg x; x0ð Þ ¼ 1
2
H2S 3 x0:θð ÞW1 þ H�2θ:�∂W1

�
þ x θ:W1ð Þ � 1

3
D0

1 θ:W1ð Þ�; ð71Þ

and

W1 x; x0ð Þ ¼ θ:θ0
Z � 2
1� Z

þ H2 x:θ0ð Þ x0:θð Þ 3� Z

1� Zð Þ2
" #

Wcc x; x0ð Þ:

ð72Þ

Using Equations 66 to 68 in Equation 47, after some
calculation, we have

Wαβα0β0 x; x
0ð Þ ¼ 2

3 1� Zð Þ3 SS
0 1� Zð ÞðZ2 � 3Z þ 1
� �

θαβθ
0
α0β0

þ H2 Z � 4ð Þθ0α0β0 x0:θαð Þ x0:θβ
� �þ H2 Z � 4ð Þ

� θαβ x:θ0α0
� �

x:θ0β0
� �

þ 3H4

1� Z
�8þ 5Z � Z2
� �

� x:θ0ð Þ x:θ0ð Þ x0:θð Þ x0:θð Þ þ 6 Z2 � 4Z þ 5
� �

� H2 θ:θ0ð Þ x0:θð Þ x:θ0ð Þ þ 1� Zð Þ
� �8þ 9Z � 3Z2
� �

θ:θ0ð Þ θ:θ0ð Þ�Wc:c: x; x
0ð Þ:
ð73Þ

It is evident that if one uses Equations 70 to 72 instead
of Equations 66 to 68 in Equation 47, the final result is
none other than Equation 73. Equation 73 is the explicit
form of the traceless and divergenceless semi-physical
two-point function in the ambient space notations. It can
be expressed in terms of the dS intrinsic coordinates [8,11]

Qaba0b0 X;X
0ð Þ ¼ 2

3 1� Zð Þ2 SS
0 Z2 � 3Z þ 1
� �

gabg
0
a0b0

�
þ Z � 4ð Þ 1þ Zð Þ g 0a0b0nanb þ gabna0nb0

� �
þ 2 �31þ 5Z þ 11Z2 � 3Z3 � 6Z4

� �
� nanbna0nb0 þ 2 1� Zð Þ 23� 21Z þ 6Z2

� �
� gaa0nbnb0 þ �8þ 9Z � 3Z2

� �
gaa0gbb0

�
�Wc:c: x; x

0ð Þ; ð74Þ

which is free of any theoretical divergences.

Conclusions
The conformally invariant linearized gravitational field
equation has been solved in five different cases using
ambient space formalism. It has been shown that the
solution can be written as the product of a generalized
symmetric polarization tensor of rank 2 and a massless
minimally or conformally coupled scalar field in dS
space. The conformally invariant graviton two-point
functions have been calculated using ambient space
notations. It has been shown that the conformally invari-
ant graviton two-point functions can be written in terms
of the two-point functions of the massless minimally or
conformally coupled scalar two-point functions in dS
space. In the case of massless minimally coupled scalar
field, the Krein space quantization has been used to
avoid violation of dS invariance. The two-point functions
are written in terms of dS intrinsic coordinates from
their ambient space counterparts. The results of this
paper may open the road to the quantization of gravita-
tional fields without any theoretical problem.
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