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Abstract

special cases are also discussed.

Nikiforov-Uvarov method

In this paper, the Schrodinger equation is analytically solved for the Coulomb potential with a novel angle-
dependent part. The generalized parametric Nikiforov-Uvarov method is used to obtain energy eigenvalues and
corresponding eigenfunctions. We presented the effect of the angle-dependent part on radial solutions and some
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Introduction

Noncentral potentials have been studied in various
fields of nuclear physics and quantum chemistry,
which may be used to the interactions between the
deformed pair of nuclei and ring-shaped molecules
such as benzene [1-12]. There has been continuous
interest in the solutions of the Schrodinger, Klein-
Gordon, and Dirac equations for some central and
noncentral potentials [13-41]. Yasuk et al. presented
an alternative and simple method for the exact solu-
tion of the Klein-Gordon equation in the presence of
noncentral equal scalar and vector potentials using
the Nikiforov-Uvarov method [42]. A spherically har-
monic oscillatory ring-shaped potential is proposed,
and its exactly complete solutions are presented via
the Nikiforov-Uvarov method by Zhang et al. [43].
Bayrak et al. [44] and Chen et al. [45] presented exact
solutions of the Schrodinger equation with the
Makarov potential using asymptotic iteration method
and partial wave method. Souza Dutra and Hott
solved the Dirac equation by constructing the exact
bound state solutions for a mixing of vector and sca-
lar generalized Hartmann potentials [46]. Kandirmaz
et al,, using path integral method, investigated the co-
herent states for a particle in the noncentral
Hartmann potential [47]. Chen studied the Dirac
equation with the Hartmann potential [48]. A kind of
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novel angle-dependent (NAD) potential is introduced
by Berkdemir [49,50]:

y + Bsin®0 + ysin*0
Vie(6) = sin%0 cos26 ' (1)

Hamzavi and Rajabi also solved the Dirac equation for
Coulomb plus above the NAD potential when the scalar
potential is equal to the vector potential [51]. Very
recently, another kind of NAD potential is introduced by
Zhang and Huang-Fu [52]:

¥ + Bcos®0 + ncos*o

V2o (0) cos26 sin’0

(2)

They solved the Dirac equation for oscillatory potential
under a pseudospin symmetry limit. Therefore, the motiv-
ation of the present work is to solve the Schrodinger equa-
tion with the NAD Coulomb potential:

V(r,0)=———— (3)

A I y+ Bcos’ + ncos*
ro 2u

)

r2 cos20 sin’6

where A = Za, a = ;I—ZC is the fine structure constant, and u

is the reduced mass. In this article, we solve Schrodinger
equation with the NAD Coulomb potential (Equation 3)
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using the generalized parametric Nikiforov-Uvarov method,
and we present the effect of the angle-dependent part on
radial solutions.

Nikiforov-Uvarov method

To solve second-order differential equations, the Nikiforov-
Uvarov method can be used with an appropriate coordinate
transformation s = s(r) [53,54]:

7(s) .
a(s)

Yu(s) + ¥u(s) =0, (4)

where ofs) and ¢(s) are polynomials, at most, of second-
degree, and 7(s) is a first-degree polynomial. The following
equation is a general form of the Schrodinger-like equation
written for any potential [55,56]:

& mmas d S GGl o
ds’ S(l - 0(35) ds [S(l _ “38)]2 ‘|l//n(5) =0.

(5)

According to the Nikiforov-Uvarov method, the
eigenfunctions and eigenenergy function become the
following equations, respectively:

12 7a127m (a10717%7a1071)
w(s) = s"2(1 — ass) % Py, (1 —2ass),

(6)
an— (2n+ 1)as + (2n+1) (./(xg + 6\(3\/0.’_8) )
+n(n—1)az + a7 + 2azag + 2,/agag = 0,
where
1 1
(X4:§(1—(X1), 0[5—5((12—20{3),
ag = ai+ &, a7 = 20405 — &y,
ag = ai + &, a9 = azaz + asas + as,

(8)

and
ai = a1+ 2ay + 2/, an = a — 25 +2(\/@ + a3/35)

a1y = aq + +/ag, a3 = as — (Vao + as/ag).
9)
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In some problems a3 = 0. For this type of problems
when

S 5 BV
a0 l.w3 ap—1

alirr}) P;(q )(1 —ocg)SZLf,mfl (a115),
3—?
(10)
and
Jim (1 — ags) = e, (11)

the solution given in Equation 6 becomes as follows [55,56]:

Y(s) = s e”‘BSLZ“”1 (a115). (12)

Separating variables of the Schrodinger equation with the
noncentral potential

In the spherical coordinates, the Schrodinger equation
with noncentral potential can be written as follows [57]:

_h_2 li 23 +_1 i 33 +—1 B_Q (9 )
2u | r? or "o 72sinf 26 \" "V 58 r2sin®6 o¢’ yino.e

+V(r,0.0)y(r,0.0) = Ey(r,0,9).
(13)

Let us decompose the spherical wave function as follows:

u(r)

lﬂ(i", 0, (P> = TH<9>¢((»D)’ (14)

and also, substituting Equation 3 into Equation 13, we ob-
tain the following equations:

du(r)  [2u A A
e
d m?  y + Bcos?0 + ncost B
sinf d6 (sm@—e)H(G) * [ T sin’0 c0s2 sin’6 ® =0,
(15b)
¢(e) 2
= 1

where ) and m7* are separation constants. It is well known
that the solution of Equation 15c is as follows:

1 .
D) = ——€"Pm =0,£1,£2,....

N (16)

Solution of polar angle part

We are now going to derive eigenvalues and eigenfunctions
of the polar part of the Schrodinger equation, ie.,
Equation 15b, with generalized parametric Nikiforov-
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Uvarov method. Using transformation s = cos™,

Equation 15b becomes the following:

d’H(s) N 1—3s dH(s)
ds? 2s(1—s) ds

1
+ e Zop (sl =s) s —y 65— n)H(5) =

(17)

Comparing Equations 17 and 5, one obtains the
following:

alzl/zv 51:1/4(/"4_’7)3
ay =3/2, & =1/4 —m? - §), (18)
az =1, & =r/4

and
ay = 1/4, as = —1/4,
ag =1/16 4+ 1/4(1 + 1), a; =—1/8—1/4(1 —m* = §),
a3=1/16+%, as = 1/4(m? +y + B+ 1),

o =14y +1/4, ocu:2+(\/m2+y+ﬂ+;7+\/y+1/4),
@ = 1/4+1/2/y + 1/4, a3 =—1/4— 1/2(\/m2+y+ﬁ+t7+ \/y+l/4).
(19)

From Equations 18 and 19 and Equation 7, we obtain
the following:

p] :4(ﬁ+1/2)2+2(2ﬁ+1)[\/m2+y+/3+11+ \/y+1/4}

20/ (m2 +y + B+n)(y +1/4) + m* +2y + B,
(20)
where 7 is a nonnegative integer. For the corresponding

wave functions of the polar part, from non-negative
Equations 6 and 19, we obtain the following:

an
a3 (@o-1,— —ap — 1)
% (1 — 2a35)

Cap— ——

H(s) = s"2(1 — a38) a3 P,
NS VIRV

= /A2y e S)I/Z\/mZJrVﬂngV/Ph( rr +yﬂﬂ)(l — 2s),

(21)
or equivalently
H () = Cin(cos@) /2 VI T (sing)Vrsrtbn — (99)
Pﬁ(\/y+1/4,\ /m2+y+ﬁ+i7) (—cos29),
where G, is the normalization constant.
2u(Za)®
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Solution of the radial equation

For eigenvalues and corresponding eigenfunctions of the
radial part, i.e., solution of Equation 15a, we rewrite it as
follows:

dz 1 /
%@-}-r—z(—sﬂ—l—Ar—A)u(”):O (23)
Where £ = —%E and A, - i_/;A'

Again, comparing Equations 23 and 5 leads to the
following:

ap =0, & =¢,
a =, L =4, (24)
as 07 53 :/la
and
0’4:1/2, (X5:0,
ag =&, a; = A,
ag =4 +1/4, ay = &,
awp=1++/1 +1/4~, 0{11:2\/57
(X12:1/2+\//l+1/4, 6(13:—\/5.
(25)

The energy eigenvalues of the radial part can be
obtained from Equations 24 and 25 and Equation 7 as
follows:

2uA?
E= # (26)

_h2(2n+1+2\/m)2

where 7 is the nonnegative integer. Although one can
immediately obtain energy eigenvalues of Equations 15a
or 23 from hydrogen problem, here, we have tried the
Nikiforov-Uvarov method to show the simplicity of
usage of the mentioned method. To find the corre-
sponding radial eigenfunctions, we refer to Equations 11
and 25, and then we obtain the following:

u(r) = "2 L2 (ayg5)

_ rl/”‘/“1/46_\/5%)/“1/4(2\/57«). (27)

For effect of the angle-dependent part on radial solu-
tions, we substitute Equation 20 into Equation 27, and
we obtain the following:

s (28)

nam

Wl 2n+1+2

{47+ 1/2)° + 2027 + 1) [/ Ty + B+ 7+ /y +1/4]

+20/(m2 +y +B+n)(y + 1/4) + m* + 2y + f+ 1/4}
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When y = 5 = 0, the potential (Equation 3) reduces to
the Hartmann potential, and the energy eigenvalues can
be obtained as follows [58]:

u(Za)®

Enil‘m - - 3
2% (n+ \/m2 + B+7+1)

(29)

Also, when y = 8 = 5 = 0, the potential (Equation 3)
reduces to the Coulomb potential, and the energy eigen-
values in Equation 28 reduces to the following [57]:

u(Za)? 1uZ%*
E ==_222 —__F 30
(Coulomb) 2;12}’1,2 22 42 ( )
where n/=n+l+1landl=27+m+ 1.
Finally, we can write y(r, 6, @) as follows:
u(r
v(r.0.0) =" H(0)0(9)
Cutim L HL e 2\
=——7 2 e VETL, i(2Ve2r
/27T ( )
x ( cos@)””m ( sin@)\/m
Ph( Ve B) (— cos26)e™?.
(31)

where Cj,, is the normalization constant.

Conclusions

We have studied the exact solutions of the Schrodinger
equation with the Coulomb plus, a novel angle-
dependent potential, using the generalized parametric
Nikiforov-Uvarov method. It can be found that this
method is a powerful mathematical tool for solving
second-order differential equations. The bound-state en-
ergy eigenvalues and the corresponding wave functions
are obtained. We point that these results may have inter-
esting applications in the study of different quantum
mechanical systems and atomic physics [1,2,59,60] and,
two special cases, ie., Hartmann potential and pure
Coulomb potential, were also discussed.
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