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Abstract A theory of self-fields in a one-dimensional

helical wiggler free electron laser with ion-channel guiding

and axial magnetic field is presented. The steady-state

orbits under the influence of self-field are derived and

discussed. The U function that determines the rate of

change of axial velocity with energy is derived. The

numerical results show the effects of self-fields and the two

electron-beams guiding devices (ion-channel and axial

magnetic field) on the trajectories when used separately

and simultaneously. The study shows that new unstable

orbits, in the first part of the group I and II orbits, are

found. A detailed stability analysis of orbits is presented.

Keywords Free-electron laser � Self-fields � Ion-channel �
Axial magnetic field � Steady-state orbits

Introduction

A Raman free-electron laser (FEL) produces coherent

radiation by passage of a cold intense relativistic electron

beam through a wiggler magnetic field which is spatially

periodic along the beam axis. Since a high density and low

energy electron beam is required in Raman regime, an axial

magnetic field or ion-channel is usually employed to focus

on the beam. The steady-state trajectories for the electron

in a FEL with an axial magnetic field and one-dimensional

or three-dimensional helical wiggler were studied [1–5].

The trajectories in the one-dimensional idealized wiggler

are valid for particles near the axis (i.e. r\\kw).

Ion-channel guiding as an alternative to the conventional

axial magnetic field guiding [6–8], was first proposed for

use in FELs by Takayama and Hiramatsu [9]. Experimental

results of a FEL with ion-channel guiding have been

reported by Ozaki et al. [10]. Jha and Wurtele [11]

developed a three-dimensional code for FEL simulation

that allows for the effects of an ion-channel. The trajectory

of an electron and gain in a combined idealized helical

wiggler and ion-channel was studied [12–14]. FEL with

realizable helical wiggler and ion-channel guiding was

studied in Refs. [15] and [16].

In Raman regime, equilibrium self-electric and self-

magnetic fields have significant effects on the steady-state

orbits. It has been shown that self-field can induce chaos in a

helical FEL [17–20]. The self-fields in a FEL with helical

wiggler and axial magnetic field have been treated in both

linear [21] and nonlinear [22] theory. The effects of self-

fields on the stability of steady-state trajectories were studied

in a FEL with a one-dimensional helical wiggler and axial

magnetic field [23, 24] or ion-channel guiding [25, 26].

In recent years, electron trajectories and gain in a planar and

helical wiggler FEL with ion-channel guiding and axial mag-

netic field were studied, detailed analysis of the stability and

negative mass regimes were considered [27–29]. The purpose

of this paper is to study the effects of the self-fields on electron

trajectories in a FEL with ion-channel guiding and axial mag-

netic field. This work is organized as follows: In ‘‘Steady-state

orbits’’ steady-state trajectories are obtained in the absence of

self-fields. In ‘‘Self-field calculation and steady-state orbits in

the presence of self-fields’’, self-fields are calculated using

Poisson’s equation and Ampere’s law. Equilibrium orbits are

found under the influence of self-fields. Limiting forms for

cases with only one type of guiding (ion-channel or solenoidal)

are also presented. Then, an equation is derived for the function

U. In ‘‘Numerical studies’’, the results of a numerical study
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based on the equations derived are presented. The last section,

is reserved to the conclusions. In ‘‘Appendix’’, a stability ana-

lysis of steady-state trajectories has been performed.

Steady-state orbits

The evolution of the motion of a single electron in a FEL is

governed by the relativistic Lorentz equation

d cmvð Þ
d t

¼ �e Ei þ
1

c
v � Bw þ B0 ezð Þ

� �
; ð1Þ

where Ei is the transverse electrostatic field of an ion-

channel and it can be written as

Ei ¼ 2peni x x̂ þ y ŷð Þ; ð2Þ

and Bw is the idealized helical wiggler magnetic field and

can be described by

Bw ¼ Bw x̂ cos kwz þ ŷ sin kwzð Þ; ð3Þ

and B0 is the axial static magnetic field. Here, Bw denotes

the wiggler amplitude, kw ¼ 2p=kwð Þ is the wiggler wave

number, kw is the wiggler wavelength (period), ni is the

density of positive ions having charge e.

By assuming a relativistic electron moving along the

z axis of a helical wiggler magnetic field and separating

into components, we can write Eq. (1) as

d cmvxð Þ
d t

¼ �2p ni e
2 x � e

c
B0 vy � vz Bw sin kwz
� �

; ð4Þ

d cmvy

� �
d t

¼ �2p ni e
2 y � e

c
�B0 vx þ vz Bw cos kwzð Þ; ð5Þ

d cmvzð Þ
d t

¼ � e

c
vy Bw cos kwz � vx Bw sin kwz

� �
; ð6Þ

where c is the relativistic factor. Steady-state solutions are

obtained by requiring that vz ffi vjj ¼ constant, x� sin kwz,

and y� cos kwz. In this manner, steady-state solutions of

the form vx ¼ vw cos kwz and vy ¼ vw sin kwz, where

vw ¼
kwv2

jj Xw

x2
i þ kwvjj X0 � kwvjj

� � ; ð7Þ

xi ¼ 2pnie
2
�
c m

� �1=2
, is the ion-channel frequency and

X0 ;w ¼ eB0;w

�
cmc, are the cyclotron frequencies due to

the axial guide and wiggler magnetic fields.

The self-electric and self-magnetic fields are induced by

the steady-state charge density and current of the non-

neutral electron beam. In order to model these self-fields,

the assumption of a homogeneous electron density profile

has been made,

nb rð Þ ¼
nb ¼ const: r � rb

0 r [ rb;

(
ð8Þ

where nb is the number density of the electrons and rb is the

beam radius.

Self-field calculation and steady-state orbits

in the presence of self-fields

The self-electric field can be obtained by Poisson’s equation

E sð Þ ¼ �2penb r r̂ ¼ �2penb x x̂ þ y ŷð Þ: ð9Þ

The self-magnetic field is obtained by Ampere’s law,

r� B ¼ 4p
c

Jb; ð10Þ

where Jb ¼ �enb v? þ vjj êz

� �
is the beam current density

and v? is the transverse velocity. The Eq. (10) can be

solved by using the methods used in Ref. [20] (or Refs.

[24] and [25]) in cylindrical coordinates. This yield

B 1ð Þ
s ¼ Bsjj þ B 1ð Þ

sw ; ð11Þ

where

Bsh ¼ �2penb

vjj
c

r êh ¼ 2penb

vjj
c

y x̂ � x ŷð Þ; ð12Þ

B 1ð Þ
sw ¼

2x2
b v2

jj

.
c2

� �
x2

i þ kwvjj X0 � kwvjj
� �Bw; ð13Þ

and xb ¼ 2pnbe2
�
cm

� �1=2
. The self-magnetic field

induced by transverse velocity B 1ð Þ
sw , which is generated by

the wiggler magnetic field, is known as wiggler induced

self-magnetic field that is proportional to the wiggler

magnetic field. The total new magnetic field up to first-

order correction, may be written as

B 1ð Þ ¼ Bw þ B 1ð Þ
s þ B0 êz

¼ k 1ð Þ Bw þ 2penb

vjj
c

y x̂ � x ŷð Þ þ B0 êz; ð14Þ

where

k 1ð Þ ¼ 1 þ
2x2

b v2
jj

.
c2

� �
x2

i þ kwvjj X0 � kwvjj
� � : ð15Þ

So, the Eqs. (4–6) can be solved by considering the self-

electric and self-magnetic fields by first-order correction.

Therefore, the transverse velocity can be obtained by first-

order correction which produces a new self-magnetic field

B 2ð Þ
sw ¼ K k 1ð ÞBw, where

K ¼
2x2

b v2
jj

.
c2

� �
x2

i þ kwvjj X0 � kwvjj
� � : ð16Þ

and cjj ¼ 1 � v2
jj

.
c2

� ��1=2

. This process may be continued

to find the higher order terms. Finally, the total wiggler-

induced magnetic field becomes

128 Page 2 of 9 J Theor Appl Phys (2014) 8:128

123



Bsw ¼ lim
n!1

B nð Þ
sw ¼ K kBw; ð17Þ

where

k ¼ lim
n!1

k nð Þ

¼ lim
n!1

Xn�1

i¼0

Ki þ lim
n!1

2x2
b v2

jj

.
c2

� �
x2

i þ kwvjj X0 � kwvjj
� �Kn: ð18Þ

If the absolute value of K is \1, then the series in

Eq. (18) will converge to 1= 1 � Kð Þ, and the last term in

the right-hand side will goes to zero. In this case, Eq. (18)

may be expressed in the following form

k ¼
x2

i � x2
b c�2

jj þ kwvjj X0 � kwvjj
� �

x2
i � x2

b 1 þ v2
jj

.
c2

� �h i
þkwvjj X0 � kwvjj

� � : ð19Þ

The equation of motion of a electron, in the presence of

self-fields E sð Þ, B
sð Þ

h , and B sð Þ
w , may be written as

dvx

d t
¼ � x2

i � x2
b 1 �

vjj vz

c2

� �h i
x þ k Xw sin kwz � X0 vx;

ð20Þ
dvy

d t
¼ � x2

i � x2
b 1 �

vjj vz

c2

� �h i
y � k Xw cos kwz þ X0 vy;

ð21Þ

dvz

d t
¼ k Xw vy cos kwz � vx sin kwz

� �
þ

x2
b vjj

2c2
vxx þ vyy
� �

:

ð22Þ

Assuming solutions of the form x� sin kwz and

y� cos kwz and vz ffi vjj, we will find the steady-state

solutions vx ¼ vw cos kwz and vy ¼ vw sin kwz, where

vw ¼
kwv2

jj Xw

x2
i � x2

b 1 þ v2
jj

.
c2

� �h i
þkwvjj X0 � kwvjj

� � : ð23Þ

It should be noted that the assumption of constant c is

consistent with the on-axial helical orbits that have a

constant radius and, therefore, a constant kinetic energy.

Equation (23) shows resonant enhancement in the magni-

tude of the transverse velocity when

x2
i � x2

b 1 þ v2
jj

.
c2

� �h i
þ kwvjj X0 � kwvjj

� �
� 0: ð24Þ

Steady-state trajectories may be classified according to

the type of guiding. There are three main categories:

1. When the value of axial magnetic field is zero X0 ¼ 0ð Þ;
that is, a FEL with a helical wiggler and an ion-channel

guiding. In this type of guiding Eq. (23) becomes,

vw ¼
kwv2

jj Xw

x2
i � x2

b 1 þ v2
jj

.
c2

� �h i
�k2

wv2
jj

: ð25Þ

This type of guiding, was studied in the absence of

self-fields in Refs. [12–14] and in the presence of self-

fields in Refs. [25] and [26].

2. When the density of positive ions is zero xi ¼ 0ð Þ; that

is, a FEL with a helical wiggler and an axial magnetic

field. In this type of guiding Eq. (23) becomes,

vw ¼
kwv2

jj Xw

kwvjj X0 � kwvjj
� �

� x2
b 1 þ v2

jj

.
c2

� �h i : ð26Þ

This type of guiding, was studied in the absence of

self-fields in Refs. [1–3] and in the presence of self-

fields in Refs. [23] and [24].

3. When both the ion-channel and the axial magnetic field

are present; that is, a helical wiggler FEL with an ion-

channel and an axial magnetic field. When both types

of guiding are present, vw is given by Eq. (23). This

case contains three types: (a) two guiding frequencies

are taken to be equal (X0 ¼ xi), (b) the ion-channel

frequency is taken to be constant, (c) the axial

magnetic field frequency is taken to be constant.

U function is defined as the variation of the axial

velocity divided by the electron energy. By substitut-

ing the value of vw in the relation of the conservation

law of energy c ¼ 1 � v2
jj=c2 � v2

w

�
c2, we obtain

1

c2
¼ 1�

v2
jj

c2

�
k2

wv4
jj X

2
w

x2
i �x2

b 1þ v2
jj

.
c2

� �h i
þ kwvjj X0 � kwvjj

� �n o2
:

ð27Þ

Implicit differentiation of this equation leads to

dvjj
dc

¼ c2

cc2
jjvjj

U; ð28Þ

where cjj ¼ 1 � v2
jj

.
c2

� ��1=2

and

U ¼ 1 �
b2

w x2
i � x2

b

� �
1 þ c2

jj

� �
þ kwvjjX0c2

jj � vjj
�

c
� �4

x2
b c2

jj

h i

x2
i 1 þ 2b2

w

� �
þ kwvjjX0 1 þ b2

w

� �
� x2

b 1 þ 2b2
w

� �
� k2

wv2
jj � vjj

�
c

� �2
x2

b

: ð29Þ
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In the absence of an axial static magnetic field

X0 ¼ 0ð Þ, we have

U ¼ 1 �
b2

w x2
i � x2

b

� �
1 þ c2

jj

� �
� vjj

�
c

� �4
x2

b c2
jj

h i

x2
i 1 þ 2b2

w

� �
� x2

b 1 þ 2b2
w

� �
� k2

wv2
jj � vjj

�
c

� � 2
x2

b

;

ð30Þ

and in the absence of ion-channel xi ¼ 0ð Þ, we have

U ¼ 1 �
b2

w kwvjjX0c2
jj � x2

b 1 þ c2
jj

� �
þ� vjj

�
c

� �4
x2

b c2
jj

h i

kwvjjX0 1 þ b2
w

� �
� x2

b 1 þ 2b2
w

� �
� k2

wv2
jj � vjj

�
c

� �2
x2

b

;

ð31Þ

where bw ¼ vw

�
vjj.

Numerical studies

In this section, a numerical study the effects of self-fields

on steady-state relativistic electron trajectories in a FEL

with a helical wiggler magnetic field in the presence of an

axial magnetic field and/or an ion-channel is presented. For

numerical calculations, parameters are kw ¼ 3:14 cm,

c0 ¼ 3, Bw ¼ 1 kG, and nb ¼ 1012cm�3. A six-order poly-

nomial equation is obtained for vjj
�

c by Eq. (27). There are

six roots for vjj
�

c for any sets of parameters and only the

three real positive roots will be considered here. The

steady-state trajectories may be divided into two classes

corresponding to the cases in which: vw\0 referred to as

group I, and vw [ 0 referred to as group II. The stability of

steady-state orbits is investigated in ‘‘Appendix’’.

When values of X0=kwc and xi=kwc are equal

Figure 1 shows vjj
�

c as a function of the normalized ion-

channel frequency, that is equal to the normalized axial

magnetic field frequency xi ¼ X0ð Þ. Group I and Group II

orbits are defined by the conditions X0 ¼ xið Þ\kw vjjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 þ 4 x2

b

�
k2

wc2
� �

1 þ v2
jj

.
c2

� �r
� 1


 ��
2 and X0 ¼ð

xiÞ[ kw vjj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 þ 4 x2

b

�
k2

wc2
� �

1 þ v2
jj

.
c2

� �r
� 1


 ��
2,

respectively. Dotted lines show the unstable trajectories

that are investigated in ‘‘Appendix’’. The results in the

absence of self-fields are shown for comparison, with cir-

cles lines. The main discrepancy in the presence of the self-

fields is found for the first part of the group I orbits, with

0\ xi ¼ X0ð Þ=kwc\0:17, and the first part of the group II

orbits, which exhibit an orbital instability not found in the

absence of the self-fields. The first part of the group I orbits

is important in experiments with FELs, while, the first part

of the group II orbits is not important. Because, injection

into the first part of the group II orbits has two problems.

First, electrons exhibit strong oscillations about their steady

state orbit value, and second, the transverse orbit excur-

sions are large due to their large transverse velocity. Fig-

ure 1 shows that minimum value of the ion-channel density

(or the axial magnetic field) is required for the stability in

group I. The variation of xmin
i (or Xmin

0 ) with the electron

density, for group I orbits, is shown in Fig. 2. To explain

Fig. 2, it should be noted that by increasing the beam

density nbð Þ and the kinetic energy of electron cð Þ, the self-

fields increase, therefore, a stronger ion-channel density (or

axial magnetic field) is required for the onset of instability.

The variation of factor k with the normalized ion-

channel frequency, that is equal to the normalized axial

magnetic field frequency, is shown in Fig. 3. Dotted lines

show the unstable orbits. As this figure shows, for the upper

branch of the group I orbits, k is below unity and acts as a

diamagnetic correction to the wiggler magnetic field. The

magnitude of the diamagnetic effect for stable orbits

increases gradually with increasing the normalized ion-

channel frequency (or the normalized axial magnetic field).

In group II orbits, k is above unity and acts as a para-

magnetic correction to the wiggler magnetic field. When

ni or B0ð Þ ! 1, the value of k approaches to unity,

therefore, the defocusing effect of self-fields is negligible

in comparison with the strong focusing effect of the ion-

channel (or the axial magnetic field) for a high density ion-

channel (or axial magnetic field).

Figure 4 shows U as a function of the normalized ion-

channel frequency which is equal to the normalized axial

magnetic field. Dotted lines show the unstable orbits. In

Fig. 4, for group I orbits, U increases monotonically from

unity at zero of the guiding frequency and exhibits a sin-

gularity at the transition to orbit instability. The behavior of

Fig. 1 Axial velocity vjj
�

cas a function of the normalized axial

magnetic field frequency that is equal to the ion-channel frequency.

With self-field (solid lines); without self-field (circles lines); unstable

orbits (dotted lines)
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U for the group II orbits is interesting, since it is negative.

This implies the existence of a negative-mass regime in

which the axial velocity increases with decreasing energy.

When values of X0=kwc is held constant

Figure 5 shows vjj
�

c as a function of the normalized ion-

channel frequency xi=kwc in the presence of an axial mag-

netic field when X0=kwc ¼ 0:4. Group I and Group II orbits

are defined by the conditions x2
i \x2

b 1 þ v2
jj

.
c2

� �h i
�

kwvjj X0 � kwvjj
� �

and x2
i [ x2

b 1 þ v2
jj

.
c2

� �h i
� kwvjj

X0 � kwvjj
� �

, respectively. Dotted lines show the unstable

orbits. The results in the absence of self-fields are shown for

comparison, with circles lines. In the presence of the self-

fields, the first part of the group II orbits is unstable. So, when

value of X0=kwc is\0.371, the first part of the group I orbits

is unstable. The reason is that values of the ion-channel

density and axial magnetic field are small and can not focus

the electron beam. Ion-channel focusing, in a FEL, can take

place under the Budker condition (nb [ ni [ [ nb

�
c2

0). Ion-

channel is produced by passing beam with density of nb

through the preionized plasma with density of ni. The con-

dition nb [ ni is necessary for the complete expulsion of the

plasma electrons by the electron beam. In this paper, the

density of electron beam is taken at nb ¼ 1012cm�3, there-

fore, the density of the electron beam is larger than the ion-

channel density for the group I orbits. The group II orbits

require electron densities, which are not attainable in

Fig. 2 Variation of ðxmin
i ¼ Xmin

0 Þ
�

kwc with electron density nb for

group I orbits

Fig. 3 Variation of factor k with the normalized axial magnetic field

frequency that is equal to the ion-channel frequency. Unstable orbits

(dotted lines)

Fig. 4 Graph of function U versus the normalized axial magnetic

field frequency that is equal to the ion-channel frequency. Unstable

orbits (dotted lines)

Fig. 5 Axial velocity vjj
�

cas a function of the normalized ion-

channel frequency xi=kwc in the presence of an axial magnetic field

for X0=kwc ¼ 0:4. With self-field (solid lines); without self-field

(circles lines); unstable orbits (dotted lines)
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relativistic electron beams. This limitation can be overcome

by using laser-produced ion-channels with higher densities

of orders of magnitude.

Figure 6 shows vjj
�

c as a function of the normalized

ion-channel frequency xi=kwc in the presence of an axial

magnetic field when X0=kwc ¼ 0:4; 0:8; 1:2. Dotted lines

show the unstable orbits. Figure 6 also shows how group I

and group II orbits are affected by the change in the nor-

malized axial magnetic field frequency. When the nor-

malized axial magnetic field frequency X0=kwc is higher

than 1.25, group I orbits are eliminated. Figure 7 shows

factor k as a function of the normalized ion-channel fre-

quency xi=kwc in the presence of an axial magnetic field

when X0=kwc ¼ 0:4. Dotted lines show the unstable orbits.

As Fig. 3, it can be seen that for the upper branch of the

group I orbits, k is below unity (diamagnetic effect) while

for the group II orbits, k is above unity (paramagnetic

effect). Figure 8 shows U as a function of the normalized

ion-channel frequency xi=kwc in the presence of an axial

magnetic field which is constant with X0=kwc ¼ 0:4.

When values of xi=kwc is held constant

Figure 9 shows vjj
�

c as a function of the normalized axial

magnetic field frequency X0=kwc in the presence of an ion-

channel when xi=kwc ¼ 0:4. Group I and Group II orbits

are defined by the conditions X0\ �x2
i þ



1 þ v2

jj

.
c2

� �
þ

k2
w v2

jj	
.

kw vjj and X0 [ �x2
i þ 1 þ v2

jj

.
c2

� �
þ

h
k2

w v2
jj	
.

kw vjj, respectively. Dotted lines show the unstable orbits.

The results in the absence of self-fields are shown for

comparison, with circles lines. In the presence of the self-

fields, the lower branch of the group II orbits is unstable. In

this case, when value of xi=kwc is\0.185, the first part of

the group I orbits is unstable. Figure 10 shows vjj
�

c as a

function of the normalized axial magnetic field frequency

X0=kwc in the presence of an ion-channel when xi=kwc ¼
0:4; 0:6; 0:8. Dotted lines show the unstable orbits. Fig-

ure 10 also shows how group I and group II orbits are

affected by the change in the normalized ion-channel fre-

quency. Group I orbits is eliminated, when the normalized

ion-channel frequency xi=kwc is higher than 1.03. Fig-

ure 11 shows factor k as a function of the normalized axial

magnetic field frequency X0=kwc in the presence of an ion-

channel when xi=kwc ¼ 0:4. Dotted lines show the unsta-

ble orbits. Figure 12 shows U as a function of the nor-

malized axial magnetic field frequency X0=kwc in the

Fig. 6 Axial velocity vjj
�

c as a function of the normalized ion-

channel frequency xi=kwc in the presence of an axial magnetic field

for X0=kwc ¼ 0:4 (solid lines), X=kwc ¼ 0:8 (circles lines), and

X0=kwc ¼ 1:2 (triangles lines). Unstable orbits (dotted lines)

Fig. 7 Variation of factor k with the normalized ion-channel

frequency xi=kwc in the presence of an axial magnetic field for

X0=kwc ¼ 0:4. Unstable orbits (dotted lines)

Fig. 8 Graph of function U versus the normalized ion-channel

frequency xi=kwc in the presence of an axial magnetic field for

X0=kwc ¼ 0:4. Unstable orbits (dotted lines)
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presence of an ion-channel which is constant with

xi=kwc ¼ 0:4.

Conclusion

It this paper, the steady-state electron trajectory for a

helical wiggler FEL with the axial magnetic field and the

ion-channel guiding in the presence of self-fields has been

analyzed numerically. A six-degree polynomial equation is

obtained for the axial velocity. Also, an equation for the

function U is obtained, which determines the variation of

axial velocity divided by the electron energy. The chosen

parameters for this system are characterized by kw ¼
3:14 cm, c0 ¼ 3, nb ¼ 1012 cm�3and Bw ¼ 1 kg. The nec-

essary and sufficient conditions for orbit stability have been

established. For this condition, we have considered varia-

tion of the relativistic factor c in the stability analysis of

orbits. It was shown that self-fields can make parts of the

steady-state orbits unstable. Numerical calculations are

made to illustrate the effects of the two electron-beam

guiding devices on the trajectories when applied separately

and simultaneously in the presence of self-fields.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.

Fig. 10 Axial velocity vjj
�

c as a function of the normalized axial

magnetic field frequency X0=kwc the presence of an ion-channel for

xi=kwc ¼ 0:4 (solid lines), xi=kwc ¼ 0:6 (circles lines), and

xi=kwc ¼ 0:8 (triangles lines). Unstable orbits (dotted lines)

Fig. 9 Axial velocity vjj
�

c as a function of the normalized axial

magnetic field frequency X0=kwc in the presence of an ion-channel for

xi=kwc ¼ 0:4. With self-field (solid lines); without self-field (circles

lines); unstable orbits (dotted lines)

Fig. 11 Variation of factor k with the normalized axial magnetic

field frequency X0=kwc in the presence of an ion-channel for

xi=kwc ¼ 0:4. Unstable orbits (dotted lines)

Fig. 12 Graph of function U versus the normalized axial magnetic

field frequency X0=kwc in the presence of an ion-channel for

xi=kwc ¼ 0:4. Unstable orbits (dotted lines)
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Appendix: Orbits stability analysis

The Hamiltonian of a single electron H ¼ cmc2 þ
pe2 nb � nið Þ x2 þ y2ð Þ shows that energy is a constant of

motion but c changes with distance from the axis c. For

orbit stability analysis we need to perturb the trajectory,

which changes the distance from the axis leading to

changes in the relativistic factor c.

Transforming to a frame rotating with the wiggler field,

we define

ê1 ¼ x̂ cos kwz þ ŷ sin kwz

ê2 ¼ �x̂ sin kwz þ ŷ cos kwz

ê3 ¼ z;

8<
: ð32Þ

and write the equation of motion of the electron as

follows:

€x1 ¼ � x2
i � x2

b 1 �
vjj vz

c2

� �
þ kwvjj X0 � kwvjj

� �h i
x1

þ 2kwv3 � X0ð Þ _x2 þ kw _v3x2

þ x2
i

c2
_x1x1 þ _x2x2ð Þ _x1 � kwv3x2ð Þ; ð33Þ

€x2 ¼ � x2
i � x2

b 1 �
vjj vz

c2

� �
þ kwvjj X0 � kwvjj

� �h i
x2

� Xw v3 þ X0 � 2kwv3ð Þ _x1 � kw _v3x1

þ 1

c2
x2

i � x2
b

� �
_x1x1 þ _x2x2ð Þ _x2 þ kwv3x1ð Þ; ð34Þ

€x3 ¼ kXw _x2 þ kwv3x1ð Þ þ x2
i

c2
_x1x1 þ _x2x2ð Þ v3 ; ð35Þ

where dots represent differentiation with respect to time,

and dc=dt is substituted from the following equation

dc
d t

¼ � e

mc2
v � Eð Þ ¼ � c

c2
x2

i � x2
b

� �
x1 _x1 þ x2 _x2ð Þ; ð36Þ

The steady-state orbits are obtained by requiring the

double derivates to be zero, this will yield

x10 ¼ _x10 ¼ _x20 ¼ 0;

x20 ¼ �kXwv30 x2
i � x2

b c�2
jj þ kwv30 X0 � kwv30ð Þ

h i�1

;

_x30 ¼ const:

ð37Þ

Velocity components of the steady state orbits can also

be shown to be v1 0 ¼ vw, v20 ¼ 0 and v30 ¼ vjj with vw

given by Eq. (23).

Stability analysis is performed by assuming small pertur-

bations of steady-state solutions as x1 ¼ dx1; _x1 ¼ d _x1; x2 ¼
x20 þ dx2; _x2 ¼ d _x2; _x3 ¼ v3 ¼ v30 þ dv3, and c ¼ c0þ d c.

Equations (33)–(35) can now be linearized to obtain

d €x1 ¼ � x2
i � x2

b c�2
jj þ kwv30 X0 � kwv30ð Þ

h i
dx1

þ 2kwv30 � X0 � x2
i � x2

b

� �
kw v3 0 x2

2 0

�
c2


 �
d _x2

þ kwd _v30x20; ð38Þ

d €x2 ¼ � x2
i � x2

b c�2
jj þ kwv30 X0 � kwv30ð Þ

h i
dx2

þ x2
i � x2

b c�2
jj þ X0kwv30

� �
x20 þ k Xwv30

h i
dc=cð Þ

þ X0 � 2kwv30ð Þ d _x1

þ 2x2
b vjj

�
c2 � kw X0 þ 2k2

wv30

� �
x20 � k Xw


 �
dv3;

ð39Þ

d €x3 ¼ kXw þ x2
i

c2
v3 0x2 0

� �
d _x2 þ k Xw kw v3 0 dx1 : ð40Þ

The quantities dc=c0 and dk can be calculated as

follows:

dc
c0

¼ c2
0

c2
v1 0 d _x1 � kw v3 0 v1 0 dx2 þ v3 0 � kw x2 0 v1 0ð Þ dv3½ 	 ;

ð41Þ

dk ¼ B1 � kB3=B5ð Þdv3 þ c2
0

�
c2

� �
B2 � kB4=B5ð Þ

� v10d _x1 � kwv30v10dx2 þ v30 � kwx20v10ð Þ½ 	

where B1 ¼ 2x2
b vjj

�
c

� �
þ X0 � 2kwvjj, B2 ¼ �x2

i þ
x2

b c�2
jj � kwvjjX0, B3 ¼ �2x2

b vjj
�

c
� �

þ X0 � 2kwvjj, B4 ¼

�x2
i þx2

b 1 þ v2
jj

.
c2

� �h i
� kwvjjX0, and B5 ¼ x2

i �x2
b

1 þ v2
jj

.
c2

� �h i
þ kwvjj X0 � kwvjj

� �
.

Differentiating between Eqs. (38) and (39) with respect

to time and using Eq. (26) and its time derivation, the

following two coupled equations can be obtained:

dx1 ¼ �Pd _x1 þ Q d €x2 ; ð42Þ
dx2 ¼ �Rd _x2 � S d €x2 þ T dx1; ð43Þ

where

P ¼ x2
i � x2

b c�2
jj þ kwv30 X0 � kwv30ð Þ � kXwk2

wv30x20;

ð44Þ

Q ¼ 2kwv30 � X0 � x2
i � x2

b

� �
kw v3 0 x2

2 0

�
c2

þ kwx2 kXw þ x2
i v30x20

�
c2

� �
; ð45Þ

R ¼ x2
i � x2

b c�2
jj þ kwv30 X0 � kwv30ð Þ

þ c2
�

c2
� �

D1kw v3 0 v10 � Xwv2
jjkwv10 B2 � kB4=B5ð Þ

h i

� D2 kXw þ x2
i v30x20

�
c2

� �
; ð46Þ

S ¼ c2
�

c2
� �

�D1 v10 þ Xwv30 B2 � kB4=B5ð Þ½ 	 � X0

þ 2kwv30; ð47Þ

T ¼ D2 k Xwkwv30; ð48Þ

and

D1 ¼ x2
i � x2

b c�2
jj þ X0 kwv30

� �
x20 þ kXwv30 ð49Þ
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D2 ¼ c2
�

c2
� �

v30 � kwx20v10ð ÞD1

þ 2x2
bvjj

�
c2 � kwX0 þ 2k2

wv30

� �
x20 � k Xw

� Xwvjj B1 � kB3=B5ð Þ½
þ c2

�
c2

� �
v30 � kwx20v10ð Þ B2 � kB4=B5ð Þ; ð50Þ

The necessary condition for stability of the electron

orbit may be obtained by assuming that all displace-

ments (oscillating with the same frequency) are represented by

dxj ¼ Aje
ix t; j ¼ 1; 2; 3 ; ð51Þ

where Aj is the complex amplitude. Equations (28) and (29)

lead to the following two algebraic equations:

i x3 � xP
� �

A1 � x2QA2 ¼ 0 ; ð52Þ

x2S þ T
� �

A1 þ i x3 � xR
� �

A2 ¼ 0 : ð53Þ

The necessary and sufficient condition for a nontrivial

solution consists of the determinant of coefficients in

Eqs. (51) and (52) equated to zero. Imposing this condition

yields

x4 þ QS þ P þ Rð Þx2 þ PR � QTð Þ ¼ 0 : ð54Þ

This is a quadratic equation is x2, and the system will be

stable if both roots are real and positive. The stability

conditions are, therefore, given by

P þ R þ QSð Þ2�4 PR � QTð Þ[ 0;
P þ R þ QSð Þ[ 0;
PR � QTð Þ[ 0:

8<
: ð55Þ

Dotted lines in figures show the unstable parts of the

trajectories.
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