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Abstract

A new application of variational Monte Carlo method is presented to study the helium atom under the
compression effect of a spherical box with radius (rc). The ground-state energies of the helium atom were
calculated for different values of rc. Our calculations were extended to include Li+ and Be2+ ions. The calculations
were based on the use of a compact accurate trial wave function with five variational parameters. To optimize
variational parameters, we used the steepest descent method. The obtained results are in good agreement with
previous results.
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Background
Confined atoms are excellent examples of how problems
in theoretical physics can be rediscovered from time to
time and modified in the light of experiment. Confined
atoms were initially considered from two rather different
perspectives: first is the study of atoms under extremely
high pressures; the second, the nature of atoms inside a
solid. The confinement of a particle in a potential is of
course a problem of quantum mechanics.
Scientists have paid great attention to study the atoms

and molecules under different compression regimes. This
is due to the existence of several application problems in
physics and chemistry such as atoms trapped in cavities,
in zeolite channels [1,2], or encapsulated in hollow cages
of carbon-based nano-materials such as endohedral fuller-
enes [3,4]. The models of confined atomic and molecular
systems have also found applications in the analysis of the
so-called artificial atoms or quantum dots [5,6] due to
their relevance in technological applications. The spheric-
ally enclosed atoms represent a model that has been ap-
plied in the analysis of several confined systems with
different methodologies where compression is simulated
through hard or soft walls. For the hydrogen atom, which
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is the simplest atom, Michels et al. [7] presented a simple
physical model to study the hydrogen atom in an impene-
trable spherical cavity to study the effect of pressure on
hydrogen atom and how the dipole static polarizability
responds to an applied external pressure. In this model,
the boundary condition that the wave function vanishes at
r = rc (where rc is the radius of impenetrable spherical
box) is imposed on the solution of the Schrödinger equa-
tion. Various physical properties of the confined hydrogen
atom, such as the modification of their atomic orbitals, en-
ergy levels, the filling of electronic shells, and linear and
nonlinear polarizability, have been studied [8]. Goldman
and Joslin [9] computed the spectroscopic properties of
the hydrogen atom confined in a spherical impenetrable
wall and found strong compression-induced changes in
the emission frequencies and intensity shifts.
For many-electron atoms, many researchers studied

the effect of confinement by an impenetrable as well as
non-impenetrable spherical box [10-12]. Most of the
studies have especially considered the case of the helium
atom as it is considered the simplest system of the few-
body system and is ideal in the study of electronic cor-
relation effects as a function of the cavity dimension into
which they are embedded. On the other hand, the con-
fined version of this atom provides a lucid way to study
the effect of confinement on electron correlation which
arises due to the Coulomb interaction between the two
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electrons. Ten Seldam and de Groot [13] studied varia-
tionally box size effects on ground-state energy and
polarizability of the compressed helium atom by means
of Hylleraas-type wave functions where a cutoff factor is
added. Rivelino and Vianna [14] utilized a spatially con-
fined linear combination of configuration interaction
functions to calculate the compressed helium atom
ground state, whereas Marin and Cruz [15,16] computed
it under conditions of impenetrable and penetrable con-
finement by means of products of uncorrelated exponential
functions and a cutoff factor. Furthermore, calculations are
carried out using the Rayleigh-Ritz variational method to-
gether with the modified Hylleraas-type wave function
(Hylleraas-type wave functions multiplied with appropriate
cutoff factor) to study helium ground-state energies and
some averages, and their evolution with the size of the
spherical box [11]. Besides the variational method, self-
consistent Hartree-Fock [17] configuration interaction [18]
and quantum Monte Carlo [10] methods have also been
used to study the properties of helium atom and several
isoelectronic ions confined in an impenetrable spherical
box. An important study has been presented to calculate
the compression effects in helium-like atoms (Z = 1,. . ., 5)
constrained by hard spherical walls [19]. In the work of
Banerjee et al. [20], the three low-lying excited states of
confined helium atom centered in an impenetrable spher-
ical box have been calculated by employing the variational
method with two-parameter variational forms for the cor-
related two-particle wave function. Wen-Fang [21] pre-
sented a description of the helium atom under spherical
parabolic confinement potential using the adiabatic hyper-
spherical method. The obtained results proved that the en-
ergies of a spherical parabolic well are in good agreement
with those of an impenetrable spherical box for the lar-
ger confined potential radius. The conclusion of this
study states that the confinement may cause accidental
degeneracies between levels with different low excited
states and the inversion of the energy values. As an ex-
tension to this study, and in order to obtain a better
understanding of the features of the ground and low
excited states of confined helium, Wen-Fang introduced
calculations of the energy spectrum of the ground and
low-lying excited states in a non-impenetrable spherical
box (i.e., a spherical Gaussian potential well) using the
exact diagonalization method [22]. Recently, Laughlin et.
al. [23] used Hylleraas-type basis functions, which include
the interelectronic distance or r12, to perform accurate cal-
culations for the ground-state energies of a helium atom
confined at the center of a spherical cavity, in both cases,
penetrable and impenetrable cavities. The presented cal-
culations and results for the ground-state energies of the
atom confined by Gaussian and harmonic penetrable
potentials can be considered to be the most reliable that
has been obtained so far. The strong confinement case of
the helium atom which is embedded in a spherical box
with impenetrable walls was studied in the work of
Montgomery et al. [24]. In this study, the time-
independent Schrödinger equation was solved using the
first-order Rayleigh-Schrödinger perturbation theory, and
then calculations were extended using the fifth-order vari-
ational perturbation theory. The results show that these
approaches provide good alternative approaches for the
calculation of ground-state energy for a strongly confined
helium atom. In the study of Wilson et al. [25], radial, an-
gular, and total correlation energies are calculated for four
two-electron systems with atomic numbers Z = 0, 1, 2,
and 3 confined within an impenetrable sphere of radius
(R). It was proven that for small R, the correlation energies
approach limiting values that are independent of Z, while
at intermediate R, systems with Z ≥ 1 exhibit a character-
istic maximum in the correlation energy that resulted
from an increase in the angular correlation energy which
is offset by a decrease in the radial correlation energy.
In our previous work, we used variational Monte Carlo

(VMC) method to calculate both ground and excited
states of the helium atom [26] as well as lithium atom and
its isoelectronic ions up to Z = 10 [27]. Our results proved
that VMC method can successfully describe helium and
lithium atoms. From this point, the present paper aims to
study the helium atom under compression effects using
VMC method which has not been employed before to de-
scribe this case. Also, we will extend our calculations to
include some helium-like atoms, namely Li+ and Be2+.

Trial wave function
Our calculations for the ground state of the confined he-
lium atom and its isoelectronic ions are based on the
use of a highly compact wave function that has a clear
physical meaning and satisfies all the boundary condi-
tions; this wave function was proposed firstly in a previ-
ous study [28] and is given by the following:

ψ r1; r2; r12ð Þ ¼ 1þ P̂
� �

exp
a1r1 þ b1r21

1þ r1

� �

� exp
a2r2 þ b2r22

1þ r2

� �
exp

dr12
1þ er12

� �

ð1Þ

Where a1,a2,b1,b2,d and e are variational parameters.
A revision in this wave function is the following func-

tional form: exp arþbr2
1þ2

� �
which helps in satisfying Kato's

cusp conditions, which have been stressed in the con-
struction of an accurate wave function in the past. This
wave function was used to calculate the ground-state en-
ergy for the He atom and He-like isoelectronic ions for
Z = 1 − 10, and the results obtained were better than
those of previous works for compact wave functions for
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two-electron systems. Here, we discuss the validity of
using this compact wave function to study the compres-
sion effects in helium-like atoms constrained in hard
spherical walls. In this way, we can introduce the wave
function Ψ combining with the boundary condition
imposed by the confining potential in the following form:

ψ r1; r2; r12ð Þ ¼ 1þ P̂
� �

exp
a1r1 þ b1r21

1þ r1

� �

� exp
a2r2 þ b2r22

1þ r2

� �
exp

dr12
1þ er12

� �

� 1� r21
r2c

� �
1� r22

rc2

� �
ð2Þ

The presence of the cutoff factor 1� r12

rc2

� �
1� r22

r2c

� �
is to guarantee that the boundary condition Ψ=0 where
r1 = rc or r2 = rc is satisfied [20]. Here, rc refers to the
spherical box radius. The variational parameters appear-
ing in the wave function are optimized using the steepest
descent (SD) method.

Method and calculations
In this paper, we shall use the well-known variational
Monte Carlo method which is based on a combination
of two ideas, namely the variational principal and the
Monte Carlo evaluation of integrals, using importance
sampling based on the Metropolis algorithm [29]. Ac-
cording to the VMC method, the expectation value of

any operator Â is calculated as follows [30]:

Â
� � ¼

Z
ψ∗
T Rð ÞÂ ψT Rð ÞdRZ
ψ∗
T Rð ÞψT Rð ÞdR

; ð3Þ

Where ΨT is a trial wave function and R is the 3N-di-
mensional vector of the electron coordinates. In particular,

if the operator Â is the Hamiltonian Ĥ , then its expect-
ation value will be the variational energy EVMC. According
to the variational principle, a trial wave function for a given
state must produce an energy which is above the exact
value of that state, that is, EVMC ≥ Eexact. Variational Monte
Carlo calculations determine EVMC by writing it as follows:

Ĥ
� � ¼ EVMC ¼

Z
P Rð ÞEL Rð Þd Rð Þ;

where

P Rð Þ ¼ ψT Rð Þj j2Z
ψT Rð Þj j2dR

is positive everywhere and interpreted as a probability dis-

tribution, and EL ¼ ĤψT
ψT

is the local energy function. The
value of EL is evaluated using a series of points, Rij, which is
proportional to P(R). After a sufficient number of evalua-
tions, the VMC estimate of EVMC will be as follows:

EVMC ¼ ELh i
¼ lim

N→1
lim

M→1
1
N

1
M

XN

j¼1

XM

i¼1
EL Rij
� 	

; ð4Þ

where M is the ensemble size of random numbers {R1,
R1,........, RM} and N is the number of ensembles. With a
chosen trial wave function, an explicit expression can be
worked out for the local energy EL(R) E in terms of the
values and derivatives of Ψ.
The non-relativistic Schrödinger equation for confined

two-electronhelium-like systemswithnuclearchargeZ can
bewrittenas (in atomicunits) the following form[20]:

H ¼ � 1
2

X2

l¼1
∇2

i þ vN r1; r2ð Þ þ vC r1; r2ð Þ
þ vconf r1; r2ð Þ; ð5Þ

Where vN is the following nuclear potential:

vN r1; r2ð Þ ¼ � z
r1

� z
r2
;

And vC represents the Coulomb repulsion between the
electrons:

vC r1; r2ð Þ ¼ 1
r12

;

and the confining potential vconf(r1, r2) due to an im-
penetrable spherical box of radius rc is given by the
following:

vconf r1; r2ð Þ ¼ 0;
1;

r1; r1 < rc
r1; r1≥rc:



ð6Þ

In our calculations, we use the form of H in Hylleraas
coordinates [31]:

H ¼ � 1
2

∂2

∂r21
þ 2
r1

∂
∂r1

þ ∂2

∂r212

2
r12

∂
∂r12

�

þ 2r̂1:r̂12
∂2

∂r1∂r12
þ ∂2

∂r22
þ 2
r2

∂
∂r2

þ ∂2

∂r212
þ 2
r12

∂
∂r12

�2r̂2 :̂r12
∂2

∂r2∂r12

�
þ vN r1; r2ð Þ þ vC r1; r2ð Þ

þvconf r1; r2ð Þ: ð7Þ

The electronic eigenvalue is determined from the fol-
lowing Schrödinger equation:



Table 1 Energies for the ground state of confined helium atom as functions of the spherical box radius

rc Present work Flores-Riveros and Rodríguez-Contreras [19] Ludeña and Gregori [18] Montgomery et al. [24]

0.5 22.70203 22.7413 22.7437 22.741303

0.6 13.31194 13.3182 13.3204 13.318127

0.8 4.640665 4.6104 4.6125 4.610408

1.2 −0.708609 −0.7088 −0.7070 −0.708802

1.4 −1.616875 −1.6173 −1.6156 −1.617330

1.8 −2.4223 −2.4245 −2.4230 -

2.5 −2.820202 −2.8078 - -

3.5 −2.890474 −2.8936 - -

4 −2.894997 −2.9004 −2.8988 −2.900534

5 −2.903886 −2.9034 −2.9020 −2.903408

6 −2.903460 −2.9037 −2.9024 −2.903650

All values are in atomic units.

He 

Figure 1 The ground state energy of the helium atom versus
the spherical box radius rc.
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Hψ r1; r2; r12ð Þ ¼ Eψ r1; r2; r12ð Þ ð8Þ

Our goal now is to solve the six-dimensional partial
differential eigenvalues (Equation 8) for the lowest
eigenvalue.
In order to get accurate values for the five variational

parameters a1, a2, b1, b2, and e, we will use the SD
method [32], which is considered as one of the most
popular methods to optimize the wave function for
Monte Carlo methods. On the other hand, the vari-
ational parameter d will be determined using cusp con-
ditions [33] which ensure that the local energy EL is
finite. When the two electrons become closer to the nu-
cleus, then it can be easily verified that d ¼ 1

2.
The main merit of the SD method is its simplicity

which can turn it into an efficient method at least for
simple atoms. This method was presented recently, and
it was shown that the implementation of the SD method
in the direct approach of energy minimization yields
good results. In this work, we shall use the SD method
to optimize the variational parameters using energy
minimization scheme.
To use the SD method, we start by choosing initial

values for the five parameters a1, b1, a2, b2, and d and
then iteratively update the values of the parameters
according to the following relation:

ckþ1 ¼ ck � agk ; ð9Þ

where the vector c = (c1, c1 . . . cm) denotes the para-
meters in the wave function; k is the iteration step, and
α denotes the constant of the SD method. In Equation 9,
gk, is defined as the gradient vector of energy with re-
spect to the parameters, and it is given as follows:
g ¼ ∂E
∂C1

;
∂E
∂C1

; . . . ;
∂E
∂Cm

� �
ð10Þ

The energy gradient vector is computed according to
the following relation [34]:

∂E
∂Cm

¼ lim
N→1

2
N

XN
s¼1

EL � ∂ψ
∂Cm

� �
s

� E � ∂ψ
∂Cm

� �
s


 �

ð11Þ

We then proceed with some iterations of Equation 9
until we obtain the optimum values of the parameters
and the variational energy approach to the desired value.
Normally taking five to six iterations, the variational
parameters should have reached the vicinity of their ul-
timate values. Using the obtained values of variational
parameters, the energy will be calculated with a large
number of Monte Carlo points.



Table 2 Energies for the ground state of confined Li+ as
functions of the spherical box radius

rc Present
work

Flores-Riveros and
Rodríguez-Contreras [19]

Ludeña and Gregori
[18]

0.5 11.76771 11.7768 11.7790

0.6 3.9934290 3.9262 3.9284

0.8 −2.893898 −2.8632 −2.8612

1.2 −6.407358 −6.4065 −6.4047

1.4 −6.855290 −6.8732 −6.8713

1.8 −7.192726 −7.1906 −7.1880

2.5 −7.258839 −7.2740 -

3.5 −7.279050 −7.2798 -

4 −7.279230 −7.2799 −7.2783

5 −7.279254 −7.2799 −7.2784

6 −7.279253 −7.2799 −7.2784

All values are in atomic units.

Li+

Figure 2 Ground-state energy of the helium ion Li+ versus the
spherical box radius rc.
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Results and discussion
In this paper, we present a new application of the well-
known variational Monte Carlo method to study the con-
fined helium atom. The ground states of the confined
helium atoms, Li+ and Be2+, were calculated for different
radii rc. All energies are obtained in atomic units (i.e.,
h=e=me=1h) with a set of 106 Monte Carlo points to
make the statistical error as low as possible. In Table 1,
we displayed the results obtained for the ground state of
the helium atom (Z = 2) together with the corresponding
results available in the literature and the most recent
results. The obtained energies were calculated for a wide
range of values of rc. The small values of the spherical
box radius rc describe the case of strong confinement
where for large values of rc ≥ 3.5, the compression effect
becomes not noticeable, and the energy is nearly stable
Table 3 Energies for the ground state of confined Be2+ as
functions of the spherical box radius

rc Present
work

Flores-Riveros and
Rodríguez-Contreras [19]

Ludeña and Gregori
[18]

0.5 0.10801980 0.1056 0.1078

0.6 −6.288159 −6.2423 −6.2402

0.8 −11.26839 −11.2679 −11.2658

1.2 −13.36396 −13.3733 −13.3701

1.4 −13.556580 −13.5590 −13.5552

1.8 −13.639290 −13.6449 −13.6415

2.5 −13.654130 −13.6553 -

3.5 −13.655678 −13.6555 -

4 −13.65640 −13.6555 −13.6539

5 −13.657630 −13.6555 −13.6519

6 −13.65781 −13.6555 −13.6539

All values are in atomic units.
and approaches the corresponding exact value. It is clear
that our results are in good agreement with previous
data. Figure 1 represents the energy of the ground state
of helium as a function of the radius rc. Also, Figure 1
insures the fact that the energy of the low-lying states in
a confined quantum charged system is determined by a
competition of confinement kinetic energy and Coulomb
interaction energy. As the atoms are compressed, they
become constrained in a diminishing spherical box such
that, according to the quantum mechanical uncertainty
principle, the electrons increase their momentum and
thereby leading to a net gathering of kinetic energy. In
other words, the smaller the confined potential radius rc
is, the higher the confinement kinetic energy. When the
increase in the confinement kinetic energy becomes pre-
dominant and cannot be compensated by the increase of
the Coulomb attractive energy, the energies of the
Be 2+

Figure 3 Ground-state energy of the helium ion Be2+ versus
the spherical box radius rc.
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confined helium atom increase. Tables 2 and 3 display
the results concerning the confined Li+ (Z = 3) and Be2+

(Z = 4), respectively, for various values of rc as well as the
available previous values in order to check the accuracy
of our results. It is clear that our results for helium ions
(Z = 3, 4) are slightly different than the previous data for
small radii rc ≤ 1.8. This may be attributed to the trial
wave functions used in previous works [18,19], which are
especially well suited to describe strongly compressed
atoms. This is not the case for large values of rc where
our results exhibit good accuracy compared with those
data. Figures 2 and 3 show graphically the behavior of
the energy of the confined atom versus the spherical box
radius rc. In fact, when the nuclear charge is increased,
the Coulomb attraction between the nucleus and the
electron becomes stronger which keeps the electrons
moving ever closer to the nucleus and then leads to a
more compact atom. It is clear that the rate of energy in-
crease speeds up as the nuclear charge of the atom
increases, so when the effective confinement regions be-
come narrower for the most compact species, the rate of
energy increase speeds up for atoms of higher nuclear
charge.
Conclusions
The well-known VMC method was employed to study
the helium atom which is compressed by a spherical
box. For various values of the spherical box radii, we
have calculated the energies for both helium and its iso-
electronic ions, Li+ and Be2+. We considered the case of
small values of rc, which describe the strong compres-
sion, as well as the case of large values of rc. In both
cases, our results exhibit good accuracy compared with
previous values using different methods and different
forms of trial wave functions. We then can conclude that
VMC techniques can describe the compression effect for
helium and its ions successfully.
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